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NONSTATIONARY MARANGONI CONVECTION

Introduction. In this paper we are concerned with a free boundary
problem for the Navier–Stokes system.

Imagine a volume of fluid bounded by a free surface with surface tension.
As an example we may think of a drop of a molten substance in outer space.
The fluid inside is driven by the Navier–Stokes equations. We also have a
temperature distribution inside, described by the heat equation. The only
coupling of the fluid with the temperature is via the surface tension, which is
assumed to be temperature dependent. Fluctuations in the surface tension
cause tangential stress and lead to an onset of motion inside. This is what
we call Marangoni convection.

The boundary of the drop is also an unknown. Its shape is determined
by the stress tensor and the variable surface tension, and it moves with the
fluid.

We will be concerned with the following system:

∂tv − Pr∆v + v · ∇v +∇p = f,

∇ · v = 0,

∂tθ −∆θ + v · ∇θ = g

in
⋃

0≤t≤T Ωt × {t} together with the boundary conditions

T (v, p)ν −Ma Pr∇θ = 2Cr−1 PrHν,

v · ν = ∂tη,

ν · ∇θ = h

in
⋃

0≤t≤T ∂Ωt × {t} and initial values v(·, 0) = v0, θ(·, 0) = θ0 and
η(·, 0) = η0.
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Notation. v denotes the velocity field, p the pressure of the fluid, θ
the temperature, and η represents the boundary of the domain, written as
a graph over S2: ∂Ωt = {(ξ, 1 + η(ξ, t)) : ξ ∈ S2}; ν will always denote
the outer normal vector on ∂Ωt. These are the quantities which have to be
determined by the above system. Moreover,

T (v, p)ij = −pδij + Pr(∂iv
j + ∂jv

i)

denotes the stress tensor, whose divergence is the Stokes operator. H de-
notes the mean curvature of ∂Ωt.

The forces are denoted by f , g and h. They will always have to satisfy
the compatibility condition\

Ωt

f dx = 0,
\
Ωt

g dx =
\

∂Ωt

hdS

for all time.
The system is written in dimensionless form.
The Prandtl number Pr measures the importance of diffusion relative to

heat conductivity. In low Prandtl number fluids, heat diffuses significantly
faster than vorticity, a typical situation in a liquid or in molten metals.

The Marangoni number Ma gives the ratio of surface tension tractions
generated by temperature inhomogeneities at the surface to the dissipation
and heat conduction. The word “temperature” may be replaced by “chem-
ical concentration”. Fixing dissipation and heat conduction implies, in the
case of low Ma numbers, that the surface tension changes only a little if the
temperature changes.

The meaning of the Crispation number Cr can be seen if it tends to zero.
This corresponds to the case of a stress free surface. The number always
appears as the inverse Cr−1.

The equations in the interior of the unknown domain represent the trans-
port of momentum, of mass and of internal energy. We always assume the
density to be constant; as a consequence, the Navier–Stokes equations do
not contain any buoyancy terms.

The boundary conditions consist of one vector equation and two scalar
equations. The vector equation is a balance equation for the stress tensor
T (v, p)ν. In its simplest form (v = θ = 0) it expresses the fact that the
mean curvature of an interface is determined by the pressure difference in
the two media (Laplace law).

The first scalar equation is a transport equation for the free boundary.
To see this assume for a moment that the free boundary is represented by
the level set of a function Ψ : ∂Ωt = {(x, t) : Ψ(x, t) = 0}. Then the motion
of Ψ is given by the transport equation

∂tΨ + v · ∇Ψ = 0.
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Since ∇Ψ points in the normal direction, the difference between the two
equations is the normalisation: ν = ∇Ψ/|∇Ψ |. However, since we will only
work locally in space and time the difference does not affect the result.

The second scalar equation is a Neumann condition for the heat equation.
We wish to use energy methods to prove existence of a solution. However,

since we do not have any information about the free boundary a priori, tools
like Green’s formula or Korn’s inequality cannot be applied. To get around
this difficulty we have to parametrise all quantities over a known smooth
manifold. In particular the free boundary will be a graph over this reference
manifold. As a consequence, we will only obtain results that are local in
space and time: the free boundary might loose its property of being a graph
after short time.

We proceed as follows: We assume that for given forces we have found a
solution. We linearise around this solution and obtain estimates for the cor-
responding stationary problem. Existence and regularity for the stationary
problem will be the central point of the paper. With the help of the method
of Rothe these estimates carry over to estimates for the nonstationary linear
case. The nonlinear problem is then solved with the help of a fixed point
argument. While the solution of the linear nonstationary problem exists for
all time, we only expect to get short time existence in the nonlinear case:
The nonlinearity of the Navier–Stokes operator may cause singularities for
the velocity field in finite time and the transformation from the reference
manifold to the free boundary may loose its bijectivity after short time. We
do not know what happens first.

Our work is closely related to that of V. A. Solonnikov. In a series of
papers he considered the incompressible nonstationary Navier–Stokes equa-
tions as a free boundary problem with constant surface tension and without
surface tension. In [Sol1] the solvability of that problem (without surface
tension) on a finite time interval has been established in the class of Hölder
spaces. In [Beale1] and [Beale2] a related problem describing the unsteady
motion of a fluid over an infinite bottom has been described, both without
surface tension in [Beale1] and with surface tension in [Beale2].

In [Sol2] the problem with surface tension was investigated and the ex-
istence of a solution on a finite time interval was proved in Sobolev spaces.

In [Sol3] the long time behaviour of the above problem was studied under
the condition that there are no external forces and that the initial data are
close to the equilibrium data. For the two-dimensional case it can be shown
that the limiting domain as t→ ∞ is a circle [Sol4]. In [Sol5] forces between
particles were added to the system, again with constant surface tension. The
unique solvability was proved for a finite time interval.

In later work with A. Tani the compressibility condition was dropped and
similar results to those mentioned above were obtained (see e.g. [Sol&Tan]).
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Heat conducting fluids with and without surface tension were considered
by Zadrzyńska and Zaja̧czkowski in a series of papers [ZZ1]–[ZZ7].

The techniques in most of those papers are based on the transformation
to lagrangian coordinates, while we use the eulerian coordinates.

1. The model

1.1. We consider the nonstationary model for the Marangoni convection

∂tv − Pr∆v + v · ∇v +∇p = f,(1)

∇ · v = 0,(2)

∂tθ −∆θ + v · ∇θ = g(3)

in
⋃

0≤t≤T Ωt × {t}, together with the boundary conditions

T (v, p)ν −MaPr∇θ = 2Cr−1 PrHν,(4)

v · ν = ∂tη,(5)

ν · ∇θ = h(6)

in
⋃

0≤t≤T ∂Ωt × {t}.

The surface moves as the fluid starts to move. This is indicated by the
subscript in Ωt and ∂Ωt.

As initial data we choose η(0) = 0, v(0) = 0 and θ(0) = 0 in Ω(0) = Ω0.

We look for solutions close to the equilibrium given by zero forces. This
is not the most general case. We could ask for solutions close to any known
stationary or nonstationary solution given at t = 0. However, this would
require a rather complicated discussion of “compatibility conditions”. We
wish to avoid this and we will assume that all the forces vanish together
with all time derivatives at t = 0.

1.2. We assume we have found a smooth stationary solution v̂, θ̂, η̂.
Linearisation around this solution gives

∂tv − Pr∆v + v̂ · ∇v + v · ∇v̂ +∇p = f,(7)

∇ · v = 0,(8)

∂tθ −∆θ + v̂ · ∇θ + v · ∇θ̂ = g(9)

in Ω̂ × (0, T ), together with the boundary conditions

T (v, p)ν̂ −MaPr∇θ = 2Cr−1 Pr H̃(η)ν̂ ,(10)

v · ν̂ = ∂tη,(11)

ν̂ · ∇θ = h(12)

in ∂Ω̂ × (0, T ), with zero initial values. H̃(η) denotes the linearised mean
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curvature operator on ∂Ω̂:

H̃(η) = H(η̂) +∆∗η − 2η

where ∆∗ denotes the Laplace–Beltrami operator on ∂Ω̂, H(η̂) is the mean

curvature of ∂Ω̂ = {(ξ, 1+ η̂(ξ, t)) : ξ ∈ S2} and ν̂ is the outer normal vector

on ∂Ω̂.
We wish to point out again that the linearised system is now defined on

a space time cylinder Ω̂ × (0, T ) where Ω̂ is a smooth domain.

