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OPTIMALITY OF THE REPLICATING STRATEGY
FOR AMERICAN OPTIONS

Abstract. The aim of this paper is to study the problem of optimality of
replicating strategies associated with pricing of American contingent claims
in the Cox–Ross–Rubinstein model with proportional transaction costs. We
show that a replication of the option is always possible. We give sufficient
conditions for the existence of a replicating strategy which is optimal, and
also show an example of an optimal replicating strategy that is not optimal
in the global sense.

1. Introduction. Pricing of derivatives is an important problem of
modern finance. There are various market models for which this problem
is considered (see [3]). In continuous time setting, the results obtained for
pricing with proportional transaction costs seem to be unacceptable from
the economical point of view [1], [2]. This is one of the reasons (besides
computational feasibility and simplicity) for which discrete time models with
transaction costs are particularly important. In [4] and [5] the problem of
optimality of replicating strategies for European options in the Cox–Ross–
Rubinstein model with transaction costs was studied. The above paper deals
with the same problem for American options.

The paper consists of four sections. In Section 2 we present the model. In
Section 3 we formulate sufficient conditions for the existence of a replication
of European option which is optimal then we derive similar ones for the case
of American option. The problem of equivalence of American and European
call options with the same payment functions and the case of small costs
are also briefly discussed. In Section 4 we consider an example in which
replication is not an optimal way of hedging an option.
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The problem studied in the paper was posed by Prof.  L. Stettner to
whom the author wishes to express his thanks.

2. The model. Consider a discrete time market with two assets, a risky
stock and a riskless bond. Assume that the assets are infinitely divisible.
Let sn denote the price of the stock at time n. Assume that sn satisfies the
following recursive formula:

(1) sn+1 = (1 + %n)sn, n = 0, 1, 2, . . . ,

where %n is a sequence of i.i.d. random variables which take with positive
probability only two values, a and b, where a, b ∈ (−1,∞). The bond earns
interest with a constant rate r such that r > −1 and a < r < b. The above
recursive formula (1) for the price of the stock characterizes the so-called
Cox–Ross–Rubinstein model. Consider now a financial instrument called
an option, that is, a pair (f1(s), f2(s)) where f1(s), f2(s) denote amounts of
money that are paid to the buyer of the claim in bonds and stock, respec-
tively, assuming that the exercise price of the stock is s.

When transferring money from stocks to bonds we pay proportional
transaction costs. The cost of buying one share of stock at time n is (1+λ)sn,
where λ ∈ [0,∞), and the amount received for selling one share at time n
is (1 − µ)sn, with µ ∈ [0, 1). Let xn, yn denote the amounts of money in-
vested in bonds and stocks, respectively at time n (before transaction at
this moment). Analogous post-transaction quantities will be denoted by
x′n, y′n, respectively. Let also ln, mn be amounts of money transferred at
time n from bonds to shares and from shares to bonds, respectively. We
assume that ln, mn are nonnegative and measurable with respect to the
σ-field Fn = σ(s0, . . . , sn).

Taking into account (1), the interest rate r, and xn, yn defined above,
we have for n = 0, 1, 2, . . . ,

(2)
xn+1 = (1 + r)(xn − (1 + λ)ln + (1− µ)mn),
yn+1 = (1 + %n)(yn + ln −mn).

Every sequence kφn = (xn, yn), n = k, k + 1, . . . , for which there exists
nonnegative and Fn-measurable ln, mn such that (2) holds will be called a
trading strategy . If k = 0 we simply write φn.

In what follows, if the option is not exercised, we do not allow simulta-
neous buying and selling, since it does not make sense from the economical
point of view, and therefore we assume that lnmn = 0.

Every pair (x, y), where x, y are expressed in units of cash, will be called
a portfolio.

