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BEHAVIOUR OF GLOBAL SOLUTIONS
FOR A SYSTEM OF REACTION-DIFFUSION
EQUATIONS FROM COMBUSTION THEORY

Abstract. We are concerned with the boundedness and large time be-
haviour of the solution for a system of reaction-diffusion equations mod-
elling complex consecutive reactions on a bounded domain under homoge-
neous Neumann boundary conditions. Using the techniques of E. Conway,
D. Hoff and J. Smoller [3] we also show that the bounded solution converges
to a constant function as t — oco. Finally, we investigate the rate of this
convergence.

1. Introduction. In this paper we investigate the asymptotic behaviour
of global solutions for the following reaction-diffusion system:

(1.1) % = doAY; — di 1Yo f1(T), xre N, t>0,
(1.2) % = dy AY; + d3V1Ya f1(T)

— dyYofo(T) —dsYs — dgYy, €82, t>0,
(1.3) %_7; = d7y AT 4 dgY1 Y2 f1(T)

+dgYa fo(T) + dioYa + d11Yy, x €0, t>0,
(1.4) %:%:2—5:0, x €092, t>0,
(1.5) (Y1,Y3,T)(x,0) = (Y10, Y20, 70)(2), T € (2,
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where (2 is a bounded domain in R™ with boundary 92, such that 942 is
a C™ hypersurface separating {2 from R" /{2 (m > 1), d; (j =0,1,...,11)
are positive constants, f; (i = 1,2) are given by the Arrhenius law

where B;, F; are constants, and F; denotes the activation energy.

This system of reaction-diffusion equations arises as a model of chain
branching and chain breaking kinetics of reactions with complex chemistry.
Here Y is the concentration of fuel, Y5 is the concentration of radicals, and
T is the dimensionless temperature. Y7, Y and T depend on x and ¢ where
(x,t) € 2 x RT.

Under suitable conditions (see (CD) in Section 3), it is expected that
(1.1)—(1.5) has a unique global solution (Y7,Y>,T") and this solution tends
to an equilibrium state uniformly in = as t — oo.

We will show that (Y7(t),Ya(t),T(t)) approaches an equilibrium state
(0,0,Ts) in CH(£2)3 as t — oo for every p € [0,2), where T, is a con-
stant, and we will consider the rate of this convergence, by means of in-
tegral equations, fractional powers of operators, Poincaré’s inequality and
some imbedding theorems.

2. Preliminary results. We state some results needed in the sequel.

LEMMA 2.1. Let (E,|| - ||g) and (F,|| - ||r) be two real Banach spaces
with continuous inclusion B C F. Let A be a linear operator generating a
strongly continuous semigroup G(t) in E such that:

(i) Gt)E C F for all t > 0,
(ii) there exists 0 € [0,1) such that |G(t)p|lr < ct=°|p|lg for all t > 0.

Moreover, let p > 1/(1—=0), f e L}, (RT,E) and sup;q || fllLr 415

loc
< co. Let u be a mild solution on RT of

du
— = Au(t t).
M aut) + 1)
If w € L>®(0,00; F), then u(t) € F for allt > 0 and u € Cp(d,00; F)
for all 6 > 0, where Cp(0,00; F) is the space of all continuous functions
u: (§,00) = F such that sup{||u(t)||r : t > 6} < co.

For the proof, see [4].

LEMMA 2.2. Let G(t) be the semigroup generated by the operator dA
in LP(£2). Then for all 1 < p < q < oo and all ¢ € LP({2) we have
G(t)p € L1(2) and

IG()¢lly < elp,q)t=DUP=HD g,

For the proof, see [2].
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3. Global existence and positivity. Throughout this paper, the
following assumptions are in force:
(CD) (i) d; (j =0,1,...,11) are positive constants,
(ii) Y10, Y20 and Tj are nonnegative measurable functions such that
0 < Yio(z), Yao(x),To(z) < My for almost every x € (2, for
some positive constant M.

THEOREM 3.1.  Assume (CD). Then there exists a unique nonnegative
global solution (Y1,Y,T) for (1.1)—(1.5) which is smooth in 2 x (0,00).