1.3. We introduce the spaces we will work in. Their properties are
extensively described in [L&M], thus we only give the most important ones.
For r ≥ 0 we define

Kr(Ω × (0, T )) = Hr/2,2((0, T ),H0,2(Ω)) ∩H0,2((0, T ),Hr,2(Ω)).

We recall some properties:

∂αx ∂
k
t u ∈ Kr−|α|−2k(Ω × (0, T )), |α| + 2k < r,

∂αx ∂tu|∂Ω ∈ Kr−|α|−1/2(∂Ω × (0, T )), α+ 1/2 < r,

∂kt u(·, 0) ∈ Hr−2k−1(Ω), 2k + 1 < r

(see [L&M], Prop. 4.2.3, Theorem 4.2.1). The corresponding extension
theorems also hold.

Furthermore we have an imbedding

Kr(Ω × (0, T )) →֒ Ck(0, T ;Hr−2k−1,2(Ω)), 2k < r − 1.

1.4. We decompose our system: v = v1+v2, where (v1, q, θ) and (v2, p−
q) solve two different systems:

∂tv1 − Pr∆v1 + v̂ · ∇v1 + v1 · ∇v̂ +∇q = f,(13)

∇ · v1 = 0,(14)

∂tθ −∆θ + v̂ · ∇θ + (v1 + v2) · ∇θ̂ = g,(15)

in Ω̂ × (0, T ), together with the boundary conditions

τ̂i · T (v1, q)ν̂ −MaPr τ̂i · ∇θ = 0, i = 1, 2,(16)

v1 · ν̂ = 0,(17)

ν̂ · ∇θ = h(18)

in ∂Ω̂ × (0, T ), and

∂tv2 − Pr∆v2 + v̂ · ∇v2 + v2 · ∇v̂ +∇(p− q) = 0,(19)

∇ · v2 = 0(20)

in Ω̂ × (0, T ), together with the boundary conditions

τ̂i · T (v2, p − q)ν̂ = 0, i = 1, 2,(21)
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v2 · ν̂ = ∂tη,(22)

ν̂ · T (v2, p − q)ν̂ −MaPrh = − ν̂ · T (v1, q)ν̂ + 2Cr−1 Pr H̃(η)(23)

in ∂Ω̂ × (0, T ).
The first system (13)–(18) of this decomposition simply contains the

Navier–Stokes equations and the heat equation in the domain Ω̂ × (0, T ).
They are coupled via the boundary condition (16), where we find the
“Marangoni term” MaPr τ̂i · ∇θ. The analysis of the first system will con-
centrate on the behaviour of this term.

The second system (19)–(20) consists of the Navier–Stokes system in

Ω̂ × (0, T ) with four (!) boundary conditions in ∂Ω̂ × (0, T ), containing the
unknown graph of the free boundary. Thus we may try to use one boundary
equation as an equation for the graph.

Both systems satisfy the complementing boundary conditions as formu-
lated in [ADN] while the system (7)–(12) does not.

2. Stationary estimates

2.1. A prerequisite for estimates for the two systems are estimates for
the two corresponding stationary systems:

λv1 − Pr∆v1 + v̂ · ∇v1 + v1 · ∇v̂ +∇q = f,(24)

∇ · v1 = 0,(25)

λθ −∆θ + v̂ · ∇θ + (v1 + v2) · ∇θ̂ = g(26)

in Ω̂, with the boundary conditions

τ̂i · T (v1, q)ν̂ −MaPr τ̂i · ∇θ = 0, i = 1, 2,(27)

v1 · ν̂ = 0,(28)

ν̂ · ∇θ = h(29)

in ∂Ω̂, and

λv2 − Pr∆v2 + v̂ · ∇v2 + v2 · ∇v̂ +∇(p− q) = 0,(30)

∇ · v2 = 0(31)

in Ω̂, with the boundary conditions

τ̂i · T (v2, p − q)ν̂ = 0, i = 1, 2,(32)

v2 · ν̂ = λ(η + h̃),(33)

ν̂ · T (v2, p − q)ν̂ −MaPrh = − ν̂ · T (v1, q)ν̂ + 2Cr−1 Pr H̃(η)(34)

in ∂Ω̂. Here h̃ is a prescribed function on ∂Ω̂ with
T
∂Ω̂

h̃ dŜ = 0 and λ ≥ 0.
The introduction of this function will become clear when we consider the
nonstationary problem.
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Recalling the definition of H̃(η) we consider equation (34) as a Laplace

equation for η on the closed surface ∂Ω̂:

−2Cr−1 Pr∆∗η + 2η = −ν̂ · T (v, p)ν̂ +MaPrh.

Conditions for the solvability of such an equation can be found in [Aubin];
see in particular Theorem 4.7, p. 104. Observe that the right hand side of
the above equation can always be modified to have zero mean value, since
the pressure is only determined up to a constant. η also has mean value
zero as we will see below. Thus there are no extra compatibility conditions
coming up.

2.2. In what follows, the bilinear form

K(v, v) ≡
\̂
Ω

D(v) : D(v) dx =
∑

i,j

\̂
Ω

(∂iv
j + ∂jv

i)(∂iv
j + ∂jv

i) dx

will play a crucial role. It was studied by many authors, e.g. [Sol&Shch],
[Bem1], [Olej] and others.

Two facts will be used in the sequel:

1) If Ω̂ is rotationally symmetric w.r.t. some axis β lying in Ω̂, then the
bilinear form has a kernel, consisting of all rotations around this axis. Thus
we make the following definition.

Definition 2.1. Let L(Ω̂) denote the closure of the divergence free
C∞-vector fields with vanishing normal component on the boundary, with
respect to the H1,2-norm.

If the domain is rotationally symmetric define L⊥(Ω̂) ≡ L(Ω̂)/{u :
u(x) = tβ ∧ x, t ∈ R}.

L(Ω̂) then denotes—according to the properties of the domain—the cor-
responding space.

2) On L(Ω̂) we have Korn’s inequality, provided the domain is smooth
enough:

Lemma 2.1. Let Ω̂ be a Lipschitz domain. There exists a constant c0
such that

K(v, v) ≥ c0‖v‖
2
H1,2(Ω̂)

∀v ∈ L(Ω̂).

For a proof see [Sol&Shch] (Lemma 4 p. 191) or [Bem1] (Corollary to
Lemma 2, p. 249). In particular K(v, v) defines a norm on L(Ω) which is
equivalent to the H1,2-norm.

We will treat (24)–(29) and (30)–(34) as two coupled systems. Conse-
quently, we define a weak solution (v1, θ, v2, η) of (24)–(34) as an element in
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L(Ω̂)×H1,2
0 (Ω̂)×L(Ω̂)×H1,2

0 (Ω̂) which satisfies the integral equations

(35) λ
\̂
Ω

v1 · φ1 dx+ Pr
\̂
Ω

D(v1) : D(φ1) dx

−
\

∂Ω̂

MaPrφ1 · τ̂1τ̂1 · ∇θ +MaPrφ1 · τ̂2τ̂2 · ∇θ dŜ

+
\̂
Ω

v̂ · ∇v1φ1 dx+
\̂
Ω

v1 · ∇v̂φ1 dx =
\̂
Ω

f · φ1 dx

and

(36) λ
\̂
Ω

θψ dx+
\̂
Ω

∇θ · ∇ψ dx+
\̂
Ω

v̂ · ∇θψ dx

+
\̂
Ω

(v1 + v2) · ∇θ̂ψ dx =
\̂
Ω

gψ dx−
\

∂Ω̂

hψ dx

for all φ1 ∈ L(Ω̂), ψ ∈ H1,2
0 (Ω̂), and

(37) λ
\̂
Ω

v2 · φ2 dx+ Pr
\̂
Ω

D(v2) : D(φ2) dx

− MaPr
\

∂Ω̂

φ2 · ν̂h dŜ +
\

∂Ω̂

φ2 · ν̂ν̂ · T (v1, q)ν̂ dŜ

− 2Cr−1 Pr
\

∂Ω̂

φ2 · ν̂H̃(η) dŜ +
\̂
Ω

v̂ · ∇v2φ2 dx

+
\̂
Ω

v2 · ∇v̂φ2 dx = 0

for all φ2 ∈ L(Ω̂). Here the space H1,2
0 (Ω̂) denotes the functions in H1,2(Ω̂)

with zero mean value. Note that we have Poincaré’s inequality for such
functions.

