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SMOOTHNESS OF UNORDERED CURVES
IN TWO-DIMENSIONAL

STRONGLY COMPETITIVE SYSTEMS

Abstract. It is known that in two-dimensional systems of ODEs of the
form ẋi = xif i(x) with ∂f i/∂xj < 0 (strongly competitive systems), bound-
aries of the basins of repulsion of equilibria consist of invariant Lipschitz
curves, unordered with respect to the coordinatewise (partial) order. We
prove that such curves are in fact of class C1.

A two-dimensional system of C1 ordinary differential equations (ODEs)

(S) ẋi = xif i(x),

where f = (f1, f2) : K → R2, K := {x = (x1, x2) ∈ R2 : xi ≥ 0 for i = 1, 2}
is called strongly competitive if

∂f i

∂xj
(x) < 0

for all x ∈ K, i, j = 1, 2, i 6= j (see M. W. Hirsch’s papers [4] and [5]).
Systems of the form (S) describe communities of two interacting biolog-

ical species: the function f i represents the per capita growth rate of the
ith species. Strong competitiveness means that the growth of each species
inhibits the growth of the other.

An important subclass of strongly competitive systems consists of strong-
ly competitive Lotka–Volterra systems of the form

ẋi = xi
(
bi +

2∑
j=1

aijx
j
)
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where bi ∈ R and aij < 0 for i 6= j. For an introduction to Lotka–Volterra
systems and their application in biology see the book [7] by J. Hofbauer and
K. Sigmund.

First we introduce some notation and definitions. We write F = (F 1, F 2)
with F i(x) = xif i(x). The symbol DF (x) stands for the derivative matrix
of the vector field F at x ∈ K: DF (x) = [(∂F i/∂xj)(x)]2i,j=1. Denote
by φ = {φt} the local flow generated on K by (S): φt(x0) is the value
at time t of the unique solution of the initial value problem ẋi = F i(x),
x(0) = x0. For x ∈ K denote by (σ(x), τ(x)) the largest interval on which
the mapping t 7→ φt(x) is defined. We define the backward orbit of x ∈ K as
Ob(x) := {φt(x) : t ∈ (σ(x), 0]}, and its forward orbit by Of(x) := {φt(x) :
t ∈ [0, τ(x))}. The union Ob(x) ∪Of(x) =: O(x) is the orbit of x. We refer
to {φt(x) : t ∈ (t1, t2)}, σ(x) < t1 < t2 < τ(x), as an orbit interval . A set
A ⊂ K is invariant if O(x) ⊂ A whenever x ∈ A. We write E for the set of
equilibria: x ∈ E if and only if F (x) = 0.

For x ∈ K and t ∈ (σ(x), τ(x)) denote by Dφt(x) the derivative matrix
of the mapping φt at x. It is well known that t 7→ Dφt(x) satisfies the
matrix linear ODE Ṁ = DF (φt(x))M with initial condition M(0) = Id.

Let K◦ be the set of points in K with positive coordinates, that is, the
interior of K in R2. Set ∂K to be the boundary of K in R2: ∂K = K \K◦.
From the form of the system (S) it is clear that the sets ∂K and K◦ are
invariant. The half-lines Ki := {x ∈ K : xi = 0} are invariant as well.

For a vector v = (v1, v2) ∈ R2 we write v ≥ 0 if v1 ≥ 0 and v2 ≥ 0 (we
call such vectors nonnegative). If v1 > 0 and v2 > 0 we write v � 0 and call
such a vector positive. Nonpositive and negative vectors are defined in an
analogous way. v > 0 means v ≥ 0 and v 6= 0. For two points x, y ∈ R2 we
write x ≤ y if y − x ≥ 0, x < y if y − x > 0, and x � y if y − x � 0. A set
A ⊂ K is unordered if no two points x, y ∈ A are ordered by the < relation.
For W ⊂ R2 we denote by spanW the linear span of W . For v ∈ R2 we
write span+ v := {αv : α ≥ 0}, span− v := {αv : α ≤ 0}. S1 denotes the
unit circle in R2.

For the system (S) by a d-curve we understand an invariant unordered
(topological) one-dimensional manifold-with-boundary D ⊂ K. The rele-
vance of this concept lies in the fact that the upper and lower boundaries of
the repulsion basin of a repelling set A ⊂ K◦ are finite families of d-curves
and intervals of Ki; see the paper [6] of M. W. Hirsch. A more detailed anal-
ysis of repulsion basins for a generic function f was given in M. S. Holtz’
dissertation [8]. E. C. Zeeman and M. L. Zeeman [18] showed that for a
class of Lotka–Volterra strongly competitive systems d-curves are convex.

In an arbitrary (possibly infinite) dimension, an analog of d-curves (so-
called d-hypersurfaces) is one of the principal tools in investigating strongly
monotone dynamical systems (see Hirsch [6] for the finite-dimensional case,
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Takáč [15], [16] for the general case). There is an open problem (posed by
Hirsch [6]) of determining conditions under which those hypersurfaces are
of class C1. What is known in general is that they are Lipschitz. Also,
sufficient conditions were given for them to be smooth; see Brunovský [2],
Mierczyński [10], [11], Tereščák [17], Benäım [1]. Recently, a counterexample
in dimension three has been found by the author [12].