Proof. For each 1 <p < oo and j € {1,2,3} define the linear operator
Ay on LV(2) by
D(4;,) = {u € W*P(2) : (du/0v)|0R2 = 0},

3.1
(3:-1) A pu = doAu, Axpu=doAu, Aspu=d;Au,

where W2P(£2) is the usual Sobolev space. It is well known that A;, gen-
erates a compact, analytic contraction semigroup G; ,(t), t > 0, of bounded
linear operators on LP({2) (see, e.g., Amann [2]).

For the local existence we write (1.1)—(1.3) as a system of integral equa-
tions via the variation of constants formula. For simplicity we set

B (Y1,Y, T)(1)() = — diYa(t)Ya2(t) fr(T( ))()
By (Y1, Y2, T)(0) () = (dsY1(t)Ya2(t) f1(T'(1)) —
— dsYa(t) — de Y5 (1)) (- ),
F3(Y1,Y2, T)(¢)() = (dsY1()Ya(t) f1(T'(t)) + doY2(t) f2(T (1))
+dioYa(y) + d11Y2 (),
for x € 2, t > 0; we then have

Ya(t) f2(T())

(3.2) Yi(t) =G p(t)Yi0o +\G1p(t —7)Fy (Ye(7),Ya(r), T(7)) dT,

(33) Yg(t) = G27p(t)Y2[) + GQJ)(t — T)FQ(Y1 (T), YQ(T), T(T)) dr,

O e O ey

t
(3.4) T(t) = Gsp,(t)To + X Gsp(t — 7)F3(Y1(7),Ya(T), T (7)) dT.
0
For each a > 0 define the operator B, = I — A, ,. Then the fractional
powers B, * = (I —A;,)~ exist and are injective, bounded linear operators
on LP(£2) (see Pazy [8]). Let Bf, = (B;")~" and X3, = D(B{,), the
domain of B, . Then Xf, is a Banach space with the graph norm Hu||a =
1B ,wl|p, and for a > 5 > 0, X§, is a dense subspace of X/ with the



136 S. Badraoui

inclusion X7 C X; p » compact (we use the convention XD = Lr(R2)). Also
1f0<a<1wehave

(3.5) X3, cCH(R2) for every 0 < pu < ma—n/p.

Note that this inclusion is valid even if p = 1 (see Henry [5], p. 39).
In addition, G, and Bf', have the properties summarised in the follow-
ing lemma.

LEMMA 3.2. The operators G, and B)) satisfy

(i) Gjp(t) : LP(2) — X2, for all t > 0,

i) G o = B> (. o
(EB fé:it()tij\fj < CB;](’ZC)?LPO‘(?_%\ﬁﬁpeﬁszyegefyfjg’O and u € LP(12),
(iv) (G} p(t) — Dullp < Co(a)t*||ullq for 0 <a <1 andu e X,
The proof can be found in Pazy [8].

Select 0 < a < 1 and p > 1 so that (3.5) holds, and use the tech-
niques of Pazy [8] to show that there exists a unique noncontinuable solution
(Y1,Y2,T) to (3.2)-(3.4) for Y19 € X7, Yoo € X5, and Tp € X§,. The
solution satisfies

Y1 € O([0,0]; X7,) N C((0,8); L7 (42),
Y, € C([0,8]; Xg,) N CH((0,6); I (£2)
T € C([0,0]; X5,) N C((0,0); LP(£2)),
for some 6 > 0; and we have ||Y1(t)|oo + [|[Y2(t)]|cc + |[T(t)|lcc — o0 as
t = tmax if tmax < 00.

Suppose now that (Yig, Y20,7p) € L>®(£2)% and let {Y122, be a se-
quence in X {YH12, a sequence in X§, and {T§}72, a sequence in
X§, such that Y}, Y3y, TF > 0 and || Y/ — Yioll, — 0, ||Yh — Yaol, — 0 and
|T& — Toll, — 0 as t — co. Using the equation (3.2) and the properties of
Ay, stated in Lemma 3.2, it follows for a < § < 1 that

t
1Y lls < Cat P I¥fllp + § Cot = 7) PR (Y (), Y (), YE (7)) dr
0

)
)