Remark. We wish to point out that η has zero mean value as a function
over ∂Ω̂. This is a consequence of the condition that the volume is preserved:
Let Ω be a surface, parametrised over Ω̂ and enclosing the same volume. A
point in Ω̂ is denoted by x0, and a point in Ω by x. Then

|Ω| =
\
Ω

1 dx =
1

n

\
∂Ω

x · ν dS =
1

n

\
∂Ω̂

(x0 + ην̂) · ν̂ dŜ

=
1

n

\
∂Ω̂

x0 · ν̂ dŜ +
1

n

\
∂Ω̂

η dŜ = |Ω̂|+
1

n

\
∂Ω̂

η dŜ.

This implies
T
∂Ω̂

η dŜ = 0.
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2.3. We derive an a priori bound for v1 and θ if we set φ1 = v1 and
ψ = θ in the first two integral equations.

Since∣∣∣
\

∂Ω̂

MaPr v1 · τ̂1τ̂1 · ∇θ +MaPr v1 · τ̂2τ̂2 · ∇θ dŜ
∣∣∣

≤ MaPr ‖v1‖H1/2,2(∂Ω̂)‖∇
∗θ‖H−1/2(∂Ω̂)

≤ MaPr ‖v1‖H1/2,2(∂Ω̂)‖θ‖H1/2,2(∂Ω̂)

≤ MaPr c21‖v1‖H1,2(Ω̂)‖θ‖H1,2(Ω̂)

where ∇∗ denotes the tangential gradient on ∂Ω̂ (∇∗
i = τ̂i · ∇θ), we obtain

the following inequality (c1 will always stand for the constants connected
with trace theorems):

λ
\̂
Ω

|v1|
2 dx+ c0 Pr ‖v1‖

2
H1,2(Ω̂)

≤ MaPr c21‖v1‖H1,2(Ω̂)‖θ‖H1,2(Ω̂)

+max
Ω̂

|∇v̂| · ‖v1‖
2
H0,2(Ω̂)

+ ‖f‖H0,2(Ω̂)‖v1‖H0,2(Ω̂).

On the other hand, for the heat equation we have

λ
\̂
Ω

|θ|2 dx+ c2‖θ‖
2
H1,2(Ω̂)

≤ (‖g‖H0,2(Ω̂) + c1‖h‖H1/2,2(∂Ω̂))‖θ‖H1,2(Ω̂)

+max
Ω̂

|∇θ̂| (‖v1‖H0,2(Ω̂) + ‖v2‖H0,2(Ω̂))‖θ‖H0,2(Ω̂)

where c2 is the constant in the inequality
T
Ω̂
|∇θ|2 dx ≥ c2‖θ‖

2
H1,2(Ω̂)

.

Combining the two estimates gives us

λ
\̂
Ω

|v1|
2 dx+ λ

\̂
Ω

|θ|2 dx+ c3‖v1‖
2
H1,2(Ω̂)

+
c2
2
‖θ‖2

H1,2(Ω̂)

≤ c4{‖f‖
2
H0,2(Ω̂)

+ ‖g‖2
H0,2(Ω̂)

+ ‖h‖2
H1/2,2(∂Ω̂)

+ ‖v2‖
2
H0,2(Ω̂)

}.

The constants c3 and c4 can be computed as

c3 = c0 Pr−max
Ω̂

|∇v̂| −Ma2 Pr2 c21
1 + maxΩ̂ |∇θ̂|

c2

−
c2

4(1 + maxΩ̂ |∇θ̂|)
−

maxΩ̂ |∇θ̂|(1 + maxΩ̂ |∇θ̂|)

c2
,

c4 =
1 +maxΩ̂ |∇θ̂|

c2
max(1, c21,max

Ω̂
|∇θ̂|).
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We see that the Pr number has to be chosen large enough, while the Ma
number has to satisfy a smallness condition.

By choosing v1 as a test function the pressure term dropped out. We
may rediscover it by standard methods (see e.g. [Lad], [Tem]). Adding the
pressure estimate to our inequality then gives us the desired a priori esimate.

Lemma 2.2. For the first system let f, g ∈ H0,2(Ω̂), h ∈ H1/2,2(∂Ω̂)

and let Ω̂ be of class C3,α. For sufficiently small Marangoni numbers and

sufficiently large Prandtl numbers we have the a priori estimate

λ
\̂
Ω

|v1|
2 dx+ λ

\̂
Ω

|θ|2 dx+ c3‖v1‖
2
H1,2(Ω̂)

+ ‖q − qΩ̂‖
2
H0,2(Ω̂)

+
c2
2
‖θ‖2

H1,2(Ω̂)

≤ c6{‖f‖
2
H0,2(Ω̂)

+ ‖g‖2
H0,2(Ω̂)

+ ‖h‖2
H1/2,2(∂Ω̂)

+ ‖v2‖
2
H0,2(Ω̂)

}

with c6 = c4 + c5 where c5 is the constant in the pressure estimate.

Remark. 1) In the above estimate we assumed v̂, p0, θ̂, Ω̂ to be suffi-
ciently smooth. This is a useful assumption though not necessary. The least
we need is v̂ ∈ H1,2(Ω̂), p̂ ∈ H0,2(Ω̂), θ̂ ∈ H1,2(Ω̂) and ∂Ω̂ ∈ C1,1.

2) If we had linearised the system around the solution v̂ = 0, p0 = const,

θ̂ = 0, Ω̂ = B(0) the heat equation would have been decoupled from the
rest of the system. We could solve this equation in advance. In that case
no smallness condition on the Ma number would appear—only the Prandtl
number would have to be sufficiently large.

3) In some sense the condition on the Ma number can be considered as a
consequence of the free boundary. If we look at the fixed boundary problem

∂tv − Pr∆v + v · ∇v +∇p = f,

∇ · v = 0,

∂tθ −∆θ + v · ∇θ = g

in Ω × (0, T ), together with the boundary conditions

τiT (v, p)ν −MaPr τi∇θ = 0 i = 1, 2,

v · ν = 0,

ν · ∇θ = h

in ∂Ω × (0, T ) (with ∂Ω sufficiently smooth), we observe that no condition
on the Ma or Pr number is required to obtain existence of a weak solution.

2.4. For the third integral equation we work similarly by setting φ2 = v2
to obtain

λ
\̂
Ω

|v2|
2 dx+ Pr

\̂
Ω

D(v2) : D(v2) dx−MaPr
\

∂Ω̂

v2 · ν̂h dŜ

+
\

∂Ω̂

v2 · ν̂ν̂ · T (v1, q)ν̂ dŜ − 2Cr−1 Pr
\

∂Ω̂

v2 · ν̂H̃(η) dŜ +
\̂
Ω

v2 · ∇v̂v2 dx = 0.
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The only difference in comparison to the first system are the boundary
integrals. It is sufficient to consider these terms only and to carry over all
the other estimates from the v1-system.

Thus we have to estimate the integrals

−MaPr
\

∂Ω̂

v2 · ν̂h dŜ +
\

∂Ω̂

v2 · ν̂ν̂ · T (v1, q)ν̂ dŜ − 2Cr−1 Pr
\

∂Ω̂

v2 · ν̂H̃(η) dŜ.

The first two integrals can be estimated straightaway:
∣∣∣MaPr

\
∂Ω̂

v2 · ν̂hdŜ
∣∣∣ ≤ MaPr c1‖v2‖H1,2(Ω̂)‖h‖H1/2,2(∂Ω̂),

∣∣∣
\

∂Ω̂

v2 · ν̂ν̂ · T (v1, q)ν̂ dŜ
∣∣∣ =

∣∣∣
\

∂Ω̂

v2 · ν̂ν̂ · T (v1, q − qΩ̂)ν̂ dŜ
∣∣∣

≤ c21‖v2‖H1,2(Ω̂){‖v1‖H1,2(Ω̂) + ‖q − qΩ̂‖H0,2(Ω̂)}.

The integral −2Cr−1 Pr
T
∂Ω̂

v2 · ν̂H̃(η) dŜ requires more care. We insert

the boundary condition for v2 · ν̂ and the expression for H̃ to obtain

−2Cr−1 Pr
\

∂Ω̂

v2 · ν̂H̃(η) dŜ = − 2Cr−1 Pr
\

∂Ω̂

v2 · ν̂(H(η̂)− 2η) dŜ

− 2Cr−1 Pr
\

∂Ω̂

λ(η + h̃)∆∗η dξ.

Thus the curvature term gives us a positive term. We obtain the inequality

λ
\̂
Ω

|v2|
2 dx+ 2Cr−1 Prλ

\
∂Ω̂

|η|2 dx+ (c0 Pr−max
Ω̂

|∇v̂| − ε)‖v2‖
2
H1,2(Ω̂)

+Cr−1 Prλ
\

∂Ω̂

|∇∗η|2 dξ

≤ Ma2 Pr2 c21‖h‖
2
H1/2,2(∂Ω̂)

+ 2Cr−1 Prλ‖h̃‖2
H1,2(∂Ω̂)

+ c21‖v2‖H1,2(Ω̂){‖v1‖H1,2(Ω̂) + ‖q − qΩ̂‖H0,2(Ω̂)}

+Cr−1 Pr c21‖H(η̂)‖2
H0,2(∂Ω̂)

.

We insert the estimate for the v1-system and rearrange terms. Including the
pressure we summarise our results:

Lemma 2.3. For the second system let h̃ ∈ H3/2,2(∂Ω̂). Then we have

the a priori estimate
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λ
\̂
Ω

|v2|
2 dx+Cr−1 Prλ‖η‖2

H1,2(∂Ω̂)
+ c8‖v2‖

2
H1,2(Ω̂)

+ ‖p− q − (p− q)Ω̂‖
2
H0,2(Ω̂)

≤ c9{‖f‖
2
H0,2(∂Ω̂)

+ ‖g‖2
H0,2(∂Ω̂)

+ ‖h‖2
H1/2,2(∂Ω̂)

+ λ‖h̃‖2
H1,2(∂Ω̂)

+ ‖H(η̂)‖2
H0,2(∂Ω̂)

}.

We can compute c8 = c0 Pr−maxΩ̂ |∇v̂| − ε − c7, where c7 = c1/2 +
c5/min(1, c4). Thus we have an additional condition on the Prandtl number
to obtain a positive c8. c9 can be computed from the other constants.
No constant depends on λ and no constant vanishes or blows up if Ma →
0,Cr−1 → 0 or if one of the ·̂ quantities tends to zero. This statement
holds true for the rest of the paper.

We add the estimates in Lemmas 2.2 and 2.3 to obtain an existence
theorem for the weak solution of the linearised problem.

Theorem 2.1. Let f, g ∈ H0,2(Ω̂), h ∈ H1/2,2(∂Ω̂), h̃ ∈ H1,2(∂Ω̂) and

let the boundary of the domain be of class C3,α. Let λ ≥ 0 and let the

compatibility conditions
T
Ω̂
g dx =

T
∂Ω̂

hdS and
T
Ω̂
f dx = 0 hold. For small

Marangoni numbers and large Prandtl numbers there exists one and only

one weak solution

(v, p − pΩ̂ , θ, η) ∈ H
1,2(Ω̂)×H0,2(Ω̂)×H1,2(Ω̂)×H1,2(∂Ω̂).

Furthermore the solution satisfies the estimate

λ
\̂
Ω

|v|2 dx+ λ
\̂
Ω

|θ|2 dx+ ‖v‖2
H1,2(Ω̂)

+ ‖p− pΩ̂‖
2
H0,2(Ω̂)

+ ‖θ‖2
H1,2(Ω̂)

+ ‖η‖2
H1,2(∂Ω̂)

≤ c{‖f‖2
H0,2(Ω̂)

+ ‖g‖2
H0,2(Ω̂)

+ ‖h‖2
H1/2,2(∂Ω̂)

+ λ‖h̃‖2
H1,2(∂Ω̂)

+ ‖H(η̂)‖2
H0,2(∂Ω̂)

}.

The constant does not depend on λ.

3. Regularity of the stationary solution

3.1. We now turn to the question of regularity of the weak solution. We
restrict ourselves to the more complicated case of the boundary regularity.
For that we will use cut-off functions χ with support in a small tube around
the boundary of Ω̂. We extend the coordinate system given on the boundary
by the normal and tangential vectors smoothly into the interior of the tube.
In that sense we may speak about a tangential (resp. normal) vector at an
interior point.
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The cut-off functions χ are always assumed to be constant in tangential
directions in the tube and furthermore we assume the estimates |∇χ| < c/δ
and |∆χ| < c/δ2 for δ > 0.

As in Section 2 we use the decomposition of our system. In particular
we write (24)–(34) as

(38) λ
\̂
Ω

v1φ1 dx+
\̂
Ω

(−Pr∆v1 +∇q)φ1 dx+
\̂
Ω

v̂ · ∇v1φ1 dx

+
\̂
Ω

v1 · ∇v̂φ1 dx =
\̂
Ω

fφ1 dx,

(39) λ
\̂
Ω

θψ dx−
\̂
Ω

∆θψ dx+
\̂
Ω

v̂ · ∇θψ dx+
\̂
Ω

(v1 + v2) · ∇θ̂ψ dx

=
\̂
Ω

gψ dx,

(40) λ
\̂
Ω

v2φ2 dx+
\̂
Ω

(−Pr∆v2 +∇(p− q))φ2 dx+
\̂
Ω

v̂ · ∇v2φ2 dx

+
\̂
Ω

v2 · ∇v̂φ2 dx = 0,

for suitable test functions φ1, φ2, ψ.

Our aim is to find an H2,2 bound for v1, v2 and θ on Ω̂, an H0,2 bound
for ∇q and ∇(p− q) on Ω̂, and an H5/2,2 bound for η on ∂Ω̂.

We proceed as follows: By choosing a right test function we find a bound
for the tangential derivatives of ∇v1 close to the boundary. By another
choice of the test function we find an H0,2 estimate for the tangential deriva-
tives of the pressure q. The corresponding bounds for the normal derivatives
are then given by the system itself. As in Section 2 we concentrate on the
estimates where the Marangoni term is involved.

For the v2-system we work similarly. The difference is that we can only
bound the H2,2 norm of v2 (resp. the H0,2 norm of ∇(p − q)) by the H3/2

norm of η on ∂Ω̂. Equation (34) then gives a bound of the H5/2,2 norm of
η by the H2,2 norm of v2 (resp. the H0,2 norm of ∇(p− q)). Arranging the
estimates in the right way we obtain the regularity result.

We wish to point out that the arrangement of the arguments cannot be
changed. Thus knowing the existence of a weak solution of our system, we
do not see any possibility to gain regularity for the fluid variables from the
geometrical operators.

3.2. We first define the test function φ1 as

φ1 ≡ −∆∗(v1χ
2).
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Basic calculations give the inequality

λ
\̂
Ω

|∇∗(v1χ)|
2 dx+ ‖∇∗(v1χ)‖

2
H1,2(Ω̂)

≤ c
{
‖v1‖

2
H1,2(Ω̂)

+ ‖q − qΩ̂‖
2
H0,2(Ω̂)

+MaPr
∣∣∣

2∑

i=1

\
∂Ω̂

∆∗v1 · τ̂iτ̂i · ∇θ dŜ
∣∣∣+ ‖f‖2

H0,2(Ω̂)

}
.

To obtain this inequality we have to keep in mind that the test function is
no longer divergence free (this explains the pressure term) and that inter-
changing euclidian derivatives with ∇∗

i (= τ̂i · ∇) causes the appearance of
additional terms of lower differentiability order in v1.

We estimate the Marangoni term:

MaPr
∣∣∣

2∑

i=1

\
∂Ω̂

∆∗v1 · τiτi · ∇θ dS
∣∣∣

≤ MaPr ‖∆∗v1‖H−1/2(∂Ω̂)‖∇
∗θ‖H1/2,2(∂Ω̂)

≤ c1 MaPr ‖∇∗(v1χ)‖H1/2,2(∂Ω̂)‖∇θ‖H1,2(Ω̂)

≤ c21 MaPr ‖∇∗(v1χ)‖H1,2(Ω̂)‖θ‖H2,2(Ω̂).

Thus we end up with a local estimate for the tangential derivatives for ∇v1.

Intermediate Result 1.

λ‖∇∗(v1χ)‖
2
H0,2(Ω̂)

+ ‖∇∗(v1χ)‖
2
H1,2(Ω̂)

≤ c{‖v1‖
2
H1,2(Ω̂)

+ ‖q − qΩ̂‖
2
H0,2(Ω̂)

+MaPr ‖∇∗v1‖H1,2(Ω̂)‖θ‖H2,2(Ω̂) + ‖f‖2
H0,2(Ω̂)

}.

The “Marangoni term” MaPr ‖∇∗v1‖H1,2(Ω̂)‖θ‖H2,2(Ω̂) will be estimated

later.

We are now left with the problem of finding a bound for the second
derivatives of v1 in the normal direction, and a bound for the pressure.
Following [Sol&Shch], p. 197, we briefly sketch the procedure. First we
obtain an estimate for the tangential derivatives of the pressure.

As a test function we choose ∆∗Φχ2, where Φ is the solution of

∇ · Φ = q in Ω̂, Φ · ν̂ = 0 in ∂Ω̂.

For this Φ we have the estimates

‖∇Φ‖H0,2(Ω̂) ≤ c‖q‖H0,2(Ω̂), ‖∇∗∇Φ‖H0,2(Ω̂) ≤ c‖∇∗q‖H0,2(Ω̂)
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(see (9) and (13) in [Sol&Shch], pp. 188, 189). Inserting this test function
into the integral equation (38)–(40) we obtain the integral equation

λ
\̂
Ω

v1 ·∆
∗Φχ2 dx− Pr

\̂
Ω

∆v1 ·∆
∗Φχ2 dx+

\̂
Ω

∇q ·∆∗Φχ2 dx

+
\̂
Ω

v1 · ∇v̂∆
∗Φχ2 dx+

\̂
Ω

v̂ · ∇v1∆
∗Φχ2 dx =

\̂
Ω

f ·∆∗Φχ2 dx.

The estimates are done as before. Observe that now the Marangoni term is
estimated as

MaPr

2∑

i=1

\
∂Ω̂

∆∗Φ · τ̂0τ̂0 · ∇θ dŜ ≤ MaPr ‖∆∗Φ‖H−1/2,2(∂Ω̂)‖∇
∗θ‖H1/2,2(∂Ω̂)

≤ cMaPr ‖∇∗Φ‖H1/2,2(∂Ω̂)‖θ‖H3/2,2(∂Ω̂)

≤ cMaPr ‖∇∗Φ‖H1,2(Ω̂)‖θ‖H2,2(Ω̂)

≤ cMaPr ‖∇∗∇Φ‖H0,2(Ω̂)‖θ‖H2,2(Ω̂).

The last inequality follows from the fact that interchanging ∇∗ and euclidian
derivatives produces terms that can be estimated by ‖∇∗∇Φ‖H0,2(Ω̂). We

obtain an estimate for the tangential derivatives of the pressure:

Intermediate Result 2.

‖∇∗(qχ)‖H0,2(Ω̂) ≤ c{‖∇∗(v1χ)‖H1,2(Ω̂) + λ‖v1‖H0,2(Ω̂) + ‖f‖H0,2(Ω̂)

+ ‖θ‖H2,2(Ω̂) + ‖v1‖H1,2(Ω̂) + ‖q − qΩ̂‖H0,2(Ω̂)}.

Remark. In the estimate the term λ‖v1‖H0,2(Ω̂) appears. It was not

estimated before. However, if in the weak formulation (35)–(37) in Section 2
we choose φ = λv1 resp. ψ = λθ we obtain an estimate for this term. There
will be no additional condition for the Ma or Pr number. We will not give
the computations in detail, since no new estimates for the Marangoni term
will be required.

Later we will see that the estimate for λ‖v1‖H0,2(Ω̂) corresponds to the

estimate for the first time derivative of v1.

Now we add up the two “tangential estimates” to obtain:

Intermediate Result 3.

λ‖∇∗(v1χ)‖
2
H0,2(Ω̂)

+ ‖∇∗(v1χ)‖
2
H1,2(Ω̂)

+ ‖∇∗(qχ)‖2
H0,2(Ω̂)

≤ c{‖v1‖
2
H1,2(Ω̂)

+ ‖q − qΩ̂‖
2
H0,2(Ω̂)

+ ‖θ‖2
H2,2(Ω̂)

+MaPr ‖∇∗(v1χ)‖H1,2(Ω̂)‖θ‖H2,2(Ω̂) + ‖f‖2
H0,2(Ω̂)

}.
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The missing estimates are given by the system itself: We transform the
Navier–Stokes system near the boundary (i.e. in the support of χ), where
the new coordinate system is generated by (τ̂1, τ̂2, ν̂).

We write down the new system:

λV j
1 − Pr ĝik0 ∂i∂kV

j
1 +

1

detDΦ̂
ĝjk0 ∂kQ+M j(V1,∇V1) = F j ,

∇ · V1 = 0.

We wish to point out that we transformed the velocity field as

V i(X) ≡
∂Φ̂i(Φ̂−1(X))

∂xj
vj(Φ̂−1(X)) · (detDΦ̂(Φ̂−1(X)))−1.

This transformation has the property that

3∑

i=1

∂V i

∂Xi
= 0 if

3∑

i=1

∂vi

∂xi
= 0.

Choose the enumeration of the vector components in such a way that V 1
1 , V

2
1

give the components of the velocity field in the tangential directions and V 3
1

gives the component in the normal direction. M always contains at most
first derivatives in V1.

The first and second equations give us a bound for the second nor-
mal derivatives of V 1

1 and V 2
1 . The second radial derivatives of V 3

1 can

be bounded if we differentiate the equation
∑3

i=1 ∂V
i/∂Xi = 0 in the nor-

mal direction. Finally, we can rewrite the first equation as an equation for
the normal derivative of the pressure. In that way the full second derivatives
of V1 and the full gradient of the pressure are bounded in the H0,2 sense.

For the above considerations the temperature equation does not play
any role, because the coupling is only via the boundary terms, but we never
integrated by parts.

We now transform back and obtain inequalities for v1 and q. These
inequalities are valid locally but with a covering argument they may be
extended all over the domain.

The regularity considerations for the heat equation are omitted. The
necessary arguments for bounding the second and higher derivatives can be
found e.g. in [GT], Chapter 8.

Rearranging terms and using the smallness condition on the Marangoni
number, we obtain the final estimate, recorded as a lemma.

Lemma 3.1. Under the assumptions of Theorem 2.1 the solution to (24)–

(34) is regular , i.e. v1 ∈ H2,2(Ω̂), ∇q ∈ H0,2(Ω̂), θ ∈ H2,2(Ω̂). The

following estimate holds:
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λ‖v1‖
2
H1,2(Ω̂)

+ λ‖θ‖2
H1,2(Ω̂)

+ ‖v1‖
2
H2,2(Ω̂)

+ ‖θ‖2
H2,2(Ω̂)

+ ‖q − qΩ̂‖
2
H1,2(Ω̂)

≤ c{‖v1‖
2
H1,2(Ω̂)

+ ‖v2‖
2
H1,2(Ω̂)

+ ‖θ‖2
H1,2(Ω̂)

+ ‖q − qΩ̂‖
2
H0,2(Ω̂)

+ ‖f‖2
H0,2(Ω̂)

+ ‖g‖2
H0,2(Ω̂)

+ ‖h‖2
H1/2,2(∂Ω̂)

}.