In this paper, by a cone, we mean the intersection of two closed upper
half planes. The intersection of three or more closed upper half planes that
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is not a cone will be called a polyhedron. It is easy to see that at any given
moment the set of all portfolios which can be used to pay the buyer’s demand
is a cone bounded by two half lines with slopes −1/(1− µ) and −1/(1 + λ).
We give such a cone a special name.

Definition 1. Let

C =
{

(x, y) ∈ R2 : y ≥ max
{
−1

1 + λ
x,

−1
1− µ

x

}}
.

Any translate of the cone C is called a basic cone.

Let C(x,y) denote the basic cone with vertex at (x, y).
By hedging the contingent claim we mean covering with possible excess

of the liability connected with this claim at each moment n, n = 0, 1, . . . , T ,
which means that C(xn,yn) ⊆ C(f1(sn),f2(sn)) for n = 0, . . . , T .

Denote by Cf (sn, k) the set of all portfolios that guarantee at time n
hedging the claim f(sn+k) = (f1(sn+k), f2(sn+k)) at time n + k. If k = 0,
we write simply Cf (sn). The analogous set of post-transaction portfolios
will be denoted by C ′

f (sn, k).
Let ACf (sn, k) denote the set of all portfolios that at time n guarantee

hedging the claim (f1(sn+k, ), f2(sn+k)) at time n+k, for k = 0, 1, . . . , T−n.
We now introduce the definition of a replicating strategy:

Definition 2. A strategy kφn = (xn, yn), n = k, k + 1, . . . , starting
at time k is replicating for an American contingent claim f(s) if C(xn,yn) ⊆
C(f1(sn),f2(sn)) for n = k, k + 1, . . . , and there exists a stopping time τ, k ≤
τ ≤ T , such that (xτ , yτ ) lies on the boundary of Cf (sτ ), which means that
after selling or buying assets at time τ (we do not allow simultaneous buying
and selling at time τ) we obtain (x′τ , y′τ ) = (f1(sτ ), f2(sτ )).

The following questions are important for the seller of the contingent
claim:

What is the minimal price of the option (assuming it exists) and what
is a hedging strategy concerned with this price?

When there are transaction costs, there is a problem of defining the price
of the option, because it may turn out to be impossible to compare two
hedging strategies. But in some cases we may point out a hedging strategy
which is optimal from the point of view of the buyer of the contingent claim.
Let us introduce the following definition:

Definition 3. A hedging strategy φn = (xn, yn) is optimal if for any
other hedging strategy φ̂n = (x̂n, ŷn) we have C(x̂0,ŷ0) ⊆ C(x0,y0).

Analogously, a strategy φn is optimal in a given set of strategies (e.g. all
the replicating strategies) if for any other φ̂n = (x̂n, ŷn) belonging to this
set we have C(x̂0,ŷ0) ⊆ C(x0,y0).



96 M. Kociński

It is easy to see that an optimal hedging strategy exists if and only if
AC(s0, T ) is a basic cone.

When we make the assumption that no transaction costs are paid at
time 0 for buying and selling stocks, there is no longer any problem with
defining the option price. The price of an option is the minimal amount
of money that invested in the market allows the seller to compensate his
payments associated with the option (therefore, it is sometimes called the
seller’s price).

When we resign from the assumption on the lack of transaction costs
at time 0, we may define the seller’s price as a minimal amount of money
either in bonds or in shares of stock for which there exists a hedging strategy
against the claim considered. If there exists an optimal hedging strategy, it
is cheapest for each of the above approaches.

3. Sufficient conditions for the existence of a globally optimal
replicating strategy. In this section we give conditions on an American
option which assure that there exists a replicating strategy which is optimal.
We first prove the existence of a replicating strategy.

Let us define two transformations:

Definition 4. Let Pa, Pb : R2 → R2 be defined as follows:

Pa(x, y) = ((1 + r)x, (1 + a)y), Pb(x, y) = ((1 + r)x, (1 + b)y).

Proposition 1. For every contingent claim f(s) there exists a replicat-
ing strategy φn.