)

for all t € [0,t%..), where tk__ is the maximal time of existence for the

system (1.1)-(1.5) with initial conditions 0 < (Yf}, Y, T¢) € X¢, x X§', x
X§',- From these estimates one can deduce the existence of a C'g such that
max{[[Y{"()l|s, 1Y5' (O)lg, IT* (®)]ls} < Cpt ™"
for all ¢ € [0,0], & > 1; thus {(Yk( ), YF(t), T*(t))}52, is contained in
a bounded subset of le X X2p if,p for each t € (0,6]. So by the
compact imbedding of Xﬁp in X¢, (j =1,2,3) for a < 8 < 1, we see that
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for each t € (0,8] the sequences {Y(£)}22,, {YF(£)}22, and {T*(t)}22,
contain convergent subsequences {Y{" (£)}52, {V" (£)}52, and {T™i(t)}2,

in X7, X8, and X' respectively.
Now define
Yi(t) = lim Y (1),  Ya(t) = lim YU (t), T(t) = lim T%(¢)
1—> 00 1—>00 1—>00

for each t € [0,0]. Then (Y7 (t), Ya(t),T(t)) satisfies (3.2)—(3.4) for each ¢t €
[0,0]. Replacing [0, tmax) With [0, tmax) and (Y1o, Y20, Zp) by (Y1(9),Y2(9),
T'(9)) and using the results already established when (Y10, Ya0,To) € X1, X
X8, x X§,, we find that there is a unique, classical noncontinuable solution
(Y1(t),Y2(t), T(t)) on 2 x [0, tmax), for every (Yio, Yag,Tn) € (L°°(£2))3.

Since F1(0,Y3,T) > 0, F»(Y1,0,7) > 0 and F3(Y7,Y5,0) > 0 it follows
that Y7 (¢), Ya(t) and T'(t) have nonnegative values on {2 (see [10]), and by
the maximum principle we have

(3.6) 1Vi ()]0 < [Viollo  for all £ € [0, frmax)-

Multiplying (1.2) by sz_l and integrating the result over 2 x (0,t) we
obtain

1d
~e VY dr <\ Y] da,
9/ 2

where ¢ = d3||Y10]|co || f1 (T(t)) ||, hence

| Y2 do < |2][[Yaoll o™ for all ¢ < tinay.
2

We can then deduce
(3.7) 1Y2() oo < eCtHYQOHOO for all ¢t < tax.

From the expression of F3(Y7,Y2,7T) and (3.7) we can find two positive
numbers ¢; and ¢y such that

(3.8) | F5(Y1(T), Yo (T), T(t))]|oo < e(c1 + coe)  for all t < tpax,

where ¢; = B1dg||Y10|oo + do B2 + d1g and ¢z = d11|Y20][c-
From (3.4) and (3.8) we obtain
t

ITO)los < |1 Tolloc +§ e (e1 + c2eT) dr,
0

from which we have

3.9) 1Tl < I Tolloo + %(ect 1)+ %(em — 1) for all £ < tumax.

Inequalities (3.6), (3.7) and (3.9) contradict the fact that tax < 0o, hence
timax = 00.
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4. Boundedness of the solution. In fact, the solution obtained in
Theorem 3.1 is uniformly bounded over 2 x (0, c0).

THEOREM 4.1. Assume (CD). Then there exists a positive number M
such that

(41) 0< Yl(.%',t) < HYlOHOO fO?" x € Q, t >0,
(4.2) 0 <Ys(z,t), T(x,t) <M forxe2, t>0.

Proof. The function Y; is uniformly bounded by [|Y10||s by the maxi-
mum principle.
Let B(x,t) = dsYy(z,t) f1(T(x,t)) —ds fo(T(x,t)) —ds — dgYa(x,t). Then
we can write
Y,
ot
with B(z,t) < a (for example a = d3||Y10||B1) and B(z, t) is locally Lipschitz
in (z,t). Moreover, Yo € L®(R* L(2)). In fact, integrating (1.1) over
2 x (0,t) we obtain

= dy AYs + B(z, )Yy

(4.3) \Yi(z,t)dz = | Yig(w)dz — dy | | Yi(2, ") Ya(2,7) fu(T (2, 7)) dz dr,
2 2 09

which implies

t
0
(4.4) {nve () (@, 7) dedr < %Hleloo for all t > 0,
00 1

where |(2] is the Lebesgue measure of (2. Similarly, we get

45 | Ya(z,t)dx
2

t
SYQO dm—{—dgss Yo fi(T))(z,7)dzdr  for all t > 0.
Q 00

From (4.4) and (4.5) we obtain

d
46 ¥l < 121 Wanle + 1Yl ) forail 0.

An application of the result of Alikakos ([1], §3) shows that Y5(¢) is uniformly
bounded over {2 x (0, 00):

(4.7) [Va(t)|oo < K for all ¢ > 0,

for some K > 0.



Reaction-diffusion equations 139

Now, integrating (1.3) over {2 x (0,¢) we obtain

t
(4.8) S T(x,t)de = X x)dzr + dg X S WY fi(T))(z,7)dxdr
Q Q 00

+ dg

O ey

| (V2 fo(D))(z, 7) dz dr
(9}

+d10 SYQ 1’ T d.%'dT+d11
2

O ey

SY (x,7)dzdr.
0

T O e o+

Integrating (1.2) over 2 x (0,¢) we obtain

t
(49) SY2$td$+d4SSY2f2 1’Td.%'d7'+d5
2 00

O ey

S Yo(x,7)dx dr
Q

t
+ds |\ Y3 (2, 7) do dr = d3
08

O ey

S Y1Yo) (2, 7) dx dr + S Yoo(x) dz,
Q Q
from which we deduce that

2

(4.10) OSO S(YQfQ)(.%’,T) dxdr < oo and OSO S Y (x,7)dxdr < co.
0 00
(4.7) and (4.10) in (4.8) we obtain

From (4.4)-
(4.11) | T(z,t)ydz <C  forallt>0,
2

ie., T € L®(R*, L}(02)).
To prove that T € L>®(R*, L>(£2)) we distinguish two cases. We define
Sp(t) = G p(t).
CAsE 1: n =1, ie., 2 = (a,b) C R. In this case we take E := L'({2)
and F' = C({2). Then Lemma 2.2 shows that
(4.12) 1S1(t)@llee < ct™2|pll1  for all p € L

(£2
Take o = 3/4; from Lemma 2.2 and (3.5) we have Si(
Applying Lemma 2.1, we conclude that T' € Cpg(4, 00; C(
hence from the result concerning the local existence we obta

|IT(t)]|oo <C  forallt>0.

CASE 2: n>2. Let 1 =1, ¢ =n/(n—r) and E = LT (02), F =
Lir+1(02) for re{1,...,n—1}. We have T € Cg(R™, L9 (£2)), Sq, (t)L9* (£2) C
L2(0) and ||S, ()¢llg < 72| ll4,- Application of Lemma 2.1 gives
T € Cp(RT,L%(£2)). Next we take F = L%(§2) and F = L%({2) to ob-
tain T € Cg(R™,L%(£2)). Continuing this process we finally have T €

(£2) C

).
t)L! C(2).
Q)) for all § > 0,
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Cp(RT,L"(£2)). In the last iteration we take E = L"(f2) and F = C(2).
As S, (t)L"(2) C X¢,, and [|S,(t)¢lleo <ct=12||¢||, for all p € L™(£2) and
T cCg(R*, L"(£2)), from Lemma 2.1 we conclude that T € Cg(R*; C(£2)).

5. Asymptotic behaviour. First, let us establish a preparatory
lemma. Consider the problem
Ju/ot + Au = p(t),
) L) =
where — A generates an analytic semigroup G(¢) in a Banach space (X, || -|)
with Reo(A) > a > 0. We have the following lemma.

LEMMA 5.1. Let X be a Banach space. If ¢ € L®(RT,X) and the
problem (P) has a bounded global solution u € L (R™, X) then for all 0 <
a < 1 we have

(A) supyss [ A°u(D)]| < C(a,8) for any 6 > 0, and

(B) the function t — A%u(t) is Hélder continuous from [6,00) to X for
any 6 > 0.

