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LEAST-SQUARES TRIGONOMETRIC

REGRESSION ESTIMATION

Abstract. The problem of nonparametric function fitting using the com-
plete orthogonal system of trigonometric functions ek, k = 0, 1, 2, . . . , for the
observation model yi = f(xin) + ηi, i = 1, . . . , n, is considered, where ηi are
uncorrelated random variables with zero mean value and finite variance, and
the observation points xin ∈ [0, 2π], i = 1, . . . , n, are equidistant. Conditions
for convergence of the mean-square prediction error (1/n)

∑n
i=1E(f(xin)−

f̂N(n)(xin))2, the integrated mean-square error E‖f−f̂N(n)‖2 and the point-

wise mean-square error E(f(x) − f̂N(n)(x))2 of the estimator f̂N(n)(x) =
∑N(n)

k=0 ĉkek(x) for f ∈ C[0, 2π] and ĉ0, ĉ1, . . . , ĉN(n) obtained by the least
squares method are studied.

1. Introduction. Let yi, i = 1, . . . , n, be observations at equidistant
points xin = 2π(i−1)/n, i = 1, . . . , n, which follow the model yi = f(xin)+
ηi, where f : [0, 2π] → R is an unknown function satisfying appropriate
conditions characterized in the sequel and ηi, i = 1, . . . , n, are random
variables satisfying the conditions Eηi = 0 and Eηiηj = σ2

ηδij , where σ2
η > 0

and δij denotes the Kronecker delta.

The functions

(1) e0(x) = 1, e2l−1(x) =
√

2 sin(lx), e2l(x) =
√

2 cos(lx), l = 1, 2, . . . ,

constitute a complete orthogonal system in the space L2[0, 2π], normalized
so that

1

2π

2π\
0

e2k(s) ds = 1, k = 0, 1, 2, . . .
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In consequence, any function f ∈ L2[0, 2π] has the representation

f =

∞∑

k=0

ckek, where ck =
1

2π

2π\
0

f(s)ek(s) ds, k = 0, 1, 2, . . .

We consider estimators of the Fourier coefficients ck, k = 0, 1, . . . , N , having
the form

(2) ĉkn =
1

n

n∑

i=1

yiek(xin), k = 0, 1, . . . , N.

It is well known that in the case of equidistant observation points xin =
2π(i − 1)/n, i = 1, . . . , n, the above defined estimators are for N = 2m,
2m + 1 ≤ n, least squares estimators of the Fourier coefficients ck, k =
0, 1, . . . , N , which is a consequence of the relations (see [1])

(3)
1

n

n∑

i=1

ek(xin)el(xin) = δkl

for k, l = 0, 1, . . . , N , N = 2m, 2m + 1 ≤ n.

Observe that if the regression function f is continuous the estimators
ĉkn of the Fourier coefficients ck, k = 0, 1, . . . , are asymptotically unbiased
and consistent in the mean-square sense. Indeed, for fixed k, 0 ≤ k ≤ N ,
N = 2m, 2m + 1 ≤ n,

E(ĉkn − ck)2 = E(ĉkn − Eĉkn)2 + (Eĉkn − ck)2

and taking into account (2) we immediately obtain

E(ĉkn − Eĉkn)(ĉln − Eĉln) =
σ2
η

n2

n∑

i=1

ek(xin)el(xin),

Eĉkn − ck =
1

n

n∑

i=1

f(xin)ek(xin) − ck,

which in view of (3) yields

(4)

E(ĉkn − ck)2 =
σ2
η

n
+ (Eĉkn − ck)2,

Eĉkn − ck =
1

2π

2π

n

n∑

i=1

f(xin)ek(xin) − 1

2π

2π\
0

f(s)ek(s) ds.

The above equalities and continuity of f and ek imply that

lim
n→∞

Eĉkn − ck = 0 and lim
n→∞

E(ĉkn − ck)2 = 0.
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In the sequel we shall examine the asymptotic properties of the projection
estimator of the regression function

f̂N (x) =
N∑

k=0

ĉknek(x).