P r o o f. Consider pricing in one step.
One can check that P−1

a (Cf ((1 + a)s1)) is a cone bounded by two half
lines with slopes

−(1 + r)
(1− µ)(1 + a)

and
−(1 + r)

(1 + λ)(1 + a)
,

and similarly P−1
b (Cf ((1 + b)s1)) is a cone bounded by two half lines with

slopes
−(1 + r)

(1− µ)(1 + b)
and

−(1 + r)
(1 + λ)(1 + b)

.

It is easy to see that the set of all post-transaction portfolios which
at time 0 guarantee replicating the claim at time 1 is the intersection of
the boundaries of the cones P−1

a (Cf ((1 + a)s0)) and P−1
b (Cf ((1 + b)s0)).

Because the upper arm of P−1
a (Cf ((1+a)s1)) is steeper than the upper arm

of P−1
b Cf ((1+b)s1) and the lower arm of P−1

a (Cf ((1+a)s1)) is steeper than
the lower arm of P−1

b Cf ((1+ b)s1), the intersection considered is nonempty.
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Consequently, there exists a basic cone such that all portfolios of its
boundary, at time 0, guarantee replicating the relevant claim at time 1.
Denote this cone by CR

f (s0, 1).
We have three possible cases:

1. Cf (s0) ⊆ CR
f (s0, 1). In this case if we put (x0, y0) = (f1(s0), f2(s0)),

we will replicate our claim at time 0.
2. CR

f (s0, 1) ⊆ Cf (s0). In this case if we take as (x0, y0) the vertex of
CR

f (s0, 1) we will replicate our claim at time 1.
3. Cf (s0) 6⊆ CR

f (s0, 1) and CR
f (s0, 1) 6⊆ Cf (s0). In this case the intersec-

tion of the boundaries of Cf (s0) and CR
f (s0, 1) is nonempty (it is just one

point) and some strategy starting from this intersection is replicating.

So, the proposition is true for pricing in one step.
Suppose that for every contingent claim a replicating strategy φn exists

for pricing in N steps, and consider pricing in N + 1 steps.
By the above considerations, there exists a family of replicating strategies

φ̂n(s1) = (x̂n(s1), ŷn(s1)), n = 1, 2, . . . , depending on s1, and starting at
time 1.

It is easy to see that there exists a portfolio (x̃0, ỹ0) which at time 0
guarantees replicating the claim (x̂1(s1), ŷ1(s1)) at time 1. As in pricing in
one step, we have three possible cases:

1. Cf (s0) ⊆ C(x̃0,ỹ0). In this case if we put (x0, y0) = (f1(s0), f2(s0)),
we will replicate our claim at time 0.

2. C(x̃0,ỹ0) ⊆ Cf (s0). In this case if we take as (x0, y0) the vertex of
C(x̃0,ỹ0) we will replicate the claim (x̂1(s1), ŷ1(s1)) at time 1.

3. Cf (s0) 6⊆ C(x̃0,ỹ0) and C(x̃0,ỹ0) 6⊆ Cf (s0). In this case the intersection
of the boundaries of Cf (s0) and C(x̃0,ỹ0) is nonempty (it is just one point)
and some strategy starting from this intersection is replicating.

Summarizing, in each case we have a replicating strategy for pricing in
N + 1 steps, which by induction completes the proof.

Let

I1(s) =
f2((1 + b)s)

(1 + b)
− f2((1 + a)s)

(1 + a)
− f1((1 + a)s)− f1((1 + b)s)

(1 + b)(1 + λ)
,

I2(s) =
f1((1 + a)s)− f1((1 + b)s)

(1 + a)(1− µ)
− f2((1 + b)s)

(1 + b)
+

f2((1 + a)s)
(1 + a)

.