Applying A* to both sides yields
t
1A% u(t)]| < || A*G(E)uoll + | |A*G(t — 7)o ()| dr.
0
From this and Lemma 3.2, we obtain
t
1A% u(t)ll, < Cr(@)t™ ™ Juoll + | Crla)(t —7) e~ o(r)| dr
0
< Cy(a)|Jug|| + Cr(a)MT(1 — a)a® .
Here I' is the gamma function of Euler. Hence ||[A%u(t)|| is uniformly
bounded on [, c0) for any ¢ > 0.
To prove (B), we have
[A%u(t + h) — A%u(t)|| < [(G(h) = I)A"G(t)uoll
t+h
+ | 14°G(t + h = 7)o(r)|| dr
t
t

+{I1G () — DAG(t — T)p(r)]| dr.
0
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Set
I = |[(G(h) — 1) A*G(t)uo |,
t+h
L= | |[A“G(t + h — 7)p(r)| dr,
t
t

Iy = | |(G(h) = )A*G(t — 7)o (7)]| dr.
0
From the inequalities of Lemma 3.2, there exist two constants C1(«), Ca ()
such that

I} < Ci(a+ B)Cola)t™ e |ug||h?,

I, < MCy(a)h'™*,

I3 < MOy (a+ B)Co(B)I(1 — o — B)a® TP~ 1hP,
where M = sup;> |l¢o(t)|l, for every 0 < 8 < 1. Taking # < 1 — a, we then
have for all t > 4,

[A%u(t + h) — A%u(t)]| < C(a, [luoll) max{h?, '~}

REMARK. As a consequence of this lemma, the function t — A%u(t) is
uniformly continuous.

The following proposition is also useful in the sequel.

PROPOSITION 5.2. For any 6 > 0, the family {Y1(t) : t > 0} is relatively

compact in C(S2).

Proof. We have BYl/Bt = dgAYl —|—F1(Y1,Y2,T) where Fl(Y17Y27T)
—d1Y1Y2 f1(T). There is a positive constant N such that || F} (Y1, Y2, T)|/c0 <
N forallt > 0. Let 0 < e < 1 and t > e. Then we can write Y;(t) =
G1,00(e)Y1(t—e)+[Y1(t) — G1,00(e)Y1(t—¢)], where Gy o (t) is the semigroup
generated by dyA with homogeneous Neumann boundary conditions in the

Banach space C'(£2). We set
Y15(t) = Gl,oo(ff)yl(t — 8) and ?1,;(15) = Yl(t) — Gl,oo(g)Yl (t — E).

Then {Y1.(¢) : t > 6} is relatively compact in C(f2) since {Y1(t —¢) : t > d}
is bounded and G «(0) is a compact operator. Also,

Al

[Pl = | S G oelt = $)FL(V1,Y, T)(s) ds||_ < =N,

€

therefore {Y;(t) : ¢ > 1} is totally bounded, hence {Y7 () : ¢t > 1} is relatively
compact in C(£2). As {Yi(t) : § <t < 1} is compact in C(2), it follows
that {Y1(¢) : t > 6} is relatively compact in C(§2). The same holds true for

(Ya(t) : t > 6} and {T(t) : t > 6}.
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THEOREM 5.3. Under the assumptions (CD) we have

(5.1) Jim [[Vi(0)oo =0, Tim [|Va(t)]lx0 = 0
and there exists a positive constant To, such that
(5.2) Jim [[T(1) ~ Too | = 0.
Proof. From (1.1) we have
d
(5.3) - | Vi(z,t) do = —di {(Yi(t)Ya(t) f1(T(£)))() dz < 0,
0 Q

hence the function ¢t — {, Y1 (,t) dz is nonincreasing. Let Y7 be a constant
such that

(5.4) lim | Yy (z,t)de =Y.

t—o00

From (1.2) we have

(5.5) % | Ya(z,t) do = {(dsY1 Y2 1 (D) — dsYa fo (T) —ds Yo —dg Y3 ) (x, 1) da.
2 2

From (5.3) and (5.5) we deduce

(5.6) 4 (S} <iY1 + iY2> (2,t) d

dt dq ds
d d d
=— | ( V2 ho(T) + V2 + V3 ) (2, 1) da <0,
> ds ds ds
from which we infer that there is a constant K such that
1 1
(5.7) — SYl(x,t)dx—l——SYg(x,t)dm—)K as t — oo.
dq ds

9} 9}

Combining (5.1) and (5.7) we conclude that there is a positive constant Y5
such that

(5.8) lim S Yo(x,t)de = Ys.

t—o0

Integrating (5.6) over (0,00) we conclude that there is a constant C' such
that

(5.9) OXO S Yo(z,7)dedr < C.
00

Combining (5.8) and (5.9) we find that Y5 = 0, whence
(5.10) tlgrolo (S}Yg(x,t) dx = 0.
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As Y3(x,t) > 0, the invariance principle of La Salle [5] and (5.10) imply
limy o0 [|Y2()]|oo = 0.