We wish to point out that there is no additional condition on the pa-
rameters. Higher regularity now follows from the [ADN] theory.

3.3. We work similarly for the v2-system (48)–(49). We choose φ2 =
−∆∗(v2χ

2) as a test function. The only difference compared to the v1-
system are the different boundary integrals after using Green’s formula:

MaPr
\

∂Ω̂

∆∗(v2 · ν̂)hdŜ −
\

∂Ω̂

∆∗(v2 · ν̂)ν̂ · T (v1, q)ν̂ dŜ

+ 2Cr−1 Pr
\

∂Ω̂

∆∗(v2ν̂)H̃(η) dŜ.

As in the v1-system, the first two integrals can be estimated immediately:
∣∣∣MaPr

\
∂Ω̂

∆∗(v2 · ν̂)hdŜ −
\

∂Ω̂

∆∗(v2 · ν̂)ν̂ · T (v1, q)ν̂ dŜ
∣∣∣

≤ c‖∇∗(v2χ)‖H1,2(Ω̂){‖h‖H1/2(∂Ω̂) + ‖v1‖H2,2(Ω̂) + ‖∇q‖H0,2(Ω̂)}.

The remaining boundary integral gives us a positive term:

2Cr−1 Pr
\

∂Ω̂

∆∗(v2ν̂)H̃(η) dŜ

= 2Cr−1 Prλ
\

∂Ω̂

∆∗(η + h̃)(H̃(η̂) +∆∗η − 2η) dŜ

≥ Cr−1 Prλ
\

∂Ω̂

(|∆∗η|2 + |∇∗η|2) dŜ

− c{‖∇∗v2‖
2
H1,2(Ω̂)

+ λ‖η‖2
H3/2,2(∂Ω̂)

+λ‖h̃‖2
H5/2,2(Ω̂)

+ ‖H(η̂)‖2
H0,2(∂Ω̂)

}.

In analogy to the first intermediate result above, for the v2-system we obtain:

Intermediate Result 1′:

λ‖∇∗v2‖
2
H0,2(Ω̂)

+ ‖∇∗v2‖
2
H1,2(Ω̂)

+ 2Cr−1 Pr2 λ‖η‖2
H2,2(∂Ω̂)

≤ c{‖p − q − (p− q)Ω̂‖
2
H0,2(Ω̂)

+ ‖h‖2
H1/2(∂Ω̂)

+ ‖v1‖
2
H2,2(Ω̂)

+ ‖η‖2
H3/2,2(∂Ω̂)

+ λ‖h̃‖2
H5/2,2(Ω̂)

+ ‖∇q‖2
H0,2(Ω̂)

+ ‖v2‖
2
H1,2(Ω̂)

+ ‖H(η̂)‖2
H0,2(∂Ω̂)

}.
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In order to bound the tangential gradient of the pressure term ∇∗(p− q)
we choose ∆∗Φχ2 as a test function and obtain the integral equation

−
\̂
Ω

(p− q − (p− q)Ω̂)∇ ·∆∗χ2 dx

= − λ
\̂
Ω

v2∆
∗Φχ2 dx− Pr

\̂
Ω

D(v2) : D(∆∗Φχ2) dx+MaPr
\

∂Ω̂

∆∗Φ · ν̂h dŜ

−
\

∂Ω̂

∆∗Φ · ν̂ν̂ · T (v1, q)ν̂ dŜ + 2Cr−1 Pr2
\

∂Ω̂

∆∗Φ · ν̂H̃(η) dŜ

−
\̂
Ω

v̂ · ∇v2∆
∗Φχ2 dx−

\̂
Ω

v2 · ∇v̂∆
∗Φχ2 dx = 0.

Again only the boundary integrals are under consideration. We point out
that

∆∗Φ · ν̂ = ∆∗(Φ · ν̂)−∇∗Φ · ∇∗ν̂ −∆∗ν̂ · Φ,

and the first summand vanishes identically because of the boundary condi-
tion Φ · ν̂ = 0. Thus all boundary integrals can be estimated:
∣∣∣MaPr

\
∂Ω̂

∆∗Φ·ν̂h dŜ−
\

∂Ω̂

∆∗Φ·ν̂ν̂·T (v1, q)ν̂ dŜ+2Cr−1 Pr
\

∂Ω̂

∆∗Φ·ν̂H̃(η) dŜ
∣∣∣

≤ c{MaPr ‖h‖H1/2,2(∂Ω̂)‖∇
∗∇Φ‖H0,2(Ω̂) + ‖∇q‖H0,2(Ω̂)‖∇

∗∇Φ‖H0,2(Ω̂)

+ 2Cr−1 Pr ‖η‖H3/2,2(∂Ω̂)‖∇
∗∇Φ‖H0,2(Ω̂)}.

We are now able to write down the second intermediate result:

Intermediate Result 2′.

‖∇∗(p − q)‖H0,2(Ω̂)

≤ c{Pr ‖∇∗v2‖H1,2(Ω̂) + ‖v1‖H2,2(Ω̂) + ‖∇q‖H0,2(Ω̂)

+ λMaPr ‖∇∗v2‖H0,2(Ω̂)‖h‖H1/2,2(∂Ω̂) + ‖v2‖H1,2(Ω̂)

+ 2Cr−1 Pr ‖η‖H3/2,2(∂Ω̂) + ‖p− q − (p− q)Ω̂‖H0,2(Ω̂)}.

We combine the two intermediate results using the estimates obtained
before:

Intermediate Result 3′.

λ‖∇∗v2‖
2
H0,2(Ω̂)

+ ‖∇∗v2‖
2
H1,2(Ω̂)

+ ‖∇∗(p− q)‖2
H0,2(Ω̂)

+ λ‖η‖2
H2,2(∂Ω̂)

≤ c{‖f‖2
H0,2(Ω̂)

+ ‖g‖2
H0,2(Ω̂)

+ ‖h‖2
H1/2,2(∂Ω̂)

+ ‖η‖2
H3/2,2(∂Ω̂)

+λ‖h̃‖2
H3/2,2(Ω̂)

+ ‖H(η̂)‖2
H0,2(∂Ω̂)

+ ‖v2‖
2
H1,2(Ω̂)

+ ‖p− q − (p− q)Ω̂‖
2
H0,2(Ω̂)

}.
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The second normal derivatives are obtained in the same manner as be-
fore. We write down the result.

Intermediate Result 4′.

λ‖v2‖
2
H1,2(Ω̂)

+ ‖v2‖
2
H2,2(Ω̂)

+ ‖∇(p − q)‖2
H0,2(Ω̂)

+ λ‖η‖2
H2,2(∂Ω̂)

≤ c{‖f‖2
H0,2(Ω̂)

+ ‖g‖2
H0,2(Ω̂)

+ ‖h‖2
H1/2,2(∂Ω̂)

+ λ‖h̃‖2
H3/2,2(Ω̂)

+ ‖η‖2
H3/2,2(∂Ω̂)

+ ‖v2‖
2
H1,2(Ω̂)

+ ‖p− q − (p− q)Ω̂‖
2
H0,2(Ω̂)

+ ‖H(η̂)‖2
H0,2(∂Ω̂)

}.

We get higher regularity for the free boundary. The equation for η is

2Cr−1 Pr∆∗η = ν̂ · T (v2, p− q)ν̂ −MaPrh+ ν̂ · T (v1, q)ν̂ .

We observe that the right side is in H1/2,2(∂Ω̂) and thus η ∈ H5/2,2(∂Ω̂).