According to the Jackson theorem [6] for any 2π-periodic continuous func-
tion (i.e. for f ∈ C[0, 2π] satisfying f(0) = f(2π)) there exists a trigono-
metric polynomial of degree l

Tl(x) = a0 +

l∑

k=1

(ak cos(kx) + bk sin(kx)),

where a2l + b2l 6= 0, such that

sup
0≤s≤2π

|f(s) − Tl(s)| ≤ 12ω(1/l, f),

where ω(δ, f) (for δ > 0) denotes the modulus of continuity of f .

2. Asymptotic mean-square prediction error. Consider first the
mean-square prediction error of the estimator f̂N , defined by

DnN =
1

n

n∑

i=1

E(f(xin) − f̂N(xin))2.

In view of the orthogonality relations (3) the standard squared bias plus
variance decomposition yields

(5) DnN =
1

n

n∑

i=1

(f(xin) −Ef̂N (xin))2 + σ2
η

N + 1

n
.

It can be easily seen that for N = 2m, 2m + 1 ≤ n, the inequality

1

n

n∑

i=1

(f(xin) − Ef̂N (xin))2 ≤ 1

n

n∑

i=1

(f(xin) − Tl(xin))2

holds for any trigonometric polynomial Tl of degree l ≤ m. Consequently,
using (5) and applying the Jackson theorem we immediately see that for a
2π-periodic function f ∈ C[0, 2π] we have limn→∞ DnN(n) = 0 on condition
that limn→∞ N(n) = ∞ and limn→∞ N(n)/n = 0.

From the equality (5) we see that for any regression function f the con-
dition limn→∞ N(n)/n = 0 is also necessary for limn→∞ DnN(n) = 0. For a
continuous regression function f which is not a trigonometric polynomial of
any finite order limn→∞ DnN(n) = 0 also implies that limn→∞ N(n) = ∞.
Indeed, if we assume that there exists a subsequence mk, k = 1, 2, . . . , such
that the sequence N(mk) is bounded, then there also exists a subsequence nl
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such that N(nl) = M, l = 1, 2, . . . In consequence, putting fM =
∑M

k=0 ckek
we would have

1

nl

nl∑

i=1

(f(xinl
) − Ef̂N(nl)(xinl

))2

=
1

nl

nl∑

i=1

(f(xinl
) − fM (xinl

))2 +
1

nl

nl∑

i=1

(fM (xinl
) − Ef̂N(nl)(xinl

))2

+
2

nl

nl∑

i=1

(fM (xinl
) − Ef̂N(nl)(xinl

))(f(xinl
) − fM (xinl

))

and since the functions f and fM are continuous the second and third terms
on the right-hand side would converge to zero because by the Schwarz in-
equality and (3),

1

nl

nl∑

i=1

(fM (xinl
) − Ef̂N(nl)(xinl

))2 ≤ 1

nl

nl∑

i=1

M∑

k=0

(ck − Eĉknl
)2

M∑

k=0

e2k(xinl
)

≤ (M + 1)

M∑

k=0

(ck − Eĉknl
)2.

Consequently, we would have

lim
l→∞

1

nl

nl∑

i=1

(f(xinl
) − Ef̂N(nl)(xinl

))2 =
1

2π

2π\
0

(f(s) − fM (s))2 ds > 0,

so the sequence DnN(n) would not converge to zero.
The above conclusions allow us to formulate the following theorem.

Theorem 2.1. If the regression function f is continuous, 2π-periodic
and not a trigonometric polynomial of any finite order , then the projection

estimator f̂N(n) is consistent in the sense of the mean-square prediction

error , i.e.

lim
n→∞

1

n

n∑

i=1

E(f(xin) − f̂N(n)(xin))2 = 0,

if and only if the sequence of natural numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)/n = 0.

Furthermore, since for a function f satisfying the Lipschitz condition
with exponent 0 < α ≤ 1 we have ω(δ, f) ≤ Lδα, where L > 0, it is easy to
see that the following corollary holds.

Corollary 2.1. Assume that the regression function f is 2π-periodic
and satisfies the Lipschitz condition with exponent 0 < α ≤ 1. If the
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sequence of even natural numbers N(n), n = 1, 2, . . . , satisfies N(n) ∼
n1/(1+2α) (i.e. r1 ≤ n−1/(1+2α)N(n) ≤ r2 for r1, r2 > 0), then

1

n

n∑

i=1

E(f(xin) − f̂N(n)(xin))2 = O(n−2α/(1+2α)).