The purpose of the present paper is to show that d-curves are always
manifolds-with-boundary of class C1 (Theorem 1). The fact that the inter-
section D ∩K◦ is a one-dimensional C1 manifold belongs to the folklore in
the theory of strongly monotone dynamical systems (although probably no
proof of this fact has appeared in print). Difficulties arise when one con-
siders smoothness at the boundary D ∩ ∂K. As we shall see, in some cases
one cannot make use of classical results but must have recourse to ad hoc
arguments.

We begin by stating and proving two preliminary lemmas.

Lemma 1. Let x ∈ E∩K◦. Then there exists an eigenvector w of DF (x)
with w1w2 < 0, such that for each u ∈ R2 \ spanw there is T ∈ R such that
exp(T ·DF (x))u is positive or negative.

P r o o f. By the Perron–Frobenius theory (see e.g. Seneta’s book [14]) ap-
plied to the matrix exp(−DF (x)), the spectrum of DF (x) consists of two sim-
ple real eigenvalues, %1 < %2. Denote normalized eigenvectors corresponding
to them by v, w. Consequently, exp(−t ·DF (x))u/‖exp(−t ·DF (x))u‖ tends
to ±v as t → ∞, unless u ∈ spanw. Further, the Perron–Frobenius theory
also states that v can be chosen positive and w has components of opposite
signs. One needs now to take T sufficiently close to −∞ or to ∞.

Lemma 2. Let x ∈ E ∩ ∂K \ {0}, say x = (x1, 0) with x1 > 0. Then the
matrix DF (x) has the form [

a b
0 c

]
with

a = x1 ∂f1

∂x1
(x), b = x1 ∂f1

∂x2
(x) < 0, c = f2(x).

Moreover , if a ≥ c then for each u 6∈ span(1, 0) there is T ∈ R such that
exp(T ·DF (x))u is positive or negative.

P r o o f. The first part follows by simple computation. To prove the
second part, notice that (1, 0) is an eigenvector corresponding to the eigen-
value a. Assume first a > c. Then v := (1, (c− a)/b) is an eigenvector
corresponding to the eigenvalue c. As in the proof of the previous lemma we
argue that exp(−t ·DF (x))u/‖exp(−t ·DF (x))u‖ tends to ±v/‖v‖ as t →∞,
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unless u ∈ span(1, 0). Since v has both components positive, it is enough to
take T sufficiently close to −∞ or to ∞.

Assume now a = c. Then for each t ∈ R the matrix exp(t ·DF (x)) has
the form

eat

[
1 bt
0 1

]
.

Therefore it suffices to consider a = 0. Assume u2 > 0. If u1 > 0 take
T = 0. So, let u1 ≤ 0. One has (exp(−t ·DF (x))u)1 = u1 − btu2 → ∞ as
t →∞, while (exp(−t ·DF (x))u)2 = u2 for all t ∈ R.

We now formulate and prove our main result.

Theorem 1. Assume that D is a d-curve for a two-dimensional strongly
competitive system (S). Then D is a C1 manifold (possibly with boundary).

P r o o f. For x ∈ D define the tangent cone Cx := {αv ∈ V : α ≥ 0 and
there is a sequence {xn} ⊂ D \{x} such that xn → x and (xn−x)/‖xn−x‖
→ v as n → ∞}. The set Cx is easily seen to be a closed proper superset
of {0}.

At x ∈ D \ E the curve D is locally a portion of the orbit O(x), hence
Cx = spanF (x), and the tangent cones Cy depend continuously on y in some
relative neighborhood of x in D.

Assume that x ∈ D ∩ E and one of the following holds:

(A1) x ∈ K◦,

(A2) x ∈ ∂K, say x = (x1, 0) with x1 > 0, and the eigenvalue of DF (x)
corresponding to the eigenvector (1, 0) either has multiplicity two
or is larger than the remaining one.

By Lemma 1 (in case (A1)) or Lemma 2 (in case (A2)) we find a normalized
eigenvector w of DF (x) with the property that for each u 6∈ spanw there is
T ∈ R such that both components of exp(T ·DF (x))u are of the same sign.
We prove first that Cx ⊂ spanw. Suppose for contradiction that there is
u ∈ Cx \ spanw. For each t ∈ R the mapping φt is a local diffeomorphism
leaving x fixed, such that its derivative Dφt(x) equals exp(t ·DF (x)). As a
consequence, exp(t ·DF (x))Cx = Cx for all t ∈ R. In particular, the positive
or negative vector exp(T ·DF (x))u belongs to the tangent cone at x. From
this we derive that there is a point y ∈ D in the � or � relation with x,
which is in contradiction to the fact that D is unordered.

