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REMARKS ON SOME MONOTONICITY CONDITIONS

FOR THE PERIOD FUNCTION

Abstract. We are interested in the optimality of monotonicity criteria
for the period function of some planar Hamiltonian systems. This study is
illustrated by examples.

1. Introduction. In this paper we study the period function of some
ODE and its dependence on the energy. We extend results of the work [2] by
the first author and A. Kelfa. We consider several monotonicity conditions
on the period function T (c) for the periodic solutions with c the energy
constant. This period depends on the energy for some planar Hamiltonian
systems with the Hamiltonian of the form

(E) H(u, v) = 1
2v

2 +G(u),

where G(u) is an integral of g(u), with a nondegenerate relative minimum
at the origin. The function g(u) is smooth and defined on (−∞,∞). We
also show some relations between these different criteria.

The conditions denoted by (C4) and (C6) (see below) seem the best of
the known conditions except (C0) (with an additional convexity assumption).
They are relatively easy to check. In a sense, they are more general than
the others. A natural question is to ask if (C4) is more general than (C6), or
conversely.

Notice that monotonicity criteria on the periods for planar Hamiltonian
systems given by various authors should be logically related, as suggested
by F. Rothe (see Section 2 of [3]).

Nevertheless, we only remark in this paper that condition (C4) may be
more restrictive than (C6). We show that by giving examples of functions
satisfying only one of the two conditions.
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Moreover, we also prove that none of the conditions (C4), (C6) and (C0)
is optimal. Indeed, we give examples so that the period function associated
with the equation (E) is monotonic, but does not satisfy any of the above
conditions.

2. Preliminaries. Consider a real smooth function g satisfying

(A)

{

xg(x) > 0, g′′(x) > 0 if x ∈ (α, β),
α < 0 < β, g(0) = 0 and g′(0) > 0,

with g′(x), g′′(x), g′′′(x) denoting the successive derivatives of g(x).

Let G be the primitive of g satisfying

G(0) = 0 and G(a) = G(b) = c,

with α < a < 0 and 0 < b < β.

Let γ be a constant such that 0 < c < γ.

We are interested in the solution of the Newtonian Hamiltonian system
(E), starting at the origin. The origin is surrounded by a continuous family
of periodic orbits. For a local parametrization of the periodic trajectories,
we define the corresponding energy-period function T : (0, γ) → R, which
assigns to each periodic trajectory its minimum period. Thus, each orbit
lies on an energy level, H(x, y) = c, and is uniquely determined by c. The
energy-period function is then given by

T (c) =
√
2

b\
a

dx
√

c−G(x)
.

The qualitative behavior of this function determines its critical points. One
of the open problems is to find the number of these points. The monotonicity
case occurs when the period function has no critical value in ]0, γ[.

Several authors have studied the energy-period function, in order to find
some monotonicity conditions easy to verify for many functions g.

For convenience, we list below some known sufficient conditions, each of
them implying that T (c) is nondecreasing under the above hypothesis (A)
on g(x).

(C0) H0 = (x) = g(x)2 +
g′′(0)

3g′(0)
2 g(x)

3 − 2G(x)g′(x) ≥ 0 for x ∈ (a, b).

(C1)
{

(i) g′′(x) > 0 for x ∈ (a, b),
(ii) H1(x) