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LOCAL EXISTENCE OF SOLUTIONS
OF THE FREE BOUNDARY PROBLEM
FOR THE EQUATIONS OF COMPRESSIBLE BAROTROPIC
VISCOUS SELF-GRAVITATING FLUIDS

Abstract. Local existence of solutions is proved for equations describing
the motion of a viscous compressible barotropic and self-gravitating fluid in
a domain bounded by a free surface. First by the Galerkin method and reg-
ularization techniques the existence of solutions of the linearized momentum
equations is proved, next by the method of successive approximations local
existence to the nonlinear problem is shown.

1. Introduction. In this paper we prove the existence of local solutions
to equations describing the motion of a viscous compressible barotropic fluid
under the self-gravitating force in a bounded domain 2, ¢ R? with a free
boundary S;. Let v = v(x,t) be the velocity of the fluid, o = o(z,t) the
density, p = p(g) the pressure, u and v the constant viscosity coefficients
and pgo the external constant pressure. Then the problem is described by
the following system of equations (see [1], Chs. 1,2):

o(vy +v-Vv) —divT(v,p) = oVU in 0T = Uogth“Qt x {t},

ot + div(ov) =0 in (~2T,
(1.1) T -n=-—pom on ST = UogthSt x {t},
0lt=0 = 00, V|t=0 = Vo in 2= (2,
P ¢t "’T
vV =—= on S5,
Vo)
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where ¢(z,t) = 0 describes S;, 7 is the unit outward vector normal to S,
n = V¢/|Vo|, £2; is the domain at time ¢, Sy = 9%, 2 = 2|0 = o,
S = 992

By T = T(v, p) we denote the stress tensor of the form
(1.2) T(v,p) ={Tij}ij=1.23 = {=pdij + Dij(v)}i j=1,2,3,
where
(1.3) D(v) = {Dy;}i,j=1,2,3 = {1(0z,v5 + Oz, vi) + (v — p)6;; divv}s j—123

is the deformation tensor.
Moreover, U(x,t) is the self-gravitating potential such that

o(y,t) .
|z —y|

(1.4) Uz, t) =k |
24
where k is the gravitation constant.

By the continuity equation (1.1)2 and the kinematic condition (1.1)5 the
total mass is conserved, so

(1.5) [ ow,t)dz = § oo(z) dw = M,
2 0
where M is a given constant.

Let §2 be given. We introduce the Lagrangian coordinates £ as the initial
data for the Cauchy problem

dx
(16) E = ’U(.%',t), x’tZO = 5 € ‘(27 § - (51752753)'
Integrating (1.6) we obtain a transformation between the Eulerian x and
the Lagrangian £ coordinates,

t

(1.7) x:x(f,t)E§+Xu(§,7)drzxu(§,t),

0

where u(§,t) = v(xy(§,1t),t) and the index u in z,(§,t) will be omitted in
evident cases.

Then, by (1.1)5, 2, = {z € R® :x = x(£,t), £ € 2} and S; = {x € R3:
v =2(§1), €S}

Let 77(5’75) = Q(x(gat)’t)’ Q(g,t) = p($(£,t),t), Vu = 81‘£iv£m 851' = Vfia
Tu(u,q) = —qf + Dy(u), I = {d;j}ij=1,23 is the unit matrix, D, (u) =
{102, 61V e, 1 + 02, Ex Ve ug) + (V — 1) 635V -u}, where Vi -u = 04,61 Ve, u4

and summation over repeated indices is assumed.



Free boundary problem for self-gravitating fluids 3

Since S; is determined (at least locally) by the equation ¢(z,t) =0, S is
described by ¢(z(&,t),t)|t=0 = ¢(§) = 0. Moreover, we have

- V. d(z, t)
u = u at ’t T V.o(z )] ’
o Vg%(f)
=7, 7t = ——
Mo =Mol&t) =12 28]

In Lagrangian coordinates the problem (1.1) takes the form

nus — divy, Ty (u,q) = Uy(n)  in 2T =0 x (0,7),

n +ndivyu =0 in 27,

(1.8) Tyu(u,q) -1y = —pomiy, on ST = § x (0,7),
uli—o = vo in {2,
Nlt=0 = 0o in (2,

where

(19 Uutn) = k| e A, (0,0)

(Sz |20 (§5t) — zu (9, 1))

and A is the Jacobian determinant of the transformation x = x(¢, ).

The proof of the existence of solutions of problem (1.8) is divided into a
few steps. First we consider the problem

ug —divD(u) = fi,
(1.10) D(u) -7 = by,
Uli=0 = vo.

At the second step we examine the problem with a given positive function
n(&,t):

nui —divD(u) = f  in 27,
(1.11) D(u) =g on ST,

ulr=0 = v in 0.

To examine the nonlinear problem (1.8) we need an existence result for the
problem

nuy — divy, Dw(u) = f3a
(1.12) Dy (1) - Ty = g3,

U|t:0 = Uy,

where n > 0 and w = w(&, t) are given functions.
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Finally, we prove the existence of solutions to (1.8), hence also to (1.1),
by the following method of successive approximations:

NmOptmy1 —divy,, Dy, (Umy1) = _vqu(nm)+77mUum (m) in QT,

Um41t=0 = Vo in {2,
where 7, and u,, are treated as given, and

O, + N divy,, Uy, =0 in o7,

(1.14) .
77m|t:0 = 00 in {2,

where u,, is treated as given, and m =0,1,...

We want to point out that the presented proof of existence uses the
Galerkin method and some regularization techniques because the case con-
sidered is singular in potential theory. This is related to H?(§2) regularity.
Ordinarily the Galerkin and regularization methods are connected with the
energy method which is much more natural for (1.1) than the potential tech-
nique. Moreover, this technique is applied in the stability proof for (1.1) in
[4]. We have also to emphasize that H3({2) regularity for v is the lowest pos-
sible regularity in spaces with integer derivatives for solutions of nonlinear
problems such as (1.1) to exist. As follows from [3] the existence of solutions
to (1.1) can be shown in the spaces H?T®1+2/2(QT) o € (1/2,1), but the
norm of these spaces contains fractional derivatives and is not convenient
for our considerations in [4].

In [2] local existence of solutions for the free boundary problem for the
equations of a viscous compressible heat-conducting self-gravitating fluid is
proved. However, the proof is done in a different way and the regularity
obtained is not suitable for our considerations in [4].

2. Notation. To simplify considerations we introduce the following
notation:

lulls.o = lullm=@), seNU{0}, Q€ {2,025, 5%,
2t =0x(0,t), S'=8x(0,t),
lulp,@ = llullz, @), p € [L,00],

HuHs,p,q,QT = HuHLq(U,T;Wﬁ(Q))a p,q € [LOO]’ 0<seZ.

We define the space I77(2) as part of ﬂi:é C([0,T); H*=(§2)) with the

k=1 | i
norm HuHFl’“(Q) = Zi:(] 0¢ul| ki, 02-
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Then we denote by L,(0,T;I}(£2)) the closure of C>(027T) with the
norm
T k-1

(S <Z ffatiu\\kfi,n)pdt) T peo

0 =0

Moreover, we introduce

|U|k,z,p,nT = HUHLP(O,T;F/“(Q))'

3. Existence of solutions. We prove the existence of solutions to prob-
lem (1.1) by the method of successive approximations described by problems
(1.13) and (1.14). Therefore, we first consider the following auxiliary prob-
lem:

nuy — divy, Dy (u) = F in 0T,
(3.1) Dy (u) T = G on ST,
ul=0 = vo in £2,
where 7 and w are given functions. Moreover, 7 is such that
(3.2) 0<0.<n<p" <00
and w = w(§,t) is such that

t

(3.3) v =&+ Jw(E,7)dr = 2y (6,1) = 2(6.8),
0
and
oxr 0€
(3.4) % 9

are matrices with determinants close to 1 for t € [0,T].

DEFINITION 3.1. By a weak solution to problem (3.1) we mean a function
u which satisfies the integral identity

35) Ve + D, (u) D, () = F - )Ty d — | GepJy dE = 0
(% S

for any sufficiently smooth function ¢, where Iy, (u) - D}, (¢) = 5§ (Vw,u; +
Voo 4i) (Ve 0j + Va,0i) + (¥ — 1)V - uVy - ¢ and J,, is the Jacobian
determinant of the transformation z = x,,(§, ).

To obtain the integral formula for (3.1) we use the following integration
by parts:



6 G. Strohmer and W. M. Zajaczkowski

Vdive Do (v(w (&, 1), 1) (@0 (€, 1), ) Ty dE
2
= S divD(v(z,t))e(x, t) dz
£2¢

D' (v) - D' (p)dx + S n-D(v)pds
t St

Dl (v(@w (€, 1), 1)) - Dy (P(2 (&, 1), 1)) Juw dE

+ \ M - Doy (v(@0 (€, 1), 1)) (2 (€, ), 1) S dE s,

Il
N Q=" Deww—

where ]D),(U) : DI(QO) - %(8$ivj + axjvz)(axl Pj + axj 901') + (V - M) divediv 2
Take a basis {¢r} in Lo(£2). Then we are looking for an approximate
solution of (3.5) in the form
n
(3.6) un =Y cin(t)pi(6),
i=1
where ¢;,,7 = 1,...,n, are solutions of the following system of ordinary
differential equations:

B7)  unees + D), (un) - D (03) = F - i) S d€ = | GopinJy dés = 0,

0 s
Up =0 = Z cin(0)pi(§),  cin(0) = S Viopn d&,
i=1 19)
where i = 1,...,n, and existence follows from the theory of ordinary differ-

ential equations.
Next we have to obtain estimates for solutions of (3.7).

LEMMA 3.2. Assume that 0. < n, n; € Lo(0,T; H(2)), F € Ly(027),
G € Ly(ST), w € Ly(0,T; H3(£2)). Assume that

(3.8) sup sup |[I —¢&,| <46,
te[0,T] £€02

where & is sufficiently small and I is the unit matriz. Then for solutions of
(3.7) the following inequality holds:

(3:9)  lunllg, 2 + collunli 22,00 < ¥1(1/ 00t |nell1,2,2,00, 0w, 1))

x| § eovd do + 118 o + G155 .
2

where 1 is an increasing positive function, a(w,t) = t1/2||w||372727m, and
t<T.
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Proof. Multiplying (3.7) by ¢;;, and summing over i from 1 to n we get

( iui + yDgU(un)P) Juwdé =\ FupJyd€ + G- updy dés.

1
(3.10) = | "
2 S

2
2

Using the Korn inequality
(3.11) ullf o < c(ID" (W[5, + llul, )
and [D'(v)]? > ¢D"(v)[?, ¢ = min{3(v — fp), 4}, where D"(u) =
{1(Op,uj + Op,ui)}, we have
lullf o < e(IDy (W15, + 1D (w) = D)5 o + [lullg o),
so in view of (3.8) we get
(3.12) lull¥ o < @) U5 (W50 + 1l 0)-
Using (3.12) in (3.10) implies

d .
(313) -\ mulJu d€ + collunllf o < € § (Il + nldiva, w])un|* Ty dé
9} 02

+c(lunllg o + 1160 + 1G5 s)-
Estimating the first term on the r.h.s. by

c(e .
llunel? 0 + ( ; Limel2 o + ldiva, w\w,g) {2 dude, =€ (0,1)
9

*

from (3.13) we get

d
(3.14) pr S nu, Ju d€ + collun|? o
19

C .
< [Q—u T lZ.) + Idiva w\w,n} | 2., de
* n

+ (1160 + I1G15,s)-
Integrating (3.14) with respect to time yields

(3.15)  { nudJu dé + collunl3 2000 <
2

C
exp |:Q_(t + ell3 2,0,00 + @(a(w’t)))} [S 2005 4§ + I F 15,01 + ”G”ast]’
« 2

where ¢ is an increasing positive function. From (3.15) we obtain (3.9).
This concludes the proof.

From (3.9) we can prove the existence of weak solutions such that u €
Loo(0,T;5 La(£2)) N La(0,T; H(£2)). However, we want to obtain more reg-
ular weak solutions simultaneously. Therefore we show
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LEMMA 3.3. Assume that 0. < n, Fy € Lo(021), Gy € Ly(ST), F €
Leo(0,T:Ly(R2)), G € Loo(0,T3Ls(5)), w € Lo(0,T;H(R2)), m €
Ly(0,T; HY(£2)) and §, 0oui (0) dé < oo. Assume (3.8). Then

(3.16)  llunellg, o + colluneli 22,00 < ¥2(1/ 0w, alw, 1), 1, [Inel1,2,2,0¢)

< | § 0w (0) ds + B o0 + 1G] s
2

+ sgp(\lunllio +IFIG. + 1G5 s)

t

x J(erlwld o + elen) lullf o) dt],
0

where 1y is an increasing positive function and 1 € (0,1).

Proof. Differentiating (3.7) with respect to ¢, multiplying by ¢;, and
summing up over ¢ from 1 to n we get

d
(317) a S nuith d§ + C[)Hunt”iﬂ
9]

< c | Ineful, Jw d€ + p1(alw, t)) | nud,Jo|we| dé
(P4 (P4

+c(lunellg @ + 1ELE 0 + 1GIE, 5)

+ 1 (a(w, t))we 3 o(lunll? o + I1FIG o + IGIE )

where ¢ is an increasing positive function, a(w, t) was defined in Lemma 3.2,
and the Korn inequality and condition (3.8) were used.
Estimating the first term on the r.h.s. of (3.17) by

()

*

13 0 | mul, T d€
0

€o
EHUMH%,Q +

we can write (3.17) in the form

d
(318) E S nuitJ’LU dé + C(]HuntHiQ
0

< wa(a(w, )1 +1/0:) (1 + nelff 2 + Jwe oo, 2)

x { nuiy Judé + cIF G o + 1GellF 5)
0}

+ 1 (a(w, ) (ellwll3 o + e(@) [w] o)
% (lunll? o + I1F13 2 + GG 5)-
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Integrating (3.18) with respect to t we get

(319) | nuiyJwdé + collundllf 2 2.00
0}

< explpa(a(w,t))(1 +1/0.)
X (t+ nellF 2.0.00 + alw,1))]

% |§ 00u2(0)d€ + | Fill3 g + Gl s
2

+er(a(w,t)) Sgp(llunllin +IFIG,0 + 1G5 s)

t

x §(ellwld e + (o)l o) dt).
0
From (3.19) we have (3.16). This concludes the proof.

To estimate the expression sup; [|u,|| o on the r.h.s. of (3.16) we need
the following result.

LEMMA 3.4. Let the assumptions of Lemma 3.3 be satisfied. Then

(3:20)  Jlunell§ 0 + collunllf

t
< s (1. 1/ 0 alw,1), [ (rllwll} o + clen)w]f o) dt)
0

x [luoll? o + § 00v8 d + | P g
2

+ (@2)IGIR ¢ + e llumilf 2.0
where 13 is an increasing positive function and €1, €5 € (0,1).
Proof. Multiplying (3.7) by ¢;,, and summing over ¢ from 1 to n we get

(3.21)  {nu, g de+ D, (up) - D, (tne) Juo dE
9] 9]

= Fundy dé + | G uniJudés.
Q s
From (3.21) in view of the Holder and Young inequalities we obtain

d
(322)  \ s dg+ VDY () P d
2 2

< of|welio, 0 +1) | 1D (un) P T d€ + ¢ § [Veun[* T, d€
02 02

+ellunellf o + c@IGIE s + cle) IFI5 o
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Integrating (3.22) with respect to time, using the Korn inequality and (3.8)
we get

(323) S nuith df""cUHun”iQ
0t
t

qu4ymmﬁgwmmm%Mﬁ+o}

X [lluollf, + llunlli 22,00 + e2lltnell¥ 2.2 00
+c(e2) G116, 5 + c(e)IF 5 o] + ellun§ o-
Using (3.9) in (3.23) yields
(324)  unell5 o0 + collunllt o

t
< exple(§ (el o + clen)llwld o) dt +1)]
0

x [lluol3 o + 1 ( § 000 do + | FI 0 + IGI3 )
2

+&aluntllt 52,00 + ee2) |GG 50 + C(QQHFH%,m} :
From (3.24) we obtain (3.20). This concludes the proof.

Inserting the estimate for [lu, ||, from (3.20) into the r.h.s. of (3.16)
and assuming that

c
62f—j¢2b(7§, €1, ’U)) = 50,
where
t
(3.25) bt,er,w) =\ (e1]lwl3 o + cle1)|lw]f3 o) dt,
0
we obtain

Co
(3.26)  [lunell6, + 5 llunell 2,2,

< s | § eou?(0)dg + B or + 1G5
10}

+sup([ 13 o + G173 )bt 21, w)]

_l’_

Pa1)3 Pa1)3b
. bllluoll} o + | 0ovd d€ + | FI e + ¢ 2 1G85t |-
2

Simplifying the expression we get
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LEMMA 3.5.
(3:27)  untllg, @ + colluntl? 22,00
S ¢4(t7 1/@*7 a(w7 t)7 b(ta €1, ’LU), ”771‘/ “1,2,2,9’5)

< |§ eovd dg + § 0wt (0)d€ + [[uol? o + 1BV IF
9} 9}

+HIGeE 50 + IFIE o + GG 5 + Sgp(HFHﬁ,n +IGIIG.5)] -

From (3.27), (3.20) and (3.9) we get
LEMMA 3.6. Let the assumptions of Lemmas 3.2-3.4 be satisfied. Then
(328)  Nunllg o + lunll? o + lunellg 2 + llunllf 22,00 + luntllf 22,00
< ¢5(t7 1/9*7 a(w7 t)7 b(ta €1, w)? ”771‘/ ”1727279‘)

x| § ot da + § 00w (0) da + |fuoll} g + IF411 o
0} 2

HIG§ o + SgP(HFHg,n +IGI3.5)|
where V5 is an increasing positive function of its arguments.

Now choosing a subsequence and passing with n to infinity we get

LEMMA 3.7. Assume that 0. < 7 * w € Lo(0,T; H*(2)), ny €
S

<
Lo (0,T; HY(£2)), vo € HY(£2), u(0 ) L (?Z Fy € Ly(021), Gy € Ly(ST),
F € Loo(0,T;Lo(12)) and G € L(0,

);

2(5)) Then there exists a weak

solution of problem (3.1) such that u € Lo (0,T; H*(2)) N Ly (0,T; H (£2)),
w1 € Lo(0,T; HY(2)) N Lo (0, T; Lo(82)), and

(3:29)  |[ullf o + llucll§ o + [ullf 22,00 + lutll? 22,00
< ¢5(ta 1/9*5 CL(U], t)a b(t’ 61,10), H77t ||1,2,2,Qt)

x [ § oovd do + § 00 (0) dar + oo 3.
2 2

+IEG o0 + 1G5 50 + S%P(HFH(Q),Q +1Gl5s)|-
Having proved the existence of weak solutions to problem (3.1) expressed

by Lemma 3.7 we obtain by regularization techniques (see Appendix, The-
orem 4.1 and Remark 4.2) the following result:
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LEMMA 3.8. Let the assumptions of Lemma 3.7 be satisfied. Let vy €
H?(2), w € Ly(0,T; H3(R2)), F € Ly(0,T; HY(2)), G € Lo(0,T; H¥/?(S)),
N € Loo(0,T; H?(R2)), and S € H®'?. Then there exists a unique solution
to problem (3.1) such that u € Loo(0,T; HY(2)) N Ly(0,T; H3(02)), us €
Loo(0,T; La(£2)) N La(0, T; HY(£2)), and

(3.30)  |lwellg o + llullf o + llull3 20,00 + lluellf 22,00
< pg(t, 1/ 04, alw,t),b(t,e1,w), ||nel1,2,2,0t 5 [|7|2,2,00,0t)

X H 0005 dz + | 0017 (0) dx + [[vol[3,0 + I FI1F o + G213 ¢
2 2

+ HG“g/z,z,z,st + ”F”g,Q,oo,Qt + HGH(QJ,z,oo,st )
where g is an increasing positive function.

Now we prove the existence of solutions of (1.1) by the method of suc-
cessive approximations determined by problems (1.13) and (1.14). First we
show the boundedness of the sequence described by (1.13) and (1.14) in the
norm defined in Lemma 3.8.

To simplify considerations let us introduce
(331)  am(t) = llumdlld,. o + luml? o + lumll3 22,00 + lumellf 22,00

LEMMA 3.9. Assume that vo € H*(£2), 0o € H?(£2), and there exist two
positive constants p. and 0*, 0. < 0* and g, < 09 < 0.

T(vo,p(00))7 = —pomm on S.

Then for A such that G(0,0, Fy) < A, a,;,(0) < A, where Fy = HUOH%Q +
ue (01§, + leoll3. and G is defined by the r.h.s. of (3.41), there exists
T, such that for t < T,

(3.32) an(t) <A, m=1,2,...
Moreover, in view of (1.1); we have

/ ES
ple )H@oHl,m”

* *

+v

e (0) 0.2 < ellvoll3, + [voll2,2 + clleollo, -

Proof. First we obtain estimates for solutions of (1.14). Integrating
(1.14) we get

t

(3.33) Nm (&, 1) = 00(§) exp [— Sdivum U, dT] .
0
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From (3.33) we have
1
Sup 7y, +sup — < ”QOHQ,QQPI (a(um,t)),
(3.34) 2t 2t Nim
SUp [[7m 2,2 < lleollz, 21 (@(tim, 1))z (a(tm, 1)),

where a(um, t) = tY/2(§ [|uml3.q dt)/2.

Moreover,
t
Nt = 00(&) exp [— Sdivum U AT | (— divy,, Um).
0
Therefore
(3.35) [Nmell1,2,2,20 < llooll2,2¢3(a(um, t)b(t, &, um),

where b(t, €, u,,) is defined by (3.25).
Comparing (3.1) with (1.13) we have

(336) F = _VUMQ(nm) + 77mUum (77m)7 G = _(p(nm) - pO)ﬁum-
From (3.36) we have

(3.37) IFN17 22,00 + IFIIG 2,00,00 < #alt, aum, 1), |00]l2,2)

and

(3.38) IE 15,00 < 5(a(tm, ), SUp [[11m|2,2)(, €, tim)-
Moreover,

(3.39) IG13/2.2.2,50 + IG5 2,00,020 < #o(a(tim, t),1,SUp [[1hm]l2,2)
and

(3.40) G35 < p1(atm, t), Sup [1hml2,2)b(t; €, tim)-

Using the fact that

a* (U, t) < to, bt e, up) <t +cFy,  a >0,
and inserting all the above estimates into (3.30) we get
(3.41) A1 (t) < Gt % (t), Fo),

where a > 0, Fy = [[voll3. ¢ + [[ue(0)[I§. 2 + llool3,0» and G is an increasing
positive function.

Let A be such that G(0,0, Fy) < A. Since G is a continuous increasing
function of its arguments there exists T, > 0 such that for ¢ < T, we have

(3.42) G(t,t" A, Fy) < A,
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From (3.42) we see that if v, (t) < A then au,11(t) < A for t < T,. Here A
must be so large that a,,(0) < A.

To end the proof we have to construct the zero approximation function
ug. We use the solution of the problem

ot — div ]D)(UO) =0 in QT,
- D(ug) = (p(00) —po)  on ST,
u0|t:0 = Vo in (2.

The existence of solutions to the above problem follows from the Galerkin
method and can be proved in the classes determined by «ag(t) < co. More-
over, the compatibility condition is satisfied. Finally, A must be so large
that ag(t) < A, t <T,. This concludes the proof.

Now we prove the convergence of the sequence {u,, 7 }.
To show this we obtain from (1.13) and (1.14) the following system of
problems for the differences U,,, = uy, — Up—1 and Hy, = N — Min—1:

nmatUm+1 - divum Dum Um+1
= — Hp,Outy, — (divy,, Dy, () —dive,, , Dy, (um))

- (VuTVL - V'an—l)q(nm) - vum—l (Q(nm) - Q(nM—l))
+ HmUum (nm) + 77m71Uum (Hm)

+ nmfl(Uum (nmfl) - Uum,l(nm—l))

Dum (Uerl) ' ﬁum = - (Dum (um) : ﬁum - Dum,l(um) : ﬁum,l)
= q(m) (M, — Ny,
= (¢(m) = q(Mm—1)) 0,

+ po(ﬁurn - ﬁurﬂfl)

Il
«2
Il
D

Um+1|t:0 = Oa
and
OtHp + Hyy divy,, Uy = —Np—1(divy,, Uy, — dive,,_, Um—1),

(3.44)
Hm ‘t:() == 0
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Now we write the expressions on the r.h.s. of (3.43); in qualitative forms:

t t t

Fy = f1\Une dr timee + f2 \ Une dr | d7 wmectime
0 0 0
t t t

+ f3 S Um£ dr S Um—1,¢¢ dr Ume + Ja S Um££ dr Umg,
0 0 0

t
F3 = fo{ SUmg dTnmfa
0

Fy = fofs(Nme + nm—1¢)Hm + frfsHme,
t
G1 = fgSUmg dr umg,
0
t

Ga = fofi |\ Unme dr,
0
t

Gs = pofio S Upe dr,
0

G4 - fllfg,,Hnu

where f; = f,;(I—}—Sg Ume dT, I+Sg Um—1,edT),i=1,...,11, f]' = f;(nm,nm_l),

(3.45)

j=1,...,5, are C* functions of their arguments and [ is the unit matrix.
Moreover, we have the estimates
(3.46) [fil <@1(4),  1fj] < 2a(A)

where p,, P, are increasing positive functions, for ¢, j as above.
Therefore we have

LEMMA 3.10. Let the assumptions of Lemma 3.9 be satisfied. Then there
exists 0 < T™* sufficiently small such that
(BA47)  NUns1llf o + 1Unt1.8 00 + 1Ums1ll3 22,00 < 61Umll3 22,0
where 6 = 6(t) < 1 fort <T**.

Proof. To show (3.47) we multiply (3.43) by U,,+1Jy,, and integrate
over {2. Therefore after integration by parts we get
1 d o / 2
3 § Ui 06 § B, o),

(3.48)

=\ FUns1 0, d€+\ GUni1J,, dés.
(9} S
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First we estimate all terms on the r.h.s.:
‘ S HmutherlJum dg§ dt‘ < E”Uerl‘ﬁ,Q,Q,Qf
Qt

+ ()0 (A)t U [}, 51p | Hon

‘ S FUy 41y, d§ dt‘ < 5||Um+1‘|%,2,2,m
Qt
t

+ (@)t |Unl3 ¢ dt,
0

‘ S F3Upmi1du,, d§ dt‘ < EHUerlH%,z,z,m
0t
t
+ () (AN |Um 13 ¢ dt,
0

| P, dE | < el Unsallf o200
nt
+e(e)p(A)t sup 1H I 2

‘ S (F5 + Fo)Upy1Ju,, d€ dt‘ < EHUerlH(QJ,m
0t

+ C(a)w(A)thp 1 Hom 152

‘ S FUp 1y, d€ dt‘ < EHUerlH(QJ,m
0t

+ (@) (A Unl[7 2,2,00-
Next we estimate the boundary term (3.48):
|§ (G + G+ Ga)Unni1 u, des dt] < el Unia o0
St
+c(e)p(A)tNUnmll3 2,2 00
‘ S GaUp1Ju,, dés dt‘ < 5||Um+1‘|%,2,2,m
St
+el@)plAltsup [l o

Using the Korn inequality in (3.48), integrating with respect to time, using
the above estimates and taking e sufficiently small we obtain

(349)  [[Ums1ll§ o+ 1Um41ll7 22,00 < SD(A)t(‘|Um||327279t+SlipHHmH%,Q)-
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Multiplying (3.43)1 by Upy+1.¢Jy,, , integrating over {2 and by parts we have
(350) S nm‘Uerl t‘zJum d§ + m+1 D;m(Um+1,t)Jum d§

2 2
S G m+1, tJ d§ + S ﬁ . Uerl,tJum d§
S 2

Continuing, we have

351\ lUnsreP T, d€+ \ D), (Upis) -
(9} 2

d

dt D, m(Um+1)Jum df

@

m+1 a1t (D;m)(Um—&-l)Jum dg

E:I&

S

G . m+1‘] leum Um, ng + S ﬁ . Um—‘rl,tJum dé_

-\ D,
2
VG- Ui, dés = Gy - Upiadu,, dés
S
16
S (9}

In view of the Holder and Young inequalities we get

d
(352) S nm|Um+1 t| Um dé- + N S |D ( m+1)|2 Um dé—
2

.Q
d
d_ S G- Um+1 U déS

+cllumlli. - § D, Unt1) P, €
2

c S ]VgUmH’QJum d§ + CHﬁ”(Q)Q
Q

+e1(IGellf s + e(A)luml3 2IIGIIE.5)

+ c(El)HUnt+1”397
where ¢; € (0,1).

Integrating with respect to time and using the Korn inequality we obtain
from (3.52)

(353)  NUm+1elld.0 + 1Um+1l1 o
< [e2llG3 5 + cle2) (3] Um+1,6lld 2 + c(e3) | Um1l5, )
+ U1l 22,00 + | FIIG o

+e1p(A)([GeE 5 + Sup IG15.5)le™ + ellUm+1l5 o,
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where we used the facts that

VG Uns1du,, dE < e2]|GIF s + cle2) [Untallg s
S

1Un+1113.s < esllUm+1ellg @ + clea)[Um+1ll6, o
t ¢
Vlluml3 2G5 s dt < sup IG5, Y llumll3 g dt < Asup |G5 -
0 0

Using (3.49) in (3.53) implies
(3:54)  NUms1ll% 0 + 1Umsrell 0 + 1Um1ll7 22,0
< o(A)e(IGE s + sup IG15.5) + 1113 ]

+ ([ Unl[3,2,2,00 + sup [ Honllf )-
Now from the regularity result for the parabolic problem

NnUmi1,t — divy, Dy, (Upy1) = F  in 27,
Dy, (Uni1)  Tu, =G on ST,
Un+1li=0 =0 in {2,

we obtain (see Theorem 4.1 and Remark 4.2)
(356)  Um+1ll3 22,00 < c(IFIG o0 + G 22.2,50) + cllUmsll§ -
Now collecting (3.49), (3.54) and (3.56) together, we get
(357)  NUms1ll% 0 + 1Umsrellg 0 + 1Um41113 22,00
< ¢(A)lesup IGIG,s + el Gellg se + I1FIIG o0 + 1G1 2,2.2.5¢]

+ e(At(|Umll3 22,00 + Sup I Hom % ).

Using the form of F and G we estimate the terms in the first bracket on the
r.h.s. of (3.57):

t
IG5 < @A) [¢§ 1030t +sup [ o o],
0

t
(358)  1Gil.s < @A) V1Uml3.c0dt + § I Hymil13 ],
0

O ey

IGI/2.2.2.50 + IF15 0 < (At

L —
O ey

HUmHg,Q dt + S‘ip HHmH%,Q .
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Using the equation (3.47) we have the estimate
t

(3.59) VIHmillf o dt < o(A)(t Sup IHmllf @ + 1Uml3.2,2,00)-
0

From (3.57)—(3.59) it follows that
(3.60)  Unms1llf o + 1Ums115 0 + 1Um+1l22.2, 00
< A +)(IUn 222,00 +5up [Hunllf o).

Integrating (3.44) we respect to time yields
(3.61)  Hm(&1)

t t
= —exp [— S divy,,, Um, dT] S {nm,l(divum Upy — divey, | Upm—1)
0 0

t/
X exp(S divy,, U, dt")} dat’,
0
hence one has

(3.62) sup 1Hmllf o < o(A)tUnmll3 2.2,
Using (3.62) in (3.60) yields
(3.63)  NUm+1ll% 0 + 1Ums1.ell. 20 + 1Um411132.2,0
< p(A)(c(e)t + )| Unmll3 2,2,

Therefore for ¢ so small that
(3.64) (cle)t+e)p(A) <1

19

we have convergence of the sequence {u,,n,,} to a solution. Assume that

(3.64) holds for ¢ < T,,. This concludes the proof.

From Lemmas 3.9 and 3.10 we have

THEOREM 3.11. Let the assumptions of Lemmas 3.9 and 3.10 be satisfied.
Then there exists T™* sufficiently small such that for T < T** there exists

a solution to problem (1.1) such that
u € Loo(0,T; HY(2)) N Ly (0,T; H?(2)),
wt € Lo (0,T: Ly(R2)) O Lo(0,T; H' (12))
and

(3.65) ull1,2,00, 07 + [[1ll3,2,2, 07 + [[Ut]l0,2,00,07 + [[te]1,2,2,07 < A,

where A is defined in Lemma 3.9. Moreover, n,1/n € L.(227) N
Leo(0,T5 H?(£2)), ne, (1/0)¢ € Loo(0,T; La(2))NL2(0, T3 H2(£2)), nee, (1/)ee
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€ Ly(27), and
(3.66)  [Ixll2,2,00,07 F lIXtll0,2,00, 27 + IXtll2,2,2,07 + lIxetllo,0r < ©(A),

where x replaces either n or 1/n and ¢ is some positive function.

Proof. We only have to show the last statement and the estimate (3.66).
They follow from the expression for 7,

(3.67) n(&,t) = 00(§) exp(— Sdivu u(&, ) d7'> .
0

The most difficult part is to estimate 7. Taking the second derivative of 5
with respect to time we obtain

e = o exp (= {div, (€, ) dr ) (~(div, W) + (div, w)?).
0

Since the first two factors are bounded we only consider the last bracket.
Qualitatively,

div,u = f1 <§ Ug d7'> ug,
0

where f; is a smooth function and fl(gg ug d7) is bounded. Next in view of
(3.65),

¢ 1/2
ugl2,00 < (S‘udzoﬂ dt) Slipfugb,n < A%
0
Similarly,
t

t

(div, u)r = fa <S Ug dT) Ugt + f3 <S Ug dT) ug,
0 0

where fs, f3 are smooth functions and the same considerations as above can

be applied. This concludes the proof.

4. Appendix. In this section we show the regularity of solutions to
problem (1.12). First we consider the problem

nui —divD(u) = F in 27,
(4.1) n-Du)=G on ST,
ulr=0 = v in 0.
We examine (4.1) using the following weak formulation:

(4.2) S nup dx + S D'(u) - D' (¢) dx = S F-pdx + S Gpds.
17 7 0 S
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To examine regularity we only have to consider the integral

(4.3) K(p) = | D' (u) - /() da.
2

Set ¢ = (@1, where ¢ is a smooth function with a support in Q2 C 2 and
1 is a test function. Then we get

(44) K(Cpr) = [D'(u) D' (Q)ipr + D' () - D (ip1) — ul)' (C) - I (1)) diz,

2

where v’ = u(.

In further considerations we choose 2 such that 2NS # (). Therefore we
apply the transformation @ : 2 — 0 which straightens locally the boundary
of 2. Hence (4.4) takes the form

(45)  K(Ca1) = | [Pp(@)-Dl ()71 +Dl (@) Dip(21) D (O) Dip (1)) 2,

(9}

where 23z > P(z)=z2€ 2, 1=uod !, U = uC, Dy is such that V, in
D are replaced by V,®(z)|,—¢-1(z) - V. and Jg is the Jacobian determinant
of the transformation z = @(x). We also need the fact that 0= {zeR3:
2] < d,i=1,2,0 < 23 < d}, S=0(S)={zeR3: |z <d i=12
z3 =0}, and S = 2N S. Since the integrand in (4.5) vanishes on 92\ §
it can be extended by zero on R? = {z € R3 : z3 > 0}. Therefore, we
assume @1 = d; 1051, where 5hu(z) = F(u(z + h, 23) —u(2)),2" = (21, 22),
corresponds only to the tangent directions, which will also be denoted by 7.
Then from (4.5) under the assumption that S and hence ¢ are smooth, we
have the estimate

e ~ €o ~ ~
(46)  K(C8'onw) = FUnTl} o — elDp@an) 5 — clal} 5.

where € € (0,1).

Now we consider the first term in (4.2):

(4.7 S nuyp de =
Q

g d S nup1Jo dz

2
S 5h17J¢ut5hu dz + S ﬁéhquﬂtéhﬂdz + S ﬁéhﬂt(shaqus dz,
Q 0 0

where the last term is equal to

1 d ¢ .~ e~
S ndt|5hu| Jgdz = 7 §n|5hu|2J¢ dz — &nt|5hu|2J¢ dz,
Q Q Q

l\')l»—l
N | —
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and the first two terms on the r.h.s. of (4.7) are bounded by
ellontlly 5 + c@)lIZ M1l 5,

where ¢ € (0,1).
Finally we consider the terms on the r.h.s. of (4.2):

\F-odo=\ Fo_no,1J5 dz,
2 2

which is bounded by |6, ]| ; + ()| F|? ,, and

2

0,9’
S G . ngS = S éé_h(shﬂJqs dZS,
S

W)

which is bounded by 5”5;@”? 5t c(s)HéH?/Q 5 In view of the above con-

siderations we deduce from (4.2) the inequality

1d —~ ~12 Co ~12
(48) 5 Snléhu\ Jo dz+ || on1ll] 5
2
< CW”;szﬁtHiﬁ + CHﬁtHi@HfshﬁHgﬁ + 5”&@”3@

+ellalf 5 +c(IFl5 5 + G175 5)-

Integrating (4.8) with respect to time, going back to the old variables, sum-
ming over all neighbourhoods of the partition of unity, using the fact that
is sufficiently small and passing with h to 0 we get

49)  \nudde + plur]f 2n,00
9}

< ) oovd, do -+ sup Inl3 ol 22,00
(9}

+sgpHnt\l?,QIIUH?,Q,Q,m

+e(|lullf 20,00 + IFI8 0 + G j2.2.2.50);

where u, denotes the tangent derivatives to the boundary.
To calculate the normal derivatives we use the equation

(4.10) divD(u) = F — nuy
to get

(4.11) lunll¥ o < c(IFNG o + lurll¥ @) + clnllf ollul o-
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Summarizing the above considerations we see that u € Lo(0,T; H?(£2))
and

(4.12) S nuZ dz + COHUH%,Q,Q,(N
Q

< S QOUSx dx + Hn”g,z,oo,mHutH%z,Q,m
Q

el 2,00, ¢ [1Ullf 2,2,

+c(|lul? 22,0t T HFHO ot ”G”1/2 2,2 St)

where t < T, and the r.h.s. of (4.12) is bounded in terms of the estimates
for the weak solutions (see Lemma 3.7).

Now we show the H?3(§2) regularity of u under the assumption that S
is smooth. To this end we consider the problem (4.1) directly. To obtain
the estimate we have to consider the problem locally. We shall restrict our
considerations to neighbourhoods close to the boundary only. Under the
above assumptions we write problem (4.1) locally in the form

iy — divg Dg (@) = — dive Ba(,¢) — Dg(@) - Vol + F = Fy + F,
(4.13) Dy (W)t = Bo (4, ) -1+ G =Gy + G,  where
Baij (@, () = (@ Va;C + U Ve, () + (v — 13,57 - V.
Now we apply the Friedrichs mollifier operator js to (4.13);. Hence we get
(4.14)  js(ue) — dive De(jsu) = js dive D (u) — dive De (jsu)
—j5(dive Bs (@, €)) — js (Da@Val) + jsF.
Next, we differentiate (4.14) two times with respect to 7, multiply by

02jsuJe and integrate over 0 to get

(4.15)  { 02js(A) 0245 (W) Jp dz — | 02 dive Dy jis (W) 0255 (1) Jp dz

9] 0
= | 02[js(dive De (1)) — dive Dajs ()] 025 () Jo dz

S}

6 j5 le@B@(u C)) +]5(D¢(Q)V¢C2)]872_]5(17)J45 dz

+ | 02j5(F)02j5 (1) T dz.

-
jo

Now we examine the particular terms in (4.15). The first term in (4.15)
takes the form
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} 02 (s ()92 s (i) T dz

0
+ 02 (js () — (s (1)) 0255 (W) Jo dz = I + I,
0

where

= V(02745 (W) + 20-70 s (W) + 70255 (1002 5 (W) Jp 2

0

=11+ 1o+ I3,

and

I < e Rgs@)|7 5 + el 5ll75 @I 5.
Iy < 5”&%@)”3@ + C(E)HﬁllgﬁHj&(@)”i@

Finally, we have

1 d ~
s = 5 | 5510233 )P d=
Q2
1d 2 Lioig2: e
= 57 VA0 (@) T d = 5 {025 (@) Ja d=
o Q2
= Iy + 115,

where
s < €)|025s(@)17 5 + c(e)ll; 510755 @7 5

Next we examine I,

I = g 02| Yuws (= = ) (@y) = (=))iinly) dy| 02 (@) I d=

= = [or [ Jus(z = ) @) - 7)) dy]
Q2

x (8245(0) Jp + 0%45(1)0, Jp) dz,

where ws is the smooth kernel of the mollifier operator js. Continuing we
have

12| < ellZis @7 o + )Nl 5l 5

Now we examine the second term on the Lh.s. of (4.15). It takes the form

Is= — S [02(dive Dg) (js (@) + 20+ (dive De) (8,5 (W)

17
+ dive Dy (975 (w))]02 5 (W) Jo dz = Iy + I3 + Is3,
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where using the smoothness of .S we get
Is1] < elljs@)5 o + c(©) 10235 @5 5,
|I32] < el 0735 @15 5 + (@) 0Z5s @5 g

02(nDg) (js (1)) 0% js (W) Jo dzs

S
S
+ §[20- (Do) (915 (W) + 02 (7 - D) (5 (W))1025 (W) Jop d2s
s
+ | D5 (0245 (@) |* Jpdzs = Is + I5 + I,

s

where to examine I, we rewrite the boundary condition (4.13)y by applying
the Friedrichs mollifier in the form

7 - Do (js(W) = 7 - Da(js (@) — 45 (7 - Do (@) + jis (B (@, C) - 1) + j5(G).

Therefore, I, takes the form

I = = {2 Do (s (@) — js(R - Dap(w))]02 s () T dzs
92j5(Bo (T, C) - ) - 02j5(0) Jp d2s

02(j5(G))02 (js (1)) Jo dzs = Iy + Las + Ls,

W) — Uy — Uy

where the expression I4; qualitatively has the form

Iy= - Safswa(z —y)(VO(2) — VO (y))Vya(y) dyd2js (@) Jp dzs

S
= —co |07 Yws(z — y)(V(2) — V() V,uly) dy

s
x 8Y/2(8%js5 (W) Jp)dzs = K,
where ¢q is the constant from integration by parts with the 1/2 derivative
(to use such derivatives we have to apply the Fourier transform).

Continuing, we have

K = — ¢ § 012 §0rws (= — y) (VO(2) — VO (y)) V,yii(y) dy

S
+ 02V ®(2) - \ws(z — y)V,ai(y) dy
x 8Y2(02j5(0)Jp) dzg = Ky + Ko,
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where
Ky = — ¢ S [Vzé(z) Sw(;(z — )02V udy
g
+012V20(2) \ws(z — y)Vily) dy| - 012 (025 (W) Jp) dzs,
and
|Ka| < el|02js (@)} 5 + cle)lIall; 4.
g 1,0 2,02
Next
K, = —c S B Orws(z — y)@i/zvgﬁ(z)vyﬂ(y) dy
g
+0rws(z — )0} 2V (y)V ily) dy
+{0rws (2 = y) (VB(2) — VB (y))0}/ >V ily) dy
x 0Y2(0245()Jp) dzg
= K11 + K2 + Kis,
where
K| < elldZis @3 o+ €l0:0:5@IT 5 + cllis @13 5,
and

Kis = — o {[[0rws(z — ) (01> V(y) — 02V(2))V,ii(y) dy

3
+ OA0(2) | 0w (= — y) Vyiily) dy| O (025 (7) Jo) dzs
= Kjo1 + K99,
where
|Ki21] < €||83j6(a)”ifz + CHaH;ﬁ’
|[Kioa| < &0235(@)2 , + €| 0-0: 5 (@2 5 + cllis @2 -
Finally,

Kol < 025 @2 5+ cllll? 5
Integrating by parts with the 1/2 derivative we have
Lol < 235 @2 5 + clll? 5
[143] < €||33,7'5(17)Hi§ + CHJ}S(?Z)H;@ + C||j5(G)H§/27§-

The first term on the r.h.s. of (4.15) can be written qualitatively in the
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form
I = = {0, |Jws (= = 1)V, @)V, (Vy@(y)ii(y))
Q
— V.0(2) VL () V. fws(z — y)ily) dy)|
X 0. (045 (1) Jp) dz
- {o, [g ws(z = y)(V.2(2))* = (Vo @(1))?|Vyu(y) dy
Q
+ws(z = y)(V.2(2)Vie(2)
= VB () V() Vyiily) dy| 0,(02s()Ja) d=
= I + I79,
and

sl + 117l < el B2 @)E 5 + cle) T 5
The second term on the r.h.s. of (4.15) is bounded by
2 (12 all?

ello7ds ()} o+ c@)lull; 5
and the last term by

ell02is @12 5 + c@) | P12 5.
Finally, we have to estimate Is. We get

15| < el 025 @I g + ell9r s (@13 g + cllll 5

Summarizing the above considerations and using the Korn inequality we
obtain

2
(4.16) g

N |

d ¢ 2. ~ c o
a S 00245 (@)[* Jop dz + EOH(?EJ(S(U)
o

< (Il plis@I2 o + 1 1025 @2 5 + 171 5l 5)

el o+ cllFI2 5+ £820-05712 o + el G2,

Integrating (4.16) with respect to time yields

(4.17) S ﬁ|62j5(ﬂ)|2j¢ dz + coHﬁzjé (ﬂ)H?QQ@

9}

< c(sup 712 g+ sup 7112 6 + DI 5 0 + 113112, 50
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+lFI3 o g +€1070045 @)1 50 + \ 7(0)107U(0)|* Tp dz

(9}

G2 0050

From (4.14) we have

(4.18) :

1 ~
093 Jus(z ~9) (1 - g3 (@8~ 98,) ) dy

3,z

0,02t

+ ”({92j

< cslip ”ﬁ” Hut”1 ,2,2,0t

+ clfall; + |1}

222(2’5 122(2’5

From (4.17) and (4.18) we obtain

261 ~ .y~ .
(419) == &nlafja(U)lqus dz + 10735 (W7 , 5 50

2

0,02t

1 2661 ~
(9737218105(2 - )(1 N <‘P§z - ‘Pg,y) - ?>u(y) dy

< c(sgp Hﬁ” 5t SUP ”77t”2 5+ Dl

+ [l

222Qt 122(2’5)

+cllall; + |1}

222(2’5 122(2’5

+ S 1(0)0-u(0)* Jp dz + CHG||3/2,2,2,§t

9]

+¢07 0,45 @)% 5. = X1 +]1020,45@)? 5-

Using the fact that @3, is close to one and 3 , — @%w is close to zero for

T,y € 2 and for 2 sufficiently small, from (4.19) after passing with ¢ to 0
we obtain

(4.20) \ Al07al* s dz + 0217 , , g0 + 10- 07117 5, < X1
7
Finally, from (4.13) we have
(421)  105all5 o0 < cllOR0-al 5, + cllOndZall 5, + clllly , , 5
+ esup [[ll; llEl , 5 o + FI3 5y e

Summarizing the above considerations and summing over all neighbour-
hoods of the partition of unity we see that u € Lo(0,7; H3(£2)) and
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(422)  lull3 22,00
= C(Sltlp 17113, + Sup 176132 + D (llll3 2,2, 00 + luellf 2,2,00)

+ CHFH%,Q,Q,(N + C||G||§/2,2,2,st + S 1(0)|07u(0)[* de,
0
where we used the fact that @ is smooth.
Now we choose a sequence @, converging to @ in H>(§2). Then we

show that the corresponding sequence u,, of (4.13) converges to u which
corresponds to @. Therefore, we consider
(4.23) Nt — dive,, Dg,, (Un,)

= —divg,, Bs,, (ﬁm, E) —Dg,, (am) ’ Vsﬁmz‘i‘ ﬁ
Differentiating (4.23) with respect to 7, applying the difference 6, which

corresponds to the tangent directions too, multiplying the result by 65,
and integrating over {2 yields, after passing with h to 0, the estimate

@.24) {107 dn*To dz + co|0FTm|? 5, 50

2
< e(sup 7lly g + sup IRl 5 + 1)
X (amll3 5.0 00 + 1Tl 22,60 + I 2 200

+ { 7(0)107(0)|* T dz,
2

where ¢ = ¢(||®n||; 5). Now from (4.13) we have

(4.25)  [|1070- |y 50 < l0n02Unmll} 50 + clmll; , 5 5
+esup 13 o T} 50,50 + €l FIE 5 5 5
and
(4.26) 103112 5, < c((10-02im 2 50 + [020nTim|I2 5, + limlI? 5 5 50)
+ esup 713 o1} 50,50 + €l FIE 5.5

From (4.24)—(4.26) we get the estimate (4.22) for u,, under the assumption
that @,, € H. Continuing, we use the estimates for the weak solutions and
the estimate in H2. Hence we finally get the estimate

(4.27) i[5 22,00 < c([@mlls.2,sup [[nllz. 2, sup [[n:]11.2)

< [IFI 22,00 + u(O)]3 o).
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To show convergence we consider the following problem for the difference
Un = Um — Upm—1:

Ui — dive, Do, (Uyy,)

= (dive,, Dg,, — dive,, , Da,, ) (Um-1)
- (div45m IB345m (arm Z) - diV@m—l IB3@77171 (amfh Z))

~ ~

198 — D@m (Um) . V¢m (C) - (Ddim (a'mfl) : VQSm (C)
(4.28) Doy, (1) Vo, (O,

Dy, (Un) = — (D, (@n-1) -7t = Da,,_, (@n-1) - )

+ Bgﬁm (a'ma C) : ﬁ - Bﬁﬁm,l(amfh Z) : ﬁa
ﬁm|t:0 — 0

To obtain an estimate for the difference we differentiate (4.28); with respect
to 7, multiply by U,,, and integrate over (2 to get

(4.29) V 810mr 2T dz 4+ [Unr |12 5 5 50 < €1l = Prna |2 5

Q)

where ¢1 = c1([@mll3 5 [Pm-1ll3 5 [[m-1ll3 22,5 )-

Calculating 92 Uy, from (4.28); and using the estimate for weak solutions
to (4.28) and (4.29) we finally get

(430) H(Ajm S C”@m - SZS’m*1”2,f2'

H2,2,2,ﬁt
Therefore the sequence {u,,} is bounded in Ly(0,T; H3(£2)) and converges
strongly in Lo(0,T; H%(£2)) to a limit u € Lo (0,T; H3(12)).

Now we can pass to the limit in (4.23) and finally we come to equations
for the limit function w.

Summarizing the above considerations we have proved

THEOREM 4.1. Assume thatn € Lo (0, T; H*(£2)), n: € Loo(0,T; H'(£2)),
F € Ly(0,T; H'(R2)), G € Ly(0,T; H3?(S)), S € H? and uy € H'(R).
Then there exists a solution to problem (4.1) such that u € Ly(0,T; H3(£2))
and

(4.31)  lullz,2,2,00 < Oé(Slip\|77||2,9a51gp||77t\|1,9a 151]5/2)
X [[[F]l1,2,2,0t + [|Gll3/2,2,2,5¢ + |uoll2,2], t<T,

where o is an increasing positive function.
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REMARK 4.2. To prove the existence of solutions to problem (1.12) we
write it in the form

nu; — divD(u) = divy, Dy (u) — divD(u) + F,
(4.32) n-D(u) =7-D(u) — Dy (u) + G,
u|t:0 = 1g.

Now using Theorem 4.1 and the method of successive approximations we
have the existence of solutions to problem (3.1) for sufficiently small 7" in
the same space as in Theorem 4.1 and under the additional assumption that
w € Ly(0,T5 H3(£2)).

Moreover, we have the estimate

(4.33)  lulls,2,2,0¢ < ﬁ(Hst,z,z,maSltlp|!W\\2,97Sgp\\nt|!1,o7 [151]5,/2)
X [[[Fll1,2,2,0t + [|Gll/2,2,2,t + l|volli,e],  t<T,

1Ly Ly

where [ is an increasing positive function.
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