By [5, Theorem 1] (see also [4] for slightly stronger conditions), the
following conditions are sufficient for the existence of a replication of a Eu-
ropean option which is optimal:

I1(sT−1) ≥ 0 and I2(sT−1) ≥ 0 for each admissible sT−1.
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Below we derive sufficient conditions for the existence of a replicating
strategy which is optimal for an American option.

We first give three lemmas which are useful in the proof of the theorem.
To shorten the formulae, define

c1(s) =
f1(s)
1 + λ

+ f2(s), c2(s) =
f1(s)
1− µ

+ f2(s).

Lemma 1. For a contingent claim f(s) the following equivalence holds:
I1(s0) ≥ 0 and I2(s0) ≥ 0 if and only if C ′

f (s0, 1), the set of all post-
transaction portfolios that guarantee at time 0 hedging the claim at time 1,
is a convex cone bounded by two half lines with slopes

−(1 + r)
(1− µ)(1 + a)

and
−(1 + r)

(1 + λ)(1 + b)
.

P r o o f. A post-transaction portfolio (x′0, y
′
0) at time 0, in order to assure

hedging at time 1, must satisfy the following inequalities:

y′0 ≥
−(1 + r)

(1− µ)(1 + a)
x′0 +

1
1 + a

c2((1 + a)s0),(i1)

y′0 ≥
−(1 + r)

(1 + λ)(1 + a)
x′0 +

1
1 + a

c1((1 + a)s0),(i2)

y′0 ≥
−(1 + r)

(1− µ)(1 + b)
x′0 +

1
1 + b

c2((1 + b)s0),(i3)

y′0 ≥
−(1 + r)

(1 + λ)(1 + b)
x′0 +

1
1 + b

c1((1 + b)s0).(i4)

Generally the set of all portfolios satisfying these conditions is a polyhe-
dron.

With any of the above inequalities we can associate a line which is
the set of points for which we have equality. We denote these lines by
〈1〉, 〈2〉, 〈3〉, 〈4〉, respectively. The following facts are equivalent:

1. The set of all post-transaction portfolios guaranteeing at time 0 hedg-
ing our claim at time 1 is a cone bounded by two half lines with slopes

−(1 + r)
(1− µ)(1 + a)

and
−(1 + r)

(1 + λ)(1 + b)
.

2. The intersection of lines 〈1〉 and 〈4〉 does not lie below line 〈2〉 or
below line 〈3〉.

Let p denote the intersection point of 〈1〉 and 〈4〉. One can check that p
lies on or above line 〈2〉 if and only if I1(s0) ≥ 0. Analogously p lies on or
above line 〈3〉 if and only if I2(s0) ≥ 0.

This completes the proof.
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Lemma 2. Assume that for the options f ′(s), f ′′(s) we have I1(s0) ≥ 0
and I2(s0) ≥ 0 for some s0. Let fv(s) denote the vertex of the basic cone
Cf ′(s) ∩ Cf ′′(s). Then for the option fv(s) we also have I1(s0) ≥ 0 and
I2(s0) ≥ 0.

P r o o f. By Lemma 1 it is sufficient to prove that C ′
fv (s0, 1) is a cone

bounded by two half-lines with slopes −(1 + r)/((1− µ)(1 + a)) and −(1 +
r)/((1+λ)(1+b)). From Lemma 1 both cones C ′

f ′(s0, 1) and C ′
f ′′(s0, 1) have

the above property, and consequently so does C ′
fv (s0, 1) as their intersection.

We complete the proof by applying Lemma 1 to the claim fv(s).

Lemma 3. Consider pricing in two steps. Let the claim f(s2) satisfy
I1(s1) ≥ 0 and I2(s1) ≥ 0 for each admissible s1. Then Cf (s1, 1), the set
of all portfolios that at time 1 guarantee hedging f(s2) at time 2, is a basic
cone and each portfolio from the boundary of Cf (s1, 1) at time 1 guarantees
replicating the claim at time 2. Moreover , if z(s1) is the vertex of Cf (s1, 1),
then for the claim z(s1) we have I1(s0) ≥ 0 and I2(s0) ≥ 0.