We have so far proved that D is differentiable at all but (at most) two of
its points. Also, D is of class C1 on its relatively open subset D \E. So, for
x ∈ D ∩ E satisfying (A1) or (A2) we already know that the tangent cones
Cy are one-dimensional for y in some neighborhood of x. We claim that for
sequences {xn} ⊂ D\{x}, xn → x, and {vn}, vn ∈ Cxn∩S1, vn → v, one has
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v ∈ span Cx. As S1 is compact, suppose by way of contradiction that there
are subsequences (denoted again by {xn}, {vn}) such that limn→∞ vn = u 6∈
span Cx. Let T ∈ R be such that exp(T ·DF (x))u is positive or negative. One
has φT (xn) → φT (x) = x and DφT (xn)vn → DφT (x)u = exp(T ·DF (x))u
as n → ∞. Consequently, for N sufficiently large, DφT (xN )vN has both
components of the same sign. But as vN ∈ CxN

, one has DφT (xN )vN ∈
CφT (xN ). This yields that close to φT (xN ) ∈ D there is a point y ∈ D in the
� relation with the former, a contradiction.

The above technique does not seem to work for the case of x ∈ D ∩ ∂K
(say, x = (x1, 0)) such that the eigenvalue, a, of DF (x) corresponding to
the eigenvector (1, 0) is smaller than the remaining one, c. Assume first
that a < c < 0. Then for each y from some relative neighborhood U of
x in K one has limt→∞ φt(y) = x. Consequently, we can write D ∩ U =
Of(y) ∪ {x} for some y ∈ D ∩ U , y 6= x. By Thms. VIII.2.1 and VIII.3.1
in Hartman [3], F (φt(y)) as well as (x − φt(y))/‖x − φt(y)‖ converge, as
t → ∞, to a (normalized) eigenvector of DF (x), whence D ∩ U is C1.
An analogous reasoning, with t replaced by −t, applies when 0 < a < c.
Assume now a < 0 < c, and denote by w a normalized eigenvector of
DF (x) corresponding to c. By the Grobman–Hartman theorem (see e.g.
Thm. IX.7.1 in [3]) there is a homeomorphism h of a neighborhood of x into
a neighborhood of 0 in R2 sending orbit intervals of the dynamical system
φ to orbit intervals of the linearized system ξ̇ = DF (x)ξ. For the latter the
invariant one-dimensional topological manifolds-with-boundary for which 0
is a boundary point are span+ (1, 0), span− (1, 0), span+ w and span− w.
The inverse images of those manifolds under h are portions of (local) unique
stable or unstable C1 manifolds, M s(x), Mu(x), at x (for the theory of
stable and unstable manifolds see e.g. Kelley [9]). As a consequence, D is
of class C1 in a neighborhood of x.

The remaining cases are those of one of a or c equal to zero. We have
either a = 0 and c > 0, or a < 0 and c = 0. Assume the former. Then
there exist a locally invariant C1 one-dimensional center manifold M c(x)
tangent at x to (1, 0) and a locally invariant C1 one-dimensional unstable
manifold Mu(x) tangent at x to w. (A set A contained in a neighborhood
U of x is locally invariant if O(x) ∩ U ⊂ A for each x ∈ A.) The manifold
Mu(x) is unique, whereas M c(x) is not, in general. The dynamical system
φ restricted to a neighborhood U of x has local product structure (cf. Palis
and Takens [13]): there is a homeomorphism h of U into a neighborhood of 0
in R2 carrying orbit intervals of φ to orbit intervals of the dynamical system
generated by the two uncoupled ODEs ξ̇1 = g(ξ1), ξ̇2 = cξ2, where g(0) =
g′(0) = 0. Also, h carries some M c(x) into {(ξ1, 0)} and carries Mu(x) into
{(0, ξ2)}. Further, although h is only continuous, different center manifolds
at x correspond via h in a one-to-one way to different locally invariant sets
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tangent at 0 to {(ξ1, 0)}. So, in the ξ-coordinates any topological locally
invariant one-dimensional manifold-with-boundary having 0 as a boundary
point either is a portion of {(0, ξ2)} or is tangent at 0 to {(ξ1, 0)}. From
this it follows that locally D is either Mu(x) or some center manifold at x.
Both are C1.

The case a < 0 and c = 0 is treated in an analogous way: There is a
unique one-dimensional stable manifold M s(x) tangent at x to (1, 0), and a
one-dimensional center manifold M c(x). Since the half-line K1 is invariant
and tangent at x to (1, 0), there is a neighborhood U of x such that K1∩U =
M c(x) ∩ U . Using the local product structure argument as in the previous
paragraph we conclude that D ∩ U is a C1 center manifold.
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[10] J. Mierczy ń sk i, The C1 property of carrying simplices for a class of competitive
systems of ODEs, J. Differential Equations 111 (1994), 385–409.

[11] —, On smoothness of carrying simplices, Proc. Amer. Math. Soc. 127 (1999),
543–551.

[12] —, Smoothness of carrying simplices for three-dimensional competitive systems: A
counterexample, Dynam. Contin. Discrete Impuls. Systems, in press.

[13] J. Pa l i s and F. Takens, Topological equivalence of normally hyperbolic dynamical
systems, Topology 16 (1977), 335–345.

[14] E. Seneta, Non-negative Matrices and Markov Chains, 2nd ed., Springer Ser.
Statist., Springer, New York, 1981.
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