The above results complement the ones presented in [2] which were
proved for a more general fixed point design under more restrictive assump-
tions on the smoothness of the regression function.

3. Convergence of the integrated mean-square error. The for-
mula for the bias of the estimator ĉkn (see (4)) can be rewritten in the
form

Eĉkn − ck =

2π\
0

fek d(Fn − F ),

where F denotes the uniform distribution function on [0, 2π] and Fn the
empirical distribution function of the “sample” xin, i = 1, . . . , n. If f is
absolutely continuous, then integrating by parts gives

Eĉkn − ck =

2π\
0

(f ′ek + fe′k)(Fn − F ),

and since sup |F − Fn| ≤ 1/n this yields

|Eĉkn − ck| ≤
1

n

( 2π\
0

|f ′ek| +

2π\
0

|fe′k|
)

and finally in view of definition (1) we obtain

(6)
(Eĉ0n − c0)2 ≤ 1

n2
‖f ′‖21,

(Eĉkn − ck)2 ≤ 4

n2
(‖f ′‖21 + l2‖f‖21),

for k = 2l−1, 2l, l = 1, . . . ,m, 2m+1 ≤ n, where ‖∗‖p denotes the Lp[0, 2π]
norm.

Now consider the integrated mean-square error of the estimator f̂N ,

RnN =
1

2π
E

2π\
0

(f − f̂N)2 = pN +

N∑

k=0

E(ĉkn − ck)2,

where pN =
∑∞

k=N+1 c
2
k. According to (4) we can write

(7) RnN = pN +

N∑

k=0

(Eĉkn − ck)2 + σ2
η

N + 1

n
.
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For N = 2m, 2m + 1 ≤ n, taking into account (6) we obtain

N∑

k=0

(Eĉkn − ck)2 ≤ 1

n2

[
(8m + 1)‖f ′‖21 + 8‖f‖21

m∑

l=1

l2
]

(8)

≤ 1

n2

[
(4N + 1)‖f ′‖21 +

N(N + 1)(N + 2)

3
‖f‖21

]

since
∑m

l=1 l
2 = m(m + 1)(2m + 1)/6. The above estimate together with

(7) allows us to formulate the following theorem.

Theorem 3.1. If the sequence of even natural numbers N(n), n =
1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)3/2/n = 0,

then the projection estimator f̂N(n) of the absolutely continuous regression

function f is consistent in the sense of the integrated mean-square error ,
i.e.

lim
n→∞

E‖f − f̂N(n)‖22 = 0.

Rafaj lowicz [10] proved that a theorem similar to 3.1 holds in the case
of regression functions for which the error of uniform approximation by
trigonometric polynomials tends to zero as the polynomial degree increases,
i.e. it holds for continuous and 2π-periodic regression functions [6]. It should
be noted that our theorem extends the result from [10] since it is true for
nonperiodic regression functions.

In order to obtain a result concerning the convergence rate of the inte-
grated mean-square error we need the following lemma.

Lemma 3.1. If the function f is absolutely continuous, then for N = 2m,
m = 1, 2, . . . ,

pN ≤ 5‖f ′‖21
π2N

.

P r o o f. Integrating by parts gives for l = 1, 2, . . . ,

c2l−1 =
1√
2 lπ

[
f(0) − f(2π) +

2π\
0

f ′(s) cos(ls) ds
]
,

c2l = − 1√
2 lπ

2π\
0

f ′(s) sin(ls) ds,

and in consequence

|c2l−1| ≤
2√
2 lπ

‖f ′‖1, |c2l| ≤
1√
2 lπ

‖f ′‖1.
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Hence, for N = 2m,

pN =

∞∑

k=N+1

c2k =

∞∑

l=m+1

(c22l−1 + c22l) ≤
5‖f ′‖21

2π2

∞∑

l=m+1

1

l2

≤ 5‖f ′‖21
2π2

∞∑

l=m+1

1

l(l − 1)
=

5‖f ′‖21
2π2

· 1

m
.

