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A NEW KANTOROVICH-TYPE THEOREM

FOR NEWTON’S METHOD

Abstract. A new Kantorovich-type convergence theorem for Newton’s
method is established for approximating a locally unique solution of an
equation F (x) = 0 defined on a Banach space. It is assumed that the
operator F is twice Fréchet differentiable, and that F ′, F ′′ satisfy Lipschitz
conditions. Our convergence condition differs from earlier ones and therefore
it has theoretical and practical value.

I. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the equation

(1) F (x) = 0

where F is a twice Fréchet differentiable operator defined on a convex subset
D of a Banach space E1 with values in a Banach space E2.

Newton’s method

(2) xn+1 = xn − F ′(xn)
−1F (xn) (n ≥ 0), x0 ∈ D,

has been used extensively by many authors (see [1]–[6] and the references
there) to generate a sequence {xn}n≥0 converging to x∗. In particular the
following conditions have been used:

Condition A (Kantorovich [6]). Let F : D ⊆ E1 → E2 be Fréchet
differentiable in D, F ′(x0)

−1 ∈ L(E2, E1) for some x0 ∈ D, where L(E2, E1)
is the set of bounded linear operators from E2 into E1, and assume

‖F ′(x0)
−1[F ′(x)− F ′(y)]‖ ≤ l‖x− y‖ for all x, y ∈ D,(3)

‖F ′(x0)
−1F (x0)‖ ≤ a(4)
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and

(5) 2al ≤ 1.

Under condition A, one can obtain error estimates, existence and unique-
ness regions of solutions, and know whether x0 is a convergent initial guess,
i.e., Newton’s method (2) starting from x0 converges to x∗. But sometimes
when we want to determine whether the Newton iteration (2) starting from
x0 converges, Condition A fails.

Example 1.1. Let E1 = E2 = R, D = [
√
2 − 1,

√
2 + 1], x0 =

√
2 and

define the real polynomial F on D by

(6) F (x) =
1

6
x3 − α, α =

23/2

6
+ .23.

Using (3), (4), (6) and the above choices we get a = .23 and l = 2.4142136.
Condition (5) is not satisfied since

2al = 1.1105383 > 1.

Therefore under condition A we cannot determine whether Newton’s method
(2) starting from x0 =

√
2 converges.

That is why in this study we introduce a new condition and a new the-
orem under which we will see that Newton’s method starting from x0 =

√
2

in Example 1.1 converges.

From now on we assume:

Condition B. Let F : D ⊆ E1 → E2 be twice Fréchet differentiable in
D, with F ′(x) ∈ L(E1, E2), F

′′(x) ∈ L(E1, L(E1, E2)) (x ∈ D), F ′(x0)
−1

exists at some x0 ∈ D, and assume

0 < ‖F ′(x0)
−1F (x0)‖ ≤ a, ‖F ′(x0)

−1F ′′(x0)‖ ≤ b,(7)

‖F ′(x0)
−1[F ′(x)− F ′(x0)]‖ ≤ c‖x− x0‖, c > 0,(8)

‖F ′(x0)
−1[F ′′(x)− F ′′(x0)]‖ ≤ d‖x− x0‖ for all x ∈ D,(9)

and

(10) 2ka ≤ 1,

where either

(11) k = max{c, b + 2ad},
or, if the function

(12) f(t) = t3 − 2bt2 − (2d − b2)t+ 2d(b+ ad)

has two positive zeros k1, k2 such that

(13) [b, b+ 2ad] ⊆ [k1, k2],
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then k ≥ c and

(14) k ∈ [b, b+ 2ad].

2. Convergence analysis. We need the lemma:

Lemma 2.1. Let a, k be given positive constants. Define the real polyno-

mial p on [0,∞) by

(15) p(t) =
k

2
t2 − t+ a

and the iteration {tn}n≥0 by

t0 = 0,(16)

tn+1 = tn − p(tn)

p′(tn)
.(17)

Assume

(18) 2ka ≤ 1.

Then the equation

(19) p(t) = 0

has two positive roots r1, r2 with r1 ≤ r2 and the iteration {tn}n≥0 generated

by (16)–(17) is such that t0 < t1 < . . . < tn < tn+1 < . . . < r1 with

limn→∞ tn = r1.