Multiplying (1.1) by Y; and integrating over (2 and using Poincaré’s
inequality we obtain

% S Y(z,t)dx < —c X Y32(xz,t) da
Q Q

for some positive constant ¢ > 0, from which we deduce
(5.11) Y1 ()]]3 < e [[Yioll3.

Also, as a consequence of the maximum principle we have
(5.12) Y1 (t)]|oo < ||Y1(8)]|oo for t > s> 0.

According to Proposition 5.2, {Y;(t) : t > 6} is relatively compact in C(£2)
for all 6 > 0; so from this, (5.11) and (5.12) we have

(5.13) Tim (Y3 (0 = 0.
Multiplying (1.2) by Y2 and integrating over {2 x (0,¢) we have
t t
(5.14)  Ya(®)lI3 +2d | [IVYa(7) 13 dr + 2ds | | Y2 £2(T) da dr
0 00
t

t
+2ds \ | Ya(7) |13 dr + 2dg | | Y3 da dr
0 0

t
= |[Yaol3 + 2ds | § V1 Y2 f1(T) da dr.
00
Similarly for (1.3),

(5.15) |IT()5 + 2d7 | [VT(7)]5 dr
0

t
= HTOH% + 2d8§ S Yo T f1(T) de dr
0902

t
+2do | \ V2T £o(T) da dr
0
t t
+2dyo | | Yol dw dr + 2dy, | | Y27 da dr

00
By (4.4) and as Y7,Y5 and T are uniformly bounded, it follows from (5.14)
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and (5.15) that VY, VT € L3(R, L?(£2)), i.e.

(5.16) | [VYi(r)3dr<oo, ||[VYa(r)|3dr<oo, | |VI(7)[l3dr<co.
0 0 0

For the equation (1.1) for example, we define the operator B, as follows:
D(B,) = {u € W?P(22) : (9u/0v)|02 =0}, Bpu = (—doA +a)u,

with a fixed positive real number a > 0. It is well known that —B,, generates
an analytic semigroup and Reo(B,) > a > 0. Also, if we set ¢(t) = aYi(t)+
Fy(Y1,Y2,T)(t), then ¢ € L (R™, LP(2)). Application of Lemma 5.1 then
implies

(5.17) sup || By Yi(t)[l, < C(p,a,6)  for any § > 0,
t>6
and
(5.18)  t+ B,Yi(t) is uniformly continuous from [4, 00) to LP({2)
for any § > 0.

The same holds for Y5 and T

By (5.18) we find that ¢t — || VY1(t)]|2, t — |[VY2(t)||2 and t — ||[VT(t)]|2
are uniformly continuous on [, c0) by choosing p = 2 and suitable o € (0,1)
and m. From this and (5.16), Lemma 5.1 gives

(519) lim [VYi(B)]2 =0, Jim [VYa(t)]> =0, Jim [VT()]> = 0.

The interested reader can see [7] for details.

Since {T'(t) : t > d} is compact in C'(£2) it follows that there is a sequence
{t} such that

lim T(ty) =Ts in C(£2),

tr —00

where T, is a constant. Owing to the Poincaré inequality (see [11]) we have

Mz - 121 {2 na|) < Ivro)s.

Here A is the smallest positive eigenvalue of —A with homogeneous Neumann
boundary conditions on 9f2. Since the limit T, is uniquely determined we

have
lim T(t) =Ty, in C(£2).

t—o0

6. Rates of convergence. In this section we study the rates of con-
vergence obtained in Theorem 5.3.

THEOREM 6.1. Assume (CD). Then for given p € [0,2), there exist
Ky(p), Ko(p), K(u) > 0 and g,0,w > 0 such that
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1Yi()llcn o) < Ky (p)e 2=,
1Ya(t)llcn (o) < Ko(p)e o=t
|T()lon () < K(M)e*w(t—t*)7
for some t* > 0, as t — oo, where 0 < o < ds, o = min{o,dp\}, w =

min{o,d7 A} and X is the smallest positive eigenvalue of —A with homoge-
neous Neumann boundary condition on 052.