According to (7), (8) and by Lemma 3.1 we have for N = 2m,

RnN ≤ 5‖f ′‖21
π2N

+
1

n2

[
(4N + 1)‖f ′‖21 +

N(N + 1)(N + 2)

3
‖f‖21

]
+ σ2

η

N + 1

n
,

which can be rewritten in the form

RnN ≤ A

N
+

1

n2
(BN + CN3) +

DN

n
,

where A,B,C,D > 0 are suitably chosen constants. From the last inequality
it is easy to see that the following corollary holds.

Corollary 3.1. If the regression function f is absolutely continuous

and the sequence of even natural numbers N(n), n = 1, 2, . . . , satisfies

N(n) ∼ n1/2 (i.e. r1 ≤ n−1/2N(n) ≤ r2 for r1, r2 > 0), then

E‖f − f̂N(n)‖22 = O(n−1/2).

In papers on wavelet methods of nonparametric function estimation (e.g.
[5]) one can find results giving the IMSE decay rate of a wavelet projection
estimator for an equidistant point design.

4. Pointwise mean-square consistency of the estimator. In this
section we derive sufficient conditions for pointwise mean-square consistency
of the projection estimator f̂N considered.

If the Fourier series of f converges to f(x) at some x ∈ [0, 2π], then

E(f(x) − f̂N(x))2 = E
( N∑

k=0

(ck − ĉkn)ek(x)
)2

+ r2N (x)

+ 2rN (x)

N∑

k=0

(ck −Eĉkn)ek(x),

where rN (x) =
∑∞

k=N+1 ckek(x). From the Cauchy–Schwarz inequality it
further follows that
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E(f(x) − f̂N(x))2 ≤
N∑

k=0

E(ck − ĉkn)2
N∑

k=0

e2k(x) + r2N (x)

+ 2|rN (x)|
( N∑

k=0

(ck − Eĉkn)2
)1/2( N∑

k=0

e2k(x)
)1/2

,

and according to (4) since
∑N

k=0 e
2
k(x) = N + 1 for N = 2m, m ≥ 0,

x ∈ [0, 2π], we finally have

(9) E(f(x) − f̂N (x))2 ≤ (N + 1)

N∑

k=0

(ck − Eĉkn)2 + σ2
η

(N + 1)2

n

+ 2|rN (x)|(N + 1)1/2
( N∑

k=0

(ck − Eĉkn)2
)1/2

+ r2N (x).

If we assume that the regression function f is absolutely continuous,
then since such a function is both continuous and of bounded variation in
[0, 2π], its Fourier series converges uniformly to f in (δ, 2π − δ) for δ > 0
(see Corollary 2.62 [11]), so that limn→∞ rN(n)(x) = 0 uniformly for x ∈
(δ, 2π − δ) if limn→∞ N(n) = ∞. Hence, the estimates in (8) and (9) imply
that the following theorem holds.

Theorem 4.1. If the sequence N(n), n = 1, 2, . . . , of even natural

numbers satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)2/n = 0,

then for any δ > 0 the projection estimator f̂N(n) of the absolutely con-

tinuous regression function f is uniformly consistent in the sense of the

pointwise mean-square error in the interval (δ, 2π − δ), i.e.

lim
n→∞

E(f(x) − f̂N(n)(x))2 = 0 uniformly for x ∈ (δ, 2π − δ).

It should be noted that for an absolutely continuous and 2π-periodic
regression function the pointwise mean-square error converges uniformly in
the closed interval [0, 2π], which follows from the fact that then the Fourier
series of the regression function converges uniformly in this interval [11].
Let us also remark that Rafaj lowicz [10] obtained sufficient conditions for

uniform pointwise mean-square consistency of f̂N in [0, 2π] only for 2π-
periodic regression functions.

5. Selecting the regression order. In this section we study a method
of selecting a good value of N from the data, namely, the one based on
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Mallows’s Cp criterion [7]

(10) C(N) =
1

n

n∑

i=1

(yi − f̂N(xin))2 +
2Nσ̂2

n
,

where σ̂2 is any consistent estimator of σ2
η (see [3], [4] for examples of such

estimators). One selects a value N̂n by minimizing C(N) over the integers
0 ≤ N ≤ n− 1.