P r o o f. Using (15) and (18) we deduce that equation p(t) = 0 has two
positive roots

(20) r1 =
1−

√
1− 2ka

k
and r2 =

1 +
√
1− 2ka

k

with r1 ≤ r2. Moreover the function t− p(t)/p′(t) increases on [0, r1], since
p′(t) < 0, p′′(t) > 0 and p(t) > 0 on [0, r1]. Furthermore if tn ∈ [0, r1] for all
integer values smaller than or equal to n, then we obtain

tn ≤ tn − p(tn)

p′(tn)
= tn+1 and tn+1 = tn − p(tn)

p′(tn)
≤ r1 −

p(r1)

p′(r1)
= r1.

We set U(x0, s) = {x ∈ E2 | ‖x − x0‖ ≤ s} and U(x0, s) = {x ∈ E1 |
‖x− x0‖ < s}.
Lemma 2.2. The following estimates are true for x ∈ U(x0, 1/c):

(21) ‖F ′(x)−1F ′(x0)‖ ≤ (1− c‖x− x0‖)−1

and

(22) ‖F ′(x0)
−1F ′′(x)‖ ≤ b+ d‖x− x0‖.
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P r o o f. If x ∈ U(x0, 1/c), using (7), the estimate

‖F ′(x0)
−1(F ′(x)− F ′(x0))‖ ≤ c‖x− x0‖ < 1,

and the Banach lemma on invertible operators [6], the operator F ′(x) has a
continuous inverse on U(x0, 1/c) and

‖F ′(x)−1F ′(x0)‖ ≤ (1− c‖x− x0‖)−1.

Moreover by (6) and (11) we get

‖F ′(x0)
−1F ′′(x)‖ ≤ ‖F ′(x0)

−1F ′′(x0)‖+ ‖F ′(x0)
−1(F ′′(x)− F ′′(x0))‖

≤ b+ d‖x− x0‖.
We can now prove the following semilocal result concerning the conver-

gence of Newton’s method (2).

Theorem 2.3. Let F be the operator defined in (1). Let p be the polyno-

mial defined in (15). Assume that U(x0, 1/c) ⊆ D and Condition B holds.

Then Newton’s iteration {xn}n≥0 generated by (2) is well defined , remains

in U(x0, r1) for all n ≥ 0, and converges to a solution x∗ ∈ U(x0, r1) of the
equation F (x) = 0, which is unique in U(x0, r2) if r1 < r2. If r1 = r2 the

solution x∗ is unique in U(x0, r1). Moreover the following estimates hold

for all n ≥ 0:

(23) ‖xn+1 − xn‖ ≤ tn+1 − tn

and

(24) ‖xn − x∗‖ ≤ r1 − tn = (r1/r2)
2
n

(r2 − tn)

where r1 and r2 are the roots of the quadratic equation p(t) = 0 given by

(20).

P r o o f. Using induction on n we first show estimate (23). The approx-
imation x1 is defined and

‖x1 − x0‖ = ‖F ′(x0)
−1F (x0)‖ ≤ a = t1 − t0 < r1.

It follows that x1 ∈ U(x0, r1) and (23) holds for n = 0.

Assume that (23) holds for all integer values i ≤ n. Using (2) we can
write in turn

F ′(x0)
−1F (xi+1) = F ′(x0)

−1[F (xi+1)− F (xi)− F ′(xi)(xi+1 − xi)](25)

= F ′(x0)
−1

{ 1\
0

[F ′′[xi + t(xi+1 − xi)]

− F ′′(x0)](1 − t) dt (xi+1 − xi)
2

+
1

2
F ′′(x0)(xi+1 − xi)

2

}

.
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Using the induction hypothesis we have

‖xi+1 − x0‖ ≤
i+1
∑

j=1

‖xj − xj−1‖ ≤
i+1
∑

j=1

(ti − ti−1) = ti+1 − t0 = ti+1 < r1

and

‖xi + t(xi+1 − xi)− x0‖ ≤ ti + t(ti+1 − ti) < r1.

Hence, by (7), (9), (15), (22), (23) and (25) we get

(26) ‖F ′(x0)
−1F (xi+1)‖

≤ 1

2

[

b+ d‖xi − x0‖+
d

3
‖xi+1 − xi‖

]

‖xi+1 − xi‖2

≤ 1

2

[

b+ dti +
d

3
(ti+1 − ti)

]

(ti+1 − ti)
2

≤ 1

2

[

b+
2

3
dti +

dti+1

3

]

(ti+1 − ti)
2

≤ 1

2

[

b+
2

3
dr1 +

dr1
3

]

(ti+1 − ti)
2

≤ k

2
(ti+1 − ti)

2 ≤ p(ti+1).