P r o o f (compare also [4] and [5]). To distinguish between I1(s), I2(s)
connected with f(s) and the ones connected with z(s), we write If

1 (s), If
2 (s)

and Iz
1 (s), Iz

2 (s), respectively.
One can check that Cf (s1, 1) is a basic cone with vertex z(s1) = (z1(s1),

z2(s1)) where

z1(s1) =
(1− µ)(1 + λ)[(1 + b)c2((1 + a)s0)− (1 + a)c2((1 + b)s0)]

(1 + r)[(1 + λ)(1 + b)− (1− µ)(1 + a)]
,

z2(s1) =
−(1 + r)

(1 + λ)(1 + b)
z1(s1) +

1
1 + b

c1((1 + b)s1).

We have

z(s1) ∈ P−1
a (Cf ((1 + a)s1)) ∩ P−1

b (Cf ((1 + b)s1))

and hence z(s1) at time 1 guarantees replicating the claim at time 2 (see
proof of Proposition 1).

By straightforward calculations we find that

Iz
1 (s0) =

(1 + λ)(1 + r)− (1− µ)(1 + a)
(1 + r)[(1 + λ)(1 + b)− (1− µ)(1 + a)]

If
1 ((1 + b)s0)

+
(r − a)(1− µ)

(1 + r)[(1 + λ)(1 + b)− (1− µ)(1 + a)]
If
2 ((1 + a)s0),

Iz
2 (s0) =

(b− r)(1 + λ)
(1 + r)[(1 + λ)(1 + b)− (1− µ)(1 + a)]

If
1 ((1 + b)s0)

+
(1 + b)(1 + λ)− (1 + r)(1− µ)

(1 + r)[(1 + λ)(1 + b)− (1− µ)(1 + a)]
If
2 ((1 + a)s0).
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Because a < r < b, µ ∈ [0, 1), λ ∈ [0,∞) all the coefficients of If
1 and

If
2 are positive and therefore Iz

1 (s0) ≥ 0 and Iz
2 (s0) ≥ 0, which completes

the proof.

Theorem 1. Assume that for an option (f1(s), f2(s)) we have I1(sn) ≥
0 and I2(sn) ≥ 0 for n = 1, . . . , T − 1. Then there exists a replicating
strategy φn which is optimal. Moreover , ACf (sT−n, n) is a basic cone for
n = 1, . . . , T .

P r o o f. Consider pricing in one step at time T−1. Because I1(sT−1) ≥ 0
and I2(sT−1) ≥ 0 for each sT−1 by Lemma 3, it follows that the set of all
portfolios that guarantee at time T − 1 hedging the claim f(sT ), that is,
Cf (sT−1, 1), is a basic cone. Denote its vertex by z(sT−1).

Moreover by Lemma 3 for z(sT−1) we have I1(sT−2) ≥ 0 and I2(sT−2) ≥
0 for any admissible sT−2. Since ACf (sT−1, 1) = Cf (sT−1) ∩ Cf (sT−1, 1)
the cone ACf (sT−1, 1) is a basic cone (as an intersection of basic cones).
Denote its vertex by f1(sT−1). Let (xT−1, yT−1) be a portfolio lying on
the boundary of ACf (sT−1, 1). If (xT−1, yT−1) ∈ Cf (sT−1, 1) then we make
an appropriate transaction so as to get (x′T−1, y

′
T−1) = z(sT−1) and by

Lemma 3 at the next moment we can have the claim f(sT ) replicated. On
the other hand, if (xT−1, yT−1) ∈ Cf (sT−1), then by a suitable transaction
we obtain (x′T−1, y

′
T−1) = (f1(sT−1), f2(sT−1)) and consequently we have

a replication of f(sT−1) at time T − 1. From the above considerations
we see that all portfolios from the boundary of ACf (sT−1) are replicating.
Moreover, for f1(sT−1) by Lemma 2 we have I1(sT−2) ≥ 0 and I2(sT−2) ≥ 0.