We obtain results on asymptotic properties of this method for selecting
the trigonometric regression order N . First, we prove the following theorem.

Theorem 5.1. Assume that

(a) the function f is absolutely continuous and is not a trigonometric

polynomial of any finite order ,
(b) there exists a sequence of nonnegative real numbers εk, k = 0, 1, . . . ,

such that the sequence (k + 1)εk is nonincreasing and

|ck| ≤ εk,

∞∑

k=0

εk < ∞,

(c) µ4 = supEη4i < ∞,

(d) σ̂2 p−→ σ2
η as n → ∞.

If N̂n is the minimizer of (10), then

2π\
0

(f − f̂
N̂n

)2 = Op(n−1/2).

P r o o f. Under the above assumptions Theorem 2 of [9] holds, which

asserts that for the loss function rn(N) =
T2π
0

(f − f̂N )2 we have

(11)
rn(N̂n)

min0≤N≤n−1 rn(N)

p−→ 1, n → ∞,

even if the absolute continuity assumption is not satisfied. If this assumption
is satisfied we have, by Corollary 3.1,

min
0≤N≤n−1

E

2π\
0

(f − f̂N)2 = O(n−1/2),

and consequently

min
0≤N≤n−1

2π\
0

(f − f̂N )2 = Op(n−1/2).

The last equality together with (11) implies that rn(N̂n) = Op(n−1/2), which
completes the proof.
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We can also consider the loss function

dn(N) =
1

n

n∑

i=1

(f(xin) − f̂N(xin))2.

Under the assumptions of Theorem 5.1 (without the absolute continuity
assumption) Theorem 2 of [9] also assures that

dn(N̂n)

min0≤N≤n−1 dn(N)

p−→ 1, n → ∞.

Thus, if the regression function is 2π-periodic we can prove analogously

using Theorem 2.1 that limn→∞ dn(N̂n)
p
= 0. If the 2π-periodic regression

function f also satisfies the Lipschitz condition with exponent 0 < α ≤ 1,
then using Corollary 2.1 we can prove that dn(N̂n) = Op(n−2α/(1+2α)).

A sequence of real numbers εk, k = 0, 1, . . . , which satisfies the conditions
of assumption (b) in the above theorem exists for example when (see [9])

∞∑

k=0

|ck| ln . . . ln(k + 1) < ∞,

where ln . . . ln(k + 1) denotes a multiple logarithm of k + 1.
Results concerning other asymptotic properties of the estimator consid-

ered, e.g. the limit distribution of its integrated squared error, are obtained
in [8].

References

[1] B. Droge, On finite-sample properties of adaptive least-squares regression esti-
mates, Statistics 24 (1993), 181–203.

[2] R. L. Eubank and P. Speckman, Convergence rates for trigonometric and poly-
nomial-trigonometric regression estimators, Statist. Probab. Lett. 11 (1991), 119–
124.

[3] T. Gasser, L. Sroka and C. Jennen-Ste inmetz, Residual variance and residual
pattern in nonlinear regression, Biometrika 73 (1986), 625–633.

[4] P. Hal l, J. W. Kay and D. M. Titter ington, Asymptotically optimal difference-
based estimation of variance in nonparametric regression, ibid. 77 (1990), 521–528.

[5] P. Hal l and P. Pat i l, On wavelet methods for estimating smooth functions, J.
Bernoulli Soc. 1 (1995), 41–58.

[6] G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New
York, 1966.

[7] C. L. Mal lows, Some comments on Cp, Technometrics 15 (1973), 661–675.

[8] E. Nadaraya, Limit distribution of the integrated squared error of trigonometric
series regression estimator , Proc. Georgian Acad. Sci. Math. 1 (1993), 221–237.

[9] B. T. Polyak and A. B. Tsybakov, Asymptotic optimality of the Cp criterion in
projection type estimation of regression functions, Teor. Veroyatnost. Primenen.
35 (1990), 305–317 (in Russian).



Least-squares trigonometric regression estimation 131

[10] E. Rafaj  l owicz, Nonparametric least-squares estimation of a regression function,
Statistics 19 (1988), 349–358.

[11] A. Zygmund, Trigonometrical Series, Dover, 1955.

Waldemar Popiński
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