By (2), (17), (21) and (26) we obtain

‖xi+2 − xi+1‖ ≤ − p(ti+1)

p′(ti+1)
= ti+2 − ti+1,

which shows (23) for all n ≥ 0.
By Lemma 2.1 and estimate (23) it follows that {xn}n≥0 is a Cauchy

sequence in the Banach space E1 and so it converges to some limit x∗ ∈
U(x0, r1) (since U(x0, r1) is a closed set). By (2) and the continuity of
F , we get F (x∗) = 0. To show uniqueness let y ∈ U(x0, r2) be such that
F (y) = 0. Using (2) we obtain

y − xn+1 = − [F ′(xn)
−1F ′(x0)]

{

1\
0

F ′(x0)
−1(F ′′(xn + t(y − xn))(27)

− F ′′(x0))(1 − t) dt (y − xn)
2

+

1\
0

F ′(x0)
−1F ′′(x0)(1− t) dt (y − xn)

2

}

.

As in (25), (26) we get ‖y − x0‖ ≤ r1 − t0 if y ∈ U(x0, r1), and ‖y − x0‖ =
λ(r2 − t0), 0 < λ < 1, if y ∈ U(x0, r2). That is, as in (25), by (27) we have
‖y − xn‖ ≤ r1 − tn if y ∈ U(x0, r1) (n ≥ 0), and ‖y − xn‖ ≤ λ2

n

(r2 − tn) if
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y ∈ U(x0, r2) (n ≥ 0). From the above estimates and F (x∗) = 0 it follows
that x∗ = limn→∞ xn = y in either case.

Finally estimates (24) follow by using standard majorization techniques,
(17) and (23) ([2], [3], [6]).

3. Applications and concluding remarks

Remark 3.1. Let us apply Theorem 2.3 to Example 1.1. By (7)–(9),
(11) we get a = .23, b =

√
2, c =

√
2 + .5, d = 1, and k = 1.9142136. Then

condition (10) becomes

2ka = .8805383 < 1,

which is true. Hence equation (6) has a solution x∗ ∈ U(
√
2, 1). Moreover

Newton’s method (2) starting from x0 =
√
2 converges quadratically to

x∗. We also remark that as we noted in Example 1.1, Condition A fails
to determine whether Newton’s method converges in this case. We found
x∗ = 1.614507.

Remark 3.2. The convergence of Newton’s method (2) can be estab-
lished independently using Conditions A and B. In practice we can use both
of them to determine the smallest region where the solution is located and
the largest one where this solution is unique. Let us make such a comparison
between Conditions A and B. Consider the polynomial q given by

q(t) =
l

2
t2 − t+ a

with roots denoted by r3 and r4 (r3 ≤ r4). Then since c ≤ l we find from
(15) that p(r3) ≤ 0 and p(r4) ≤ 0. Hence we get r1 ≤ r3 ≤ r4 ≤ r2 and
r3 ≤ 1/c. Note also that our theorem uses simply a quadratic polynomial p
and condition (10) instead of a cubic polynomial and condition (27) in [3],
[5] (which are more difficult to handle in general).

Remark 3.3. We can extend the result obtained in Theorem 2.3 to
include the Hölder case. Assume, instead of (9) in Condition B, that F
satisfies

(28) ‖F ′(x0)
−1[F ′′(x)− F ′′(x0)]‖ ≤ d0‖x− x0‖q

for all x ∈ D, q ∈ [0, 1] and some d0 ≥ 0.

For q = 0, we obtain ‖F ′(x0)
−1F ′′(x)‖ ≤ d0 + b, and we are in the situation

of the Kantorovich theorem [6, Theorem XVIII.1.6]. If q = 1 in (28) we get
(9). Moreover if q ∈ (0, 1), then F ′′ is q-Hölder continuous on D. Let a, b,
c be as before. Assume there exists k0 ≥ c such that b + d0r

q
1 ≥ k0, where

r1 is given by (20), and condition (10) holds with k replaced by k0.
With the above changes the conclusions of Theorem 2.3 hold for the

Hölder case.
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