Consider the following induction hypothesis:

1. ACf (sT−n, n) is a basic cone and all the strategies starting from its
boundary at time T − n are replicating.

2. For fn(sT−n) = (fn
1 (sT−n), fn

2 (sT−n)), where fn(sn) is the vertex of
ACf (sT−n, n), we have I1(sT−(n+1)) and I2(sT−(n+1)) ≥ 0.

By the considerations above we see that for n = 1 the induction hypoth-
esis holds.

Suppose it is true for some n.
Because for fn(sT−n) we have I1(sT−(n+1)) ≥ 0 and I2(sT−(n+1)) ≥ 0,

by Lemma 3 the set Cfn(sT−(n+1), 1) of all portfolios that guarantee at time
T−(n+1) hedging the claim fn(sT−n) at time T−n is a basic cone. Denote
its vertex by w(sT−(n+1)).

Moreover, by Lemma 3 for w(sT−(n+1)) we have I1(sT−(n+2)) ≥ 0 and
I2(sT−(n+2)) ≥ 0 for any sT−(n+2). Since ACf (sT−(n+1), n+1) = Cf (sT−1)∩
Cfn(sT−(n+1), 1) the cone ACf (sT−(n+1), n + 1) is a basic cone (as an inter-
section of basic cones). Denote its vertex by fn+1(sT−(n+1)). Let (xT−(n+1),
yT−(n+1)) be a portfolio lying on the boundary of ACf (sT−(n+1), n + 1).
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If (xT−(n+1), yT−(n+1)) ∈ Cfn(sT−(n+1), 1) then we make an appropriate
transaction so as to get (x′T−(n+1), y

′
T−(n+1)) = w(sT−(n+1)) and by Lem-

ma 3 at the next moment we can have the claim fn(sT−n) replicated. On
the other hand, if (xT−(n+1), yT−(n+1)) ∈ Cf (sT−(n+1)), then by a suitable
transaction we obtain (x′T−(n+1), y

′
T−(n+1)) = (f1(sT−(n+1)), f2(sT−(n+1)))

and consequently we have a replication of f(sT−(n+1)) at time T − (n + 1).
From the above considerations we see that all strategies starting at time
T − (n + 1) from the boundary of ACf (sT−(n+1)) are replicating. Moreover,
for fn+1(sT−1) by Lemma 2 we have I1(sT−(n+2)) ≥ 0 and I2(sT−(n+2)) ≥ 0.

Hence our hypothesis is true for n = 1, . . . , T .
A replicating strategy starting at time 0 from the vertex of AC(s0, T ),

that is, from (fT
1 (s0), fT

2 (s0)) is optimal.

Below we show some examples of contingent claims which satisfy the
condition imposed in Theorem 1.

Example 1 (Long call option with delivery). When the stock price is
q or greater, a holder of the option buys one share of stock for the price q.
We have

f1(s) = −q1s≥q, f2(s) = s1s≥q.

Example 2 (Long call option with delivery and cash settlement). As in
Example 1, a holder buys one share of stock for the price q, but he does it
when possible cash settlement is nonnegative. If it is negative he does not
exercise the option. We have

f1(s) = −q1s≥q/(1−µ), f2(s) = s1s≥q/(1−µ).

Example 3 (Long call option with delivery and settlement in shares
of stock). This case is similar to the preceding one. However, now the
decision of buying one share of stock at the price q is made when the holder’s
settlement in shares of stock is nonnegative. We have

f1(s) = −q1s≥q/(1+λ), f2(s) = s1s≥q/(1+λ).

Example 4 (Long put option). When the stock price is q or lower a
holder of the option sells one share of stock for the price q. We have

f1(s) = q1s≤q, f2(s) = −s1s≤q.