Let us recall the following two lemmas.

LEMMA 6.2. For 1 < p < oo and d > 0, let L, be the operator defined
by D(L,) = {u € W?P(Q2) : (Ju/0v)|02 = 0}, Lyu = —dAu, and let the
operators Qo, Q4 : LP(£2) — LP(£2) be defined by

Qou = ’—(12’ S u(z)de, Qiu=u— Qoyu.
Q

Define the operator L,y as L,y = L,|Q1LP({2), the restriction of L, to
Q1+ LP(£2). Then there exists a constant Cs(a) > 0 such that for w € LP(2)
and t > 0,

L5y e 7+ Qrully < Ca(a)g(t) ™™ [Qully,

where q(t) = min{t, 1} and X is the smallest positive eigenvalue of —A with
homogeneous Neumann boundary conditions on 0f2.

Lemma 6.2 is proved by Rothe [9].

LEMMA 6.3. For o € [0,1) and 3 > 0, there exists a constant C(a, ) > 0
such that

t
Sq(f)*o‘eﬁ5 d¢ < C(a, B)e’.
0

For the proof, see [6].

Proof of Theorem 6.1. For 1 < p < oo we take the operators

D(A,) = D(B,) = D(Ry) = {u € W(22) : (9u/0v)|0%2 = 0},
Apu = —doAu, Bp = —(dgA — d5)u, Rp = —d7Au.

By Theorem 5.3 we already know that Y;(t) — 0 and Ya(¢) — 0 in C(£2)
as t — 0o, hence for any € > 0 there exists a constant ¢* > 0 such that

(6.1) dsY1f1(T) <e forall t >t
We take 0 < e < d5.
(I) The decay rate of ||Ya(t)||p. From (1.2) and (6.1) we get
Yy

(62) E < dyAYy — (d5 — €)YQ, t >t
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Multiplying both sides by Y7’ “forpe [1,00), integrating over {2 and using
Green’s formula, we obtain

(63 L Iva0)llg < —plds — ) V(05 for 1 > 1"
which leads to

IVa(®)llp < IV () e @) for ¢ >
The Holder inequality then yields
(6.4) IVa(t)llp < MIQ/Pe @900 for ¢ > ¢,

where M is the positive number appearing in (4.2).

(ITI) The decay rate of HYVQ(t)HCM(ﬁ). To investigate the decay rate of
||Y2(t)||cﬂ(§), we treat the following integral equation which is equivalent to
(1.2) with (1.4) for t > t*:

Y.

8—152 = dy AYs — dsYs + F(Y1,Y5,T),
where F(Y17Y27T) = d3Y1Y2f1 (T) — d4Y2f2(T) — dGYQQ. Let Gp(t) be the
semigroup generated by —B,. Then

(6.5) Ya(t) = Gp(t — t)Ya(t") + | Gyt — 7)F(r)dr, t>1t.

t*
From Lemma 3.2(iii), we obtain

(66) ”BSYQ(t)Hp < Cl(a)q(t _ t*)*ae*dS(t*t*)

Yo(t)llp + dsM By J1 (1),

where
t

Ji(t) = V1Gp(t = 7l o (@)= 1o () Y2 (7) [ dr-

t*
It is sufficient to estimate J1(¢). By (6.4) and Lemmas 3.2 and 6.3 we
have
t—t*
(6.7) Ji(t) < Cr(a)MIQIVP | gt —t* — 7)== dr
0
< Cy () M|QM/Pe(ds=a)t=t)  for ¢ > ¢*,

Consequently, the imbedding D(By) C C#(§2) ensures the existence of a
constant K5 (p) > 0 such that for every 0 < o < d5 there is t* > 0 such that

(6.8) V2 ()l oy < Ka(p)e 2™ fort > ¢7.
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(III) The decay rate of ||Y1 (t)ch(ﬁ)- First we write Y7 (t) = QoY1(t) +
Q,Y1(t), where

QoY1 (t) = | Vi, t)dz,  QYi(t) = Yi(t) — QoYa(t).

