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A. RACZYŃSKI (Wroc law)

ON A NONLOCAL ELLIPTIC PROBLEM

Abstract. We study stationary solutions of the system

ut = ∇ ·
(
m− 1

m
∇um + u∇ϕ

)
, m > 1, ∆ϕ = ±u,

defined in a bounded domain Ω of Rn. The physical interpretation of the
above system comes from the porous medium theory and semiconductor
physics.

1. Introduction. The temporal evolution of the spatial density u(x, t)
(x ∈ R

n, t ≥ 0) of free carriers in semiconductors or in electrolytes is
described by a parabolic-elliptic system of equations [8], [12], [16], whose
simplified form reads

ut = ∇ · (∇u+ u∇ϕ) = ∆u+∇u · ∇ϕ+ u∆ϕ,(1)

∆ϕ = −u.(2)

Here ϕ is an electric potential generated by the density u.

In this model we assume that the flow of particles caused by thermal
chaotic movement is proportional to the gradient ∇u of the density (Fick’s
law), and the velocity of each carrier is proportional to the gradient of the
electric potential. The last assumption is consistent with the character of
frictional forces acting on each particle.

In this paper we propose, following [13], to change the continuity equa-
tion (1) so that the term m−1

m
∆um, m > 1, replaces ∆u. This kind of

term appears in the equations describing flows in porous media ([1]). In
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this way, we consider free carriers in semiconductors (ions in electrolyte, re-
spectively) as a gas of self-interacting particles moving in a porous medium.
Our problem assumes now the form

ut = ∇ ·
(
m− 1

m
∇um + u∇ϕ

)
, m > 1,(3)

∆ϕ = −u.(4)

Instead of (4) we can assume another relation between the density and
potential. For example, when considering a self-gravitating system, (4)
should be replaced by

(5) ∆ϕ = u,

where ϕ is the gravitational potential generated by u.
The natural boundary condition which guarantees the conservation of

the total mass M =
T
Ω
u(x, t) dx is the “no-flux” condition, i.e.

(6)
m− 1

m

∂um

∂ν
+ u

∂ϕ

∂ν
= 0.

For ϕ we set the zero boundary condition

(7) ϕ|∂Ω = 0,

which, in the Coulomb case, says that the boundary is grounded.
The system is supplemented with the initial condition

(8) u(x, 0) = u0(x).

The problem (1)–(2) was considered in a series of papers: [3]–[11], [14],
[15], [17]–[18].

It was shown that the global existence of solutions, the existence of
stationary solutions and blow up phenomena depend on the character of
interaction between the particles, total mass of the system and geometry of
the domain Ω.

Here we are interested in the problem of existence of a stationary solution
〈U,Φ〉 of (3), (4) (or (5)), (6)–(7) with a given total charge (mass)

T
Ω
U =M

of particles.

2. Stationary solutions. Stationary solutions 〈U,Φ〉 of (3), (4) (or
(5)) satisfy the system

∇ ·
(
m− 1

m
∇Um + U∇Φ

)
= 0,(9)

∆Φ = −U (resp. ∆Φ = U).(10)

The first equation can be written in the form

(11) ∇ · (U exp(−(Φ+ Um−1))∇(exp(Φ+ Um−1))) = 0.
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Multiplying (11) by exp(Φ + Um−1) and integrating over Ω we obtain\
Ω

U exp(−(Φ+ Um−1))|∇(exp(Φ+ Um−1))|2 = 0,

where we used (6).
Assuming that U > 0 in Ω we get the following relationship between U

and Φ:

(12) Φ+ Um−1 = C,

with some constant C > 0 (note that Φ = 0 and U > 0 on the boundary
∂Ω).

Putting U = (C − Φ)1/(m−1) into (10) we reduce the question of the
existence of stationary solutions of (3), (4) (or (5)), (6)–(7) with a given
total charge (mass) M to the nonlocal elliptic problem

(13) ∆Φ = −(C − Φ)α, α =
1

m− 1
> 0,

in the Coulomb case or

(14) ∆Φ = (C − Φ)α,

in the gravitational case.
On the boundary ∂Ω we have

(15) Φ = 0,

and the unknown constant C is connected with M =
T
Ω
U by the relation

(16)
\
Ω

(C − Φ)α =M.

For a given C > 0 the problem (13) ((14)), (15) will be called the problem
(C), and ΦC will denote its solution.

The proof of the existence of a solution to the problem (C) will be based
on the theory of sub- and supersolutions of elliptic problems (cf. [19], [20]).

Recall that a function Φ ∈ C(Ω)∩C2(Ω) is called a supersolution of the
problem

(17)

(18)

∆Φ = f(Φ) in Ω,

Φ = 0 on ∂Ω,

if the following inequalities hold:

∆Φ ≤ f(Φ) in Ω,

Φ ≥ 0 on ∂Ω.

Similarly Φ ∈ C(Ω) ∩ C2(Ω) is called a subsolution if it satisfies the
reverse inequalities above.
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The sub- and supersolutions Φ,Φ are said to be ordered if Φ ≤ Φ in Ω.
In this case [Φ,Φ] will denote the set {Φ ∈ C(Ω) : Φ ≤ Φ ≤ Φ in Ω}.
Theorem A ([19], Th. 7.1). Let Φ,Φ be ordered sub- and supersolutions

of (17)–(18), and let f satisfy the condition

(19) f(Φ1)− f(Φ2) ≥ −c(Φ1 − Φ2) for Φ ≤ Φ2 ≤ Φ1 ≤ Φ

with some c ≥ 0. Then

(i) {Φ(k)}, the sequence obtained from Φ by the monotonicity method (as
described in [19], Sec. 7.1), converges monotonically from above to a solution

Φ∗ of (17)–(18), and {Φ(k)} (similarly constructed) converges monotonically

from below to a solution Φ∗,
(ii) Φ∗ ≤ Φ∗ in Ω and any solution Φ in [Φ,Φ] satisfies Φ∗ ≤ Φ ≤ Φ∗,
(iii) if f is nonincreasing then Φ∗ = Φ∗ is a unique (classical) solution in

[Φ,Φ].

The regularity assumption f ∈ C1 immediately implies

Corollary ([19], Corollary 7.1). Let Φ,Φ be ordered sub- and superso-

lutions of (17)–(18), and let f be a C1 function in [Φ,Φ]. Then the problem

(17)–(18) has a solution Φ∗ and a solution Φ∗ such that Φ ≤ Φ∗ ≤ Φ∗ ≤ Φ
in Ω. If f ′(Φ) ≥ 0 for Φ in [Φ,Φ] then Φ∗ = Φ∗ is a unique solution of

(17)–(18).

By a weak solution of (17)–(18) we understand a function Φ ∈ H1
0 (Ω)

such that \
Ω

∇Φ · ∇ψ dx+
\
Ω

f(Φ)ψ dx = 0 for all ψ ∈ C∞
0 (Ω).

The function Φ ∈ H1(Ω) will be called a (weak) supersolution to (17)–
(18) if Φ ≥ 0 on ∂Ω and\

Ω

∇Φ · ∇ψ dx+
\
Ω

f(Φ)ψ dx ≥ 0 for all ψ ∈ C∞
0 (Ω), ψ ≥ 0.

Similarly Φ ∈ H1(Ω) is a (weak) subsolution to (17)–(18) if the reverse
inequalities hold above.

Theorem B ([20], Th. 2.4). Let Ω be a smooth, bounded domain in

R
n and f be a continuous function. Suppose that sub- and supersolutions

Φ,Φ ∈ H1(Ω) to the problem (17)–(18) satisfy −∞ < c ≤ Φ ≤ Φ ≤ c < ∞,
with some constants c, c ∈ R, almost everywhere in Ω. Then there exists

a weak solution Φ ∈ H1
0 (Ω) of (17)–(18) satisfying Φ ≤ Φ ≤ Φ almost

everywhere in Ω.

As we will see, there is a difference between the Coulomb ((13)) and the
gravitational ((14)) case. In the first case the solution exists for all M > 0
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and all domains, whereas for the gravitational interaction the existence de-
pends on the mass M , domain Ω and exponent m.

In the Coulomb case we prove the following theorem.

Theorem 1. For every M > 0 and each domain Ω there exists a unique

solution of the problem (13), (15), (16).

P r o o f. We proceed as follows. First we prove, for a given C > 0, the
existence of a unique solution ΦC of the problem (C). Next we check the
monotonicity and continuity of the function M(C) =

T
Ω
(C − ΦC)

α. The
theorem will be proved if we show that M((0,∞)) = R

+.

The proof is divided into two parts: α ≥ 1 (here we obtain classical
solutions) and 0 < α < 1 (solutions will be weak). In the second case
(0 < α < 1) we cannot, obviously, use the Corollary (f is not C1). To use
Theorem A we should verify the condition (19). Satisfying (19) is equiv-
alent to constructing a supersolution which is strictly less than C. But,
as we will see later, we can do it not for all domains Ω and constants C
(see Remark 3). This is the reason why we use Theorem B which only re-
quires the continuity of f . Obviously an application of Theorem B gives
us only weak solutions, which is, however, expected for such a degenerate
problem.

Case α ≥ 1. For α ≥ 1 the existence and uniqueness of a solution to the
problem (C) follows immediately from the Corollary and the fact that Φ = 0
is a subsolution and Φ = C is a supersolution to the problem (13), (15).

Now, let M(C) =
T
Ω
(C − ΦC)

α. To show the continuity of M(C) note
that for α > 0 and C > C0 (C < C0 resp.) the function ΦC0

+C −C0 (ΦC0

resp.) is a supersolution to the problem (C). This implies that ΦC ≥ ΦC0
≥

0 for C > C0. Hence

(20) |ΦC − ΦC0
| = ΦC − ΦC0

≤ ΦC0
+ C − C0 − ΦC0

= C − C0.

Analogously for C0 > C we have 0 ≤ ΦC ≤ ΦC0
, so

(21) |ΦC − ΦC0
| = ΦC0

− ΦC ≤ ΦC +C0 − C − ΦC = C0 − C.

Using (20), (21) we get

|M(C)−M(C0)|
≤
\
Ω

|(C − ΦC)
α − (C0 − ΦC0

)α|

≤ α
\
Ω

|(C − ΦC)− (C0 − ΦC0
)|(|C − ΦC |α−1 + |C0 − ΦC0

|α−1)
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≤ C(α,C0)
\
Ω

|(C − C0)− (ΦC − ΦC0
)|

≤ C(α,C0)
\
Ω

(|(C − C0)|+ |ΦC − ΦC0
|)

≤ C(C0, α,Ω)|C − C0|,

which gives the continuity of M(C).

To prove the monotonicity of M(C) note that for m ∈ (1, 2] (α ≥ 1) and
all C > C0 the function C

C0

ΦC0
is a subsolution for the problem (C). Hence

we have

(22) M(C) = −
\
Ω

∆ΦC = −
\
Ω

∂

∂ν
ΦC > −

\
Ω

∂

∂ν

C

C0
ΦC0

=
C

C0
M(C0).

The last inequality implies that M(C) → ∞ as C → ∞. Note that

M(C) =
\
Ω

(C − ΦC)
α ≤ |Ω|Cα.

Hence M(C) → 0 as C → 0, and the theorem has been proved for α ≥ 1.

Case 0 < α < 1. The main difficulty lies now in the fact that, for some
domains Ω and constants C, we are not able to construct a supersolution Φ
such that Φ < C. We may use Theorem B for weak sub- and supersolutions,
which does not require the above condition ([20]). Having weak (H1) sub-
and supersolutions we get the existence of a weak H1

0 solution by applying
Theorem B.

To do this it suffices to rewrite the above proof replacing the classical
sub- and supersolutions by their weak equivalents. Only the proof of the
continuity of M(C) and of its unboundedness needs new arguments.

To prove the continuity of M(C) note that for α ∈ (0, 1) the inequality
xα− yα ≤ (x− y)α holds for all x > y. Thus, recalling the inequalities (20),
(21) (which are valid also for α ∈ (0, 1)), we get

|M(C)−M(C0)| ≤
\
Ω

|(C − ΦC)
α − (C0 − ΦC0

)α|

≤
\
Ω

|(C − C0)− (ΦC − ΦC0
)|α

≤
\
Ω

|C −C0|α ≤ |Ω| · |C − C0|α,

which finishes the proof of the continuity.
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Analogously for α ∈ (0, 1) and all C > C0 the function C
C0

ΦC0
is a

supersolution for the problem (C). Hence ΦC ≤ CΦ1 and

M(C) =
\
Ω

(C − ΦC)
α ≥

\
Ω

(C − CΦ1)
α = CαM(1),

which implies that M(C) → ∞ as C → ∞.
Recalling that 0 and C are sub- and supersolutions of (13), (15) respec-

tively, we see that the density U = (C − ΦC)
α is positive.

Thus Theorem 1 is proved.

Remark 1. To prove Theorem 1 for α = 1, it is enough to observe that
ΦC(x) = C Φ1(x). Hence if the pair 〈U1, Φ1〉 is a solution for C = 1 then
the scaled couple 〈kU1, kΦ1〉 is a solution for the mass M = kM(1).

Remark 2. For n = 1 and α = 1 the solution of (13), (15) can be
expressed in an explicit form. It is enough to consider the problem on
[0, R]. The solution of the problem (C) for C = 1 on [A,B] is given by

Φ1(x) = Φ̃1(x−A) where

Φ̃1(x) = 1− eR − 1

eR − e−R
e−x − 1− e−R

eR − e−R
ex

is the solution on [0, R], R = B −A.

Remark 3. Assume thatΩ is contained in a ball of radiusR, Ω ⊂ BR(0).
It is easy to check that for 0 < α < 1 and Cα−1R2 < 2n the positive

function CαR2−|x|2

2n
is a supersolution of the problem (C). Since Φ = 0 is

a subsolution, Theorem A can be applied, which gives the existence of a
classical solution of (17)–(18).

In the gravitational problem (14), (15) we consider three cases: α ∈
(0, 1), α = 1, α > 1. In the first and second cases the existence of solutions
depends on the domain Ω and mass M .

For α ∈ (0, 1) the idea of the proof is exactly the same as in the Coulomb
case. The only difference lies in the fact that M((0,∞)) = (M0,∞), where
M0 =M0(Ω,m) > 0.

For α = 1 we will see that the existence of solutions depends only on
the domain Ω. In this case we can also use the previous method; however,
the result obtained is not the best possible and does not give the uniqueness
for large domains. Thus we will apply another method using the particular
relationship ΦC = CΦ1 (valid only for α = 1).

For α > 1 we will show the nonexistence of solutions forM large enough.

Theorem 2. For m > 2 (α ∈ (0, 1)), n ≥ 1 and for any domain there

exists a unique solution of (14)–(16) only if M > M0 where M0 is some

positive constant depending on Ω and m, M0 =M0(Ω,m) > 0.
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P r o o f. If Ω ⊂ BR(0) and w ≥ wC then the function

ΦC(x) = −wR
2 − |x|2
2n

is a subsolution of the problem (C). Here wC is given by the equation

wC =

(
C +

wCR
2

2n

)α

.

Indeed, for w ≥ wC we have

∆ΦC = w ≥
(
C + w

R2

2n

)α

≥
(
C +w

R2 − |x|2
2n

)α

= (C − ΦC)
α.

Using the fact that 0 is a supersolution, the existence of a classical solu-
tion of (14), (15) follows from Theorem A.

To prove the uniqueness, assume that there exists a solution Φ̂ different
from Φ∗ (the solution obtained by iteration of 0—a supersolution—by the

method described in [19]). Because Φ̂ ≤ 0 and Φ̂ is a solution (subsolution)

we get Φ̂ ≤ Φ∗ (Th. A(ii)).

Multiplying the equation ∆Φ∗ = (C − Φ∗)α by Φ∗ − Φ̂ and integrating
over Ω we have

−
\
Ω

((C − Φ̂)αΦ∗ − (C − Φ∗)αΦ̂) = 0.