When there are no transaction costs, and r ≥ 0, American and European
call options have the same price (see [3]).

A problem arises when transaction costs are incurred.
First, we introduce a definition of equivalence of the American and Eu-

ropean versions of an option.
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Definition 4. An American option f(s) is equivalent to a European
option with the same payment function f(s) if

ACf (sn, T − n) = Cf (sn, T − n) for n = 0, 1, . . . , T.

It turns out that when a ≤ 0 and r ≥ 0 the American options from
Examples 1–3 are equivalent to their European versions.

In case a > 0 we have equivalence for Example 2, while for Examples 1
and 3 it occurs if and only if:

(1 + r)(1− µ) ≥ 1 + a for Example 1,

(1 + r)(1− µ) ≥ (1 + a)(1 + λ) for Example 3.

Consider now the case of small transaction costs.
As in the case of European options (see [4] and [5]), if the transaction

costs are sufficiently small, i.e.

1 + r

1 + a
≥ 1 + λ

1− µ
and

1 + b

1 + r
≥ 1 + λ

1− µ

for any American contingent claim, there exists a replicating strategy which
is optimal.

4. Numerical example. In this section we consider an example for
which an optimal replicating strategy is not an optimal hedging strategy.
Our contingent claim will be the following:

Example 4 (Call option with cash settlement). The situation is different
from Example 2. Now we do not have delivery. When the stock price is
greater than q, a holder of the option gets an amount (s− q)+ in cash. We
have

f1(s) = (s− q)+, f2(s) = 0.

We set the parameters of our model:

s0 = 1, b = 0.2,

q = 1.2, r = 0,

a = −0.2, µ = λ = 0.1.

Assume the pricing will be in two steps.
At time 2, we have three possibilities:

1. s2 = (1 + a)2s0 = 0.64, f1(s2) = f2(s2) = 0,
2. s2 = (1 + a)(1 + b)s0 = 0.96, f1(s2) = f2(s2) = 0,
3. s2 = (1 + b)2s0 = 1.44, f1(s2) = 0.24, f2(s2) = 0.

At time 1, two cases are possible:

1. s1 = (1 + a)s0 = 0.8, f1(s1) = f2(s1) = 0.
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In this case Cf (s2) is, independently of the admissible choices of s2, a
basic cone with vertex (0, 0). So, by a simple calculation Cf (s1, 1) is also a
basic cone with the same vertex. The same is obviously true for Cf (s1).

We have the equality

ACf (s1, 1) = Cf (s1, 1) ∩ Cf (s1).

Hence ACf (s1, 1) is a basic cone with vertex (0, 0). Moreover, it is easy to
see that all portfolios from the boundary of ACf (s1, 1) guarantee at time 1
replication of the relevant contingent claim at time 2.

2. s1 = (1 + b)s0 = 1.2, f1(s1) = f2(s1) = 0.

Now, we have I1(s1) > 0 and I2(s1) < 0.
P−1

a (Cf ((1 + a)s1)) is a cone with vertex (0, 0), bounded by half lines
with slopes −1/((1− µ)(1 + a)) and −1/((1 + λ)(1 + a)).

P−1
b (Cf ((1 + b)s1)) is a cone with vertex (0.24, 0), bounded by half lines

with slopes −1/((1− µ)(1 + b)) and −1/((1 + λ)(1 + b)).
The intersection P−1

a (Cf ((1 + a)s1)) ∩ P−1
b (Cf ((1 + b)s1)), which is the

set of all post-transaction portfolios that guarantee hedging the claim at
time 2, will be a polyhedron with two vertices: (−0.48, 0.(6)) and (0.24, 0),
where 0.(6) means 0.66 . . .

It is easy to see that the set of all portfolios that at time 1 guarantee
hedging our option at time 2 is a polyhedron with the same vertices but the
upper half line of its boundary has slope −1/(1−µ) and its lowest boundary
has slope −1/(1 + λ).