|9 |5
We see from (4.3) and the fact that Y; — 0 as t — oo in C(§2) that

(6.9)  QoYi(t) = L | Yi(z,t) da
2

1 dy |
= Tl S Yio(z,t) dx — |—1|S S(Y1Y2f1)(£ﬂ,’7') dx dr
Q 00
d o0
= l S S 1 Yafi)(x,7)dxdr
t 0
d [ee]
§? OSSYQdexdT
t 0

< dy By Mo S —o(r=t") g7
t

1 x
S —dlBlMoeig(tit ) for t > tr.
0

Next, we study the decay of Q1 Y7(t). We consider the integral equation
associated with (1.1) and apply Apy Q4 to get
¢
AP QLY1(t) = Grpy (T —1)Q Y1 (") —dy S Gipy(t —7)(Q V1Yo f1)(T)dT
t*
for t > t*. By Lemma 6.2, we get

(6.10) A3 Qe Yi(B)llp < Cs(a)g(t — %)~ *e X NQ v (7)),
+ MBldng(a)HQ+HJQ(t) for t > t*,

where J3(t) = Si* q(t—T1) e~ AE=T)|| Yy (1) ||, dr for t > t* and ||Q, || is the
norm of the linear operator Q4 : LP(£2) — LP({2). Here QY1 (t*) € D(Ag,)
because ¢ > t* and by the smoothness of Y7 (t*). By Lemma 6.3,
t
(6.11) Jo(t) = | q(t — 7)~%e X ||y (7) |, dr
t*
t—t*
< MO | q(e) e hA dg
0
< Cla, doA)e @A) for ¢ > ¢*,
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Let o = min{o,dpA}. Now we take p,m and « as in (3.5), so that by
combining (6.10)—(6.12) we get the decay rate

(6.12) Vi)l cn () < Er(pe 1) for t > ¢+,

(IV) The decay rate of ||T(t)_TooHCp(§)- The argument in (IIT) can also
be used to investigate this decay rate. We write T'(t) —Too = (QoT'(t) — To)
+ Q+T'(t). We see from (4.7) that

(QT() = Toe| < DIQIT'N | | Ya(a, 7) dudr,
t 0
where D = max{dg,dy,d19,d11} and N = MyB; + B2 + M + 1. From the
estimate of [|Y2(t)|c. 7). We obtain

1 «
(6.13) |QuT(t) — Too| < =DNC(0)e™ =) for ¢ > t*.
(o2

Next we study the decay of Q+T'(t). We consider the integral equation
associated with (1.3) and apply Rg, Q1 with a € (0,1), to get

t

RS QLT (t) = RS, Sp(t—t") Qe T(t")+ | RS, Sp(t—7)Q+ F3(Y1,Ya, T)(7) dr
t*

for t > t*. By Lemma 6.2,

IR, Q+T(1)], < Ca(0)e=dm A=)

Q+T(t")lp

YQ(T)

p

Y N I

for t > t*. The estimate of ||Y2(t)||cﬂ(§) yields

Ry QT (), < C(0)]|Q+T(t%)||e~ A=)
t

3§ - e
t*

for t > t*, where N’ = MN|R2|/?C(a)||Q ||. By Lemma 6.3 we get
(6.14) IRy Q+T(M)]p < CONQ+T(t7)|pe= 1)
+ N'Cla, d N)e” 9D for > ¢+,

Let w = min{o,d; A} and take p and « as in (3.5). By combining (6.12)
and (6.13) we get

|T(t) — Tooch(ﬁ) < K(u)e_‘”(t_t*) for t > t*.
REMARK. As a final remark, note that if
(6.15) ds+ds < dy, dg<ds, dig=<ds, di1 <dg,
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then

(6.16) T —(HYmHl +1[Yaollr + [ To]l1)-

2]
Indeed, from equations (1.1)—(1.3) and the boundary conditions (1.4)—(1.5)
we have

6.17) \Vido+ | Yodo+ | Tda

9}

|
2 2

= SYlodx+ SYéod$+Sng$
2 2 2

t
+(d3+d8—d1 SS Ygfl )dwdT+(d9—d4
09

Oc,au-

| Yo fo(T) dz dr
2

t
+ (dlg —d5)§ S Y2d$d7+ d11 _dG

00
The estimate (6.16) follows from (6.15) and (6.17).
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