We now return to system (24)–(34). As mentioned the linearised subsys-
tems satisfy the conditions formulated in [ADN], p. 78. Thus we may apply
Theorem 10.5 of [ADN] to each of them. Adding the two results then gives

Theorem 3.1. Let m ≥ 0 and (f, g, h) ∈ Hm,2(Ω̂) × Hm,2(Ω̂) ×

Hm+1/2,2(∂Ω̂). Then the solution to

λv − Pr∆v + v̂ · ∇v + v · ∇v̂ +∇p = f,

∇ · v = 0,

λθ −∆θ + v̂ · ∇θ + v · ∇θ̂ = g

in Ω̂, together with the boundary conditions

T (v, p)ν̂ −MaPr∇θ = 2Cr−1 Pr H̃(η)ν̂ ,

v · ν̂ = λ(η + h̃),

ν̂ · ∇θ = h

in ∂Ω̂ and with zero initial values is regular , i.e.

(v, p − pΩ̂ , θ, η) ∈ Hm+2,2(Ω̂)×Hm+1,2(Ω̂)×Hm+2,2(Ω̂)×Hm+5/2,2(∂Ω̂)

and satisfies the estimate

λ‖v‖2
H(m+2)/2,2(Ω̂)

+λ‖θ‖2
H(m+2)/2,2(Ω̂)

+‖v‖2
Hm+2,2(Ω̂)

+‖p−pΩ̂‖
2
Hm+1,2(Ω̂)

+ ‖θ‖2
Hm+2,2(Ω̂)

+ λ‖η‖2
Hm+5/2,2(∂Ω̂)

≤ c{‖f‖2
Hm,2(Ω̂)

+ ‖g‖2
Hm,2(Ω̂)

+ ‖h‖Hm+1/2,2(∂Ω̂)

+ λ‖h̃‖2
Hm+5/2,2(∂Ω̂)

+ ‖H(η̂)‖2
H0,2(∂Ω̂)

}.
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4. The nonstationary system

4.1. With the help of Sections 2 and 3 we now return to the nonstationary
systems (13)–(18) and (19)–(23). There are different possibilities to obtain
the existence of a solution. We have chosen the method of Rothe, where the
nonstationary system is approximated by a sequence of stationary systems.
The stationary systems are given by the time discretisation of the space-time
cylinder Ω̂× (0, T ) and the equations defined there. As the step size h tends
to zero, uniform estimates of the stationary solutions provide enough com-
pactness to conclude the existence of a solution of the nonstationary system.

In Section 2 we proved estimates for (24)–(29) and (30)–(34) uniformly
in λ. If we now set λ = 1/h we may use these estimates plus a Gronwall type
argument to obtain the desired estimates for the nonstationary systems.

4.2. We define a weak solution (v1, v2, θ, η) of (13)–(18) and (19)–(23)

as an element in H0,2(0, T ;L(Ω̂))×H0,2(0, T ;L(Ω̂))×H0,2(0, T ;H1,2
0 (Ω̂))×

H0,2
0 (0, T ;H1,2(∂Ω̂)) which satisfies the integral equations

(41)

T\
0

\̂
Ω

∂tv1 · φ1 dx+ Pr

T\
0

\̂
Ω

D(v1) : D(φ1) dx dt

−MaPr

2∑

i=1

T\
0

\
∂Ω̂

φ1 · τiτi · ∇θ +

T\
0

\̂
Ω

v1 · ∇v̂φ1 dx dt

+

T\
0

\̂
Ω

v̂ · ∇v1φ1 dx dt =

T\
0

\̂
Ω

f · φ1 dx dt;

(42)

T\
0

\̂
Ω

∂tθψ dx dt+

T\
0

\̂
Ω

∇θ∇ψ dx dt+

T\
0

\̂
Ω

v̂ · ∇θψ dx dt

+

T\
0

\̂
Ω

v1 · ∇θ̂ψ dx dt =

T\
0

\̂
Ω

gψ dx dt+

T\
0

\
∂Ω̂

hψ dŜ dt;

(43)

T\
0

\̂
Ω

∂tv2 · φ2 dx dt+ Pr

T\
0

\̂
Ω

D(v2) : D(φ2) dx dt

−MaPr

T\
0

\
∂Ω̂

φ2 · ν̂h dŜ dt+

T\
0

\
∂Ω̂

φ2 · ν̂ν̂ · T (v1, q)ν̂ dŜ dt

− 2Cr−1 Pr

T\
0

\
∂Ω̂

φ2 · ν̂H̃(η) dŜ dt+

T\
0

\̂
Ω

v2 · ∇v̂φ2 dx dt

+

T\
0

\̂
Ω

v̂ · ∇v2φ2 dx dt = 0
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for all (φ1, φ2, ψ) ∈ L(Ω̂) × L(Ω̂) × H1,2(Ω̂). The data will satisfy the
assumptions

f ∈ H0,2(0, T ;H0,2(Ω̂)), g ∈ H0,2(0, T ;H0,2(Ω̂)), h ∈ K1/2(Ω̂× (0, T )).

We now cut the space time cylinder QT = Ω̂ × (0, T ) with planes t =
tk = kh.

Notation. We denote by Ω̂k the intersection of QT with the plane
t = tk, k = 1, . . . , [T/h]. For the quantities defined on Ω̂k we introduce the
following notation:

v1,2(k) = v1,2(x, tk), p(k) = p(x, tk), θ(k) = θ(x, tk), η(k) = η(x, tk),

δhv1,2(k) =
v1,2(k)− v1,2(k − 1)

h
, δhθ(k) =

θ(k)− θ(k − 1)

h
,

δhη(k) =
η(k)− η(k − 1)

h
,

fh(k) =
1

h

kh\
(k−1)h

f(x, τ) dτ, gh(k) =
1

h

kh\
(k−1)h

g(x, τ) dτ,

hh(k) =
1

h

kh\
(k−1)h

h(x, τ) dτ.

We now can explain the appearance of h̃ in Section 2. It stands for
η(k − 1) and thus may be considered as a known quantity computed one
time step before. We should have introduced a similar notation for v and θ;
however, this would not have changed the result.

The discretised integral equations are:

h

m∑

k=1

\̂
Ω

δhv1(k) · φ1(k) dx +Prh

m∑

k=1

\̂
Ω

D(v1(k)) : D(φ1(k)) dx

−MaPrh

2∑

i=1

m∑

k=1

\
∂Ω̂

φ1(k) · τiτi · ∇θ(k) dŜ + h

m∑

k=1

\̂
Ω

v1(k) · ∇v̂φ1(k) dx

+ h
m∑

k=1

\̂
Ω

v̂ · ∇v1(k)φ1(k) dx = h
m∑

k=1

\̂
Ω

fh(k) · φ1(k) dx;

h
m∑

k=1

\̂
Ω

δhθ(k)ψ(k) dx + h
m∑

k=1

\̂
Ω

∇θ(k) · ∇ψ(k) dx + h
m∑

k=1

\̂
Ω

v̂ · ∇θ(k)ψ(k) dx

+ h

m∑

k=1

\̂
Ω

v1(k) · ∇θ̂ψ(k) dx = h

m∑

k=1

\̂
Ω

gh(k)ψ(k) dx+ h

m∑

k=1

\
∂Ω̂

hh(k)ψ(k) dŜ ;
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T\
0

\̂
Ω

∂tv2 · φ2 dx+ Pr

T\
0

\̂
Ω

D(v2) : D(φ2) dx−MaPr

T\
0

\
∂Ω̂

φ2 · ν̂h dŜ

+

T\
0

\
∂Ω̂

φ2 · ν̂ν̂ · T (v1, q)ν̂dŜ − 2Cr−1 Pr

T\
0

\
∂Ω̂

φ2 · ν̂H̃(η) dŜ

+

T\
0

\̂
Ω

v2 · ∇v̂φ2 dx+

T\
0

\̂
Ω

v̂ · ∇v2φ2 dx = 0.

We now proceed exactly as in Section 2 to arrive at the following a priori
estimate:

Lemma 4.1. A weak solution of the nonstationary system satisfies the a

priori estimate\̂
Ω

|v(m)|2 dx+
\̂
Ω

|θ(m)|2 dx+ ‖η(m)‖2
H1,2(∂Ω̂)

+ h

m∑

k=1

‖v(k)‖2
H1,2(Ω̂)

+ h

m∑

k=1

‖θ(k)‖2
H1,2(Ω̂)

+ h

m∑

k=1

‖(q − qΩ̂)(k)‖
2
H0,2(Ω̂)

+ h

m∑

k=1

‖η(k)‖H1,2(∂Ω̂)

≤ ch

m∑

k=1

{‖fh(k)‖
2
H0,2(Ω̂)

+ ‖gh(k)‖
2
H0,2(Ω̂)

+ ‖hh(k)‖
2
H1/2,2(∂Ω̂)

+ ‖H(η̂)‖2
H0,2(∂Ω̂)

}.