Then Cf (s1) is a basic cone with vertex (0, 0), and we have Cf (s1, 1) ⊂
Cf (s1).

So, ACf (s1, 1) = Cf (s1, 1).
The only post-transaction portfolio that at time 1 guarantees replica-

tion of the option at time 2, lies at the intersection of the boundaries of
P−1

a (Cf ((1 + a)s1)) and P−1
b (Cf ((1 + b)s1)). This point is (−0.48, 0.(6)).

So in that case, the set of all portfolios that at time 1 guarantee replica-
tion of the option at time 2 is the boundary of a basic cone with vertex
(−0.48, 0.(6)).

Now consider time 0.
P−1

a (ACf ((1+a)s0)) is a cone with vertex at (0, 0) bounded by half lines
with slopes −1/((1− µ)(1 + a)) and −1/((1 + λ)(1 + a)).

P−1
b (ACf ((1+b)s1)) is a polyhedron with two vertices (−0.48, 0.(5)) and

(0.24, 0). The upper half line of its boundary has slope −1/((1− µ)(1 + b))
and its lowest boundary has slope −1/((1 + λ)(1 + b)).

The intersection P−1
a (ACf ((1 + a)s0)) ∩ P−1

b (ACf ((1 + b)s0)) will be a
polyhedron with two vertices: (−0.3, 0.41(6)) and (0.24, 0). The upper half
line of its boundary has slope −1/((1−µ)(1+a)) and its lowest boundary has
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slope −1/((1 + λ)(1 + b)). This intersection is the set of all post-transaction
portfolios that at time 0 guarantee hedging of our option at times 1 and 2.

It is easy to see that the set of all portfolios that at time 0 guarantee hedg-
ing our option at times 1 and 2 is a basic cone with vertex (−0.3, 0.41(6)).
This cone is contained in Cf (s0). So ACf (s0, 2) is a basic cone with vertex
(−0.3, 0.41(6)) and every strategy starting from this point is optimal.

Now, we will find the initial portfolio of an optimal replicating strategy.
Let C(x,y) be defined as in Section 1.
By the above considerations, if s1 = (1 + a)s0 = 0.8, then the set of all

portfolios that at time 1 guarantee replication of our contingent claim at
that moment or later is the boundary of C(0,0).

On the other hand, if s1 = (1 + b)s0 = 1.2, then the set of all portfolios
that at time 1 guarantee replication of our claim at that moment or later is
the boundary of C(−0.48,0.(6)).

The set of all post-transaction portfolios that at time 0 guarantee repli-
cation of the option at time 1 or 2 is the intersection of the boundaries of
the cones P−1

a (C(0,0)) and P−1
b (C(−0.48,0.(6))). This intersection is the point

(−0.608, 0.8(4)).
Because ACf (s0, 2) is strictly contained in Cf (s0), replication at time 0

is impossible, and we see that each replicating strategy starting at time 0
must begin from the boundary of the basic cone with vertex (−0.608, 0.8(4)).

So, an optimal replicating strategy starts from (−0.608, 0.8(4)), and an
optimal hedging strategy starts from (−0.3, 0.41(6)).

We have C(−0.608,0.8(4)) ⊂ C(−0.3,0.41(6)), and we see that from the point
of view of the buyer (−0.3, 0.41(6)) is a better portfolio than (−0.608, 0.8(4)).

If there are no transaction costs at time 0 the cost of the starting portfolio
of the optimal replicating strategy is 0.236(4), and the analogous portfolio
of the optimal hedging strategy costs 0.11(6).

So, if someone wants to have a possibility of buying one share of stock at
the price 1.2 at one of the moments 0, 1, 2 he has to pay 0.11(6). If he wants
his claim to be perfectly replicated (it is just a theoretical consideration) he
has to pay 0.236(4).
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