Since Φ∗ ≥ Φ̂ we get (C/|Φ̂|+1)α ≤ (C/|Φ∗|+1)α and |Φ∗|1−α ≤ |Φ̂|1−α.
Thus we have

0 =
\
Ω

((C − Φ̂)α|Φ∗| − (C − Φ∗)α|Φ̂|)

=
\
Ω

|Φ∗|α|Φ̂|α
((

C

|Φ̂|
+ 1

)α

|Φ∗|1−α −
(
C

|Φ∗| + 1

)α

|Φ̂|1−α

)
< 0,

which implies the uniqueness.

The proof of the continuity of M(C) is similar to that for the Coulomb
case.

Using the fact that for C > C0 the function C
C0

ΦC0
is a subsolution for

the problem (C) we get

|ΦC − ΦC0
| ≤

∣∣∣∣ΦC0
− C

C0
ΦC0

∣∣∣∣ ≤ ‖ΦC0
‖∞|1− C/C0|.
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In this way we have

|M(C)−M(C0)| =
\
Ω

|(C − ΦC)
α − (C0 − ΦC0

)α|

≤ C(α,C0)
\
Ω

(|C − C0|+ |ΦC − ΦC0
|)

≤ C(C0, α,Ω)|C − C0|,
which implies the continuity of M(C).

To prove that M(C) is strictly increasing note that for C > C0 the
function ΦC0

is a supersolution for the problem (C). Hence if C1 < C2 then
ΦC1

> ΦC2
. Thus we get

M(C1) =
\
Ω

(C1 − ΦC1
)α <

\
Ω

(C2 − ΦC2
)α =M(C2).

To complete the proof we should show thatM((0,∞)) = (M0,∞). Since
ΦC ≤ 0 we have

M(C) =
\
Ω

(C − ΦC)
α ≥ |Ω|Cα,

which implies M(C) → ∞ as C → ∞.

To prove that limC→0M(C) =M0(Ω,m) > 0 we use the particular form
of sub- and supersolutions.

As shown above, for Ω ⊂ BR(0), the function −w(2n)−1(R2 − |x|2) is a
subsolution of the problem (C) for w ≥ wC .

Let ψ1 be the first eigenfunction of −∆ in Ω, ∆ψ1 = −λ1ψ1, λ1 > 0,

such that ψ1 ≤ 0, ‖ψ1‖∞ = 1. Note that for p0 = λ
−1/(1−α)
1 the function

p0ψ1 is a supersolution to the problem (C) for all C > 0. Hence for all
C > 0 we have p0ψ1 ≥ ΦC . This means that

M(C) =
\
Ω

(C − ΦC)
α ≥

\
Ω

(C − p0ψ1)
α = const(Ω).

So

lim
C→0

M(C) =M1(Ω, p0, α) ≥
\
Ω

(−p0ψ1)
α > 0,

which finishes the proof.

Case α = 1. The following maximum principle will be needed ([2]).

Let L be an elliptic operator and Ω a bounded domain of Rn. Applying
the classical maximum principle to the operator L1f = L(fh) we have:

Suppose that there exists a nonnegative (nonpositive) function h ∈ C2(Ω)
such that Lh ≤ 0 (Lh ≥ 0). If f |∂Ω ≤ 0 (≥ 0), Lf ≥ 0 (≤ 0) then

f ≤ 0 (≥ 0) for all x ∈ Ω.
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Theorem 3. For m = 2 (α = 1), n ≥ 1, M > 0 and for any domain for

which the first eigenvalue λ1 of −∆ is greater than 1 there exists a unique

solution of (14)–(16). There is no solution for domains with λ1 ≤ 1.

P r o o f. Due to Remark 1 for α = 1 (Coulomb case) we only have to
consider the problem

∆Φ1 = 1− Φ1,(23)

Φ1|∂Ω = 0.(24)

We distinguish three cases:

(1) λ1 > 1. The Fredholm alternative implies that there exists exactly
one solution Φ1 of (23), (24) in Ω. What we must show is that Φ1 ≤ 0 (1−Φ1

is a density). Since for ψ1 (the first eigenfunction) (∆+Id)ψ1 = (1−λ1)ψ1,
we can apply the maximum principle in Ω. The solution Φ1 equals 0 on the
boundary ∂Ω and (∆+ Id)Φ1 = 1 > 0 so we get Φ1 ≤ 0 in Ω.