Here we have also used a discrete version of Gronwall’s inequality (see
e.g. [Kacur], Lemma 1.3.19(ii), p. 29). Instead of presenting the details we
just mention that we may now extract a subsequence for which we have
weak convergence in the spaces chosen. Furthermore the limit satisfies the
integral equations (41)–(43). Finally we have to recover the pressure.

We write down the result:

Theorem 4.1. The linearised nonstationary system is uniquely solvable

for any given time interval (0, T ) with

v ∈ H0,2(0, T ;H1,2(Ω̂)), p− pΩ̂ ∈ H0,2(0, T ;H0,2(Ω̂)),

θ ∈ H0,2(0, T ;H1,2(Ω̂)), η ∈ H0,2(0, T ;H1,2(∂Ω̂)).

We have the estimate

‖v‖H0,2(0,T ;H1,2(Ω̂)) + ‖θ‖H0,2(0,T ;H1,2(Ω̂))

+ ‖p− pΩ̂‖H0,2(0,T ;H0,2(Ω̂)) + ‖η‖H0,2(0,T ;H1,2(∂Ω̂))

≤ c{‖f‖H0,2(0,T ;H0,2(Ω̂)) + ‖g‖H0,2(0,T ;H0,2(Ω̂))

+ ‖h‖H0,2(0,T ;H1/2,2(∂Ω̂)) + ‖H(η̂)‖H0,2(Ω̂)}.
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4.3. The regularity problem can be treated as in Section 3. The only
difference is that the estimate for λ‖v1‖H0,2(Ω̂) now turns into an estimate

for the first time derivative for v1. Similarly for v2 and η.

Theorem 4.2. For the linearised system

∂tv − Pr∆v + v̂ · ∇v + v · ∇v̂ +∇p = f,

∇ · v = 0,

∂tθ −∆θ + v̂ · ∇θ + v · ∇θ̂ = g

in Ω̂ × (0, T ), with the boundary conditions

T (v, p)ν̂ −MaPr∇θ = 2Cr−1 Pr H̃(η)ν̂ ,

v · ν̂ = ∂tη,

ν̂ · ∇θ = h,

assume

f ∈ K0(Ω̂ × (0, T )), g ∈ K0(Ω̂ × (0, T )), h ∈ K1/2(∂Ω̂ × (0, T ))

and zero initial values. Then the weak solution is regular , i.e.

v(x, t) ∈ K2(Ω̂ × (0, T )), θ(x, t) ∈ K2(Ω̂ × (0, T )),

∇p ∈ K0(Ω̂ × (0, T )), η ∈ K5/2(∂Ω̂ × (0, T )).

The quantities are bounded by constants which only depend on the data of

the system.

We obtain higher regularity.

Theorem 4.3. For the linearised problem let f, g ∈ Kr−2(Ω̂ × (0, T ))

and h ∈ Kr−3/2(∂Ω̂ × (0, T )). Then

(v,∇p, θ, η) ∈ Kr(Ω̂ × (0, T )) ×Kr−2(Ω̂

×(0, T ))×Kr(Ω̂ × (0, T ))×Kr+1/2(∂Ω̂ × (0, T )).

The quantities are bounded by a constant which only depends on the data of

the system.

4.4. We do not treat the nonlinear system in detail, since it can be done
as in [Beale2]. Instead we just give the main steps, leading to the existence
theorem.

We are now concerned with the fully nonlinear system, transformed to a
ball. On the left side we put the linearisation, while all the terms of higher
order will be written on the right side.

The highest derivatives appearing on the right side are: third spatial
derivatives of the transformation, mixed spatial and time derivatives of the
transformation, second spatial derivatives of the velocity field and of the
temperature and first derivatives of the pressure.
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Terms on the right side are products of such derivatives.
We use the fact that Kr is an algebra if r is large enough (see p. 332,

Lemma 5.1 in [Beale2]):

Lemma 4.2. Let r > 5/2. Then elements of Kr(Ω̂ × (0, T )) are contin-

uous functions on the closure of the domain.

If f ∈ Ks(Ω̂ × (0, T )) with r > s ≥ 0 and g ∈ Kr(Ω̂ × (0, T )), then

‖g · f‖Ks ≤ c‖g‖Kr‖g‖Kr .

Next we extend η in the interior of the domain. For that we use an
extension theorem in [L&M] (Theorem 1.4.2). As a result we gain half a

derivative, thus for the extension we have ∇η̃ ∈ Kr(Ω̂×(0, T )). Now choose
r > 5/2.

As a consequence, for the right side of the Navier–Stokes system (=
F0(η, v,∇p, θ)) and for the right side of the heat equation (= F1(η, v,∇p, θ))
we obtain an estimate

‖F0,1(η, v,∇p, θ)‖Kr−2 ≤ c{‖η‖Kr+1/2 + ‖v‖Kr + ‖θ‖Kr + ‖∇p‖Kr−2 +Kr}.

Here Kr denotes the norm of the forces. We get the same estimate for the
right side of the boundary equations (= F3, F4, F5, F6). This was the first
step.

We now write our system in the form

Lz = F (z)

where z = (η, v, p, θ), F = (F1, F2, F3, F4, F5, F6) and L denotes the lineari-
sation.

Let Xr be the space of all z and Y r−2 the image of L. The estimates
for the Fi can now be written as

|F (z)|Y r−2 ≤ c|z|2Xr .

From the system we also have the inequality

|F (z) − F (z̃)|Y r ≤ c|z − z̃|Xr(|z|Xr + |z̃|Xr).

Looking at our transformation Φ and using the fact that r > 5/2 we see that
the transformation is in fact a C1-diffeomorphism (as long as the norm of η
is small). Thus already because of this observation we may expect existence
only for short time.

In the third step it is shown that the solution operator is a contraction.
We record the final result.

Theorem 4.4. The free boundary problem

∂tv − Pr∆v + v · ∇v +∇p = f,

∇ · v = 0,

∂tθ −∆θ + v · ∇θ = g,
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with the boundary conditions

T (v, p)ν −MaPr∇θ = 2Cr−1 PrHν,

v · ν = ∂tη,

ν · ∇θ = h

and sufficiently large Pr number and small Ma number , is uniquely solvable

for f, g ∈ Kr(Ω × (0, T )), h ∈ Kr+1/2(∂Ω × (0, T )) (r > 1/2) and for small

time 0 < t < T ′ < T , where T ′ depends on the norms of the forces.
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[ZZ1] E. Zadrzyń ska and W. M. Zaj a̧czkowsk i, On local motion of a general

compressible viscous heat conducting fluid bounded by a free surface, Ann.
Polon. Math. 59 (1994), 133–170.

[ZZ2] —, —, Conservation laws in free boundary problems for viscous compressible
heat conducting fluids, Bull. Polish Acad. Sci. 42 (1994), 197–205.

[ZZ3] —, —, On a differential inequality for equations of a viscous compressible heat
conducting fluid bounded by a free surface, Ann. Polon. Math. 61 (1995),
141–188.

[ZZ4] —, —, Conservation laws in free boundary problems for viscous compressible
heat conducting capillary fluids, Bull. Polish Acad. Sci. 43 (1995), 423–444.

[ZZ5] —, —, On the global existence theorem for a free boundary problem for equa-
tions of a viscous compressible heat conducting fluid , Ann. Polon. Math. 63
(1996), 199–221.

[ZZ6] —, —, On a differential inequality for a viscous compressible heat conducting
capillary fluid bounded by a free surface, ibid. 65 (1996), 23–53.

[ZZ7] —, —, Local existence of solutions of a free boundary problem for equations
of compressible viscous heat-conducting fluids, Appl. Math. (Warsaw) 25
(1998), 179–220.

Alfred Wagner
Universität Köln
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