(2) λ1 = 1. The necessary condition for the existence of a solution of
(23), (24) is not satisfied because Φ1 and ψ (the solution of ∆ψ = 1, ψ = 0
on ∂Ω) are of constant sign and hence

T
Ω1

Φ1ψ 6= 0.

(3) λ1 < 1. Let ψ1 be the first eigenfunction for −∆ (∆ψ1 = −λ1ψ1,
0 < λ1 < 1). Multiplying (23) by ψ1 and integrating over Ω by parts we get

(1− λ1)
\
Ω

Φ1ψ1 =
\
Ω

ψ1.

Since 1 − λ1 > 0 and ψ1 is of constant sign, the function Φ1 cannot be
negative.

Remark 4. For n = 1 the general form of solution of (14), (15) is
Φ1(x) = 1 + C1 cos x+ C2 sinx. The boundary conditions and the nonpos-
itivity property of the solutions are satisfied for R < π only. In that case
the solution is given by the formula

Φ1(x) = 1− cos x+ (sinR)−1(cosR− 1) sin x.

The monotonicity of (cos x− 1)(sinx)−1 on [0, π) yields Φ1 < 0.

Remark 5. The method of sub- and supersolutions used for the function
from the proof of Theorem 2 and m = 2, n = 1 gives the existence only for
the interval [0, R] with R ≤ 2

√
2 < π.

The following theorem gives some estimate of a mass M1(Ω,m) such
that for M greater than M1(Ω,m) and α > 1 solutions do not exist.

Theorem 4. For m ≤ 2n/(n + 2) (α > (n + 2)/(n − 2)), n > 2 and a

star-shaped domain there exists no solution of (14)–(16) with mass greater

than M1(Ω,m).
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P r o o f. To prove the nonexistence for large M we first prove the nonex-
istence of solutions of (14), (15) for C large enough.

Assume that for C ≥ (λ1)
1/(α−1) there exists a solution ΦC in Ω. Mul-

tiplying our equation by ψ1 (ψ1 ≥ 0) we get\
Ω

(−λ1ΦC − (C − ΦC)
α)ψ1 = 0.

But

−λ1ΦC − (C − ΦC)
α < λ1(C − ΦC)− (C − ΦC)

α

≤ (C − ΦC)(λ1 − (C − ΦC)
α−1)

< (C − ΦC)(λ1 − Cα−1)

< (C − ΦC)(λ1 − (λ
1/(α−1)
1 )α−1) ≤ 0.

Hence there is no solution of the problem (C) for C > (λ1)
1/(α−1).

Assuming that Ω is a star-shaped domain in R
n, we use the Pokhozhaev

identity to show that there is no solution of (14)–(16) for M large enough.
Indeed, from the relation\

∂Ω

∣∣∣∣
∂ΦC

∂ν

∣∣∣∣
2

(x · ν) dx = 2n
1

α+ 1

\
Ω

((C − ΦC)
α+1 − Cα+1)

− (n− 2)
( \

Ω

(C − ΦC)
α+1 − CM

)

we infer

M2 ≤
( \

∂Ω

∣∣∣∣
∂ΦC

∂ν

∣∣∣∣
2

(x · ν) dx
)( \

∂Ω

(x · ν)−1 dx
)
.

Since
T
∂Ω

(x · ν)−1 dx ≤ C(Ω)dn−2, where d = diam(Ω) and C(Ω) depends
on the shape of Ω only (not on the size of Ω), we obtain

M2 ≤ C(Ω)dn−2

(
2n

1

α+ 1

\
Ω

((C − ΦC)
α+1 −Cα+1)

− (n− 2)
\
Ω

(C − ΦC)
α+1 − CM

)

≤ C(Ω)dn−2

((
2n

1

α+ 1
− n+ 2

) \
Ω

(C − ΦC)
α+1 + (n− 2)CM

)
.

If m ≤ 2n
n+2 (n > 2), then 2n 1

α+1 − n+ 2 < 0 and hence

M ≤ C(Ω)dn−2(n− 2)C,

which together with the upper bound for C gives the nonexistence of solu-

tions of (14)–(16) for M > M2(Ω,α) = C(Ω)dn−2(n− 2)λ
1/(α−1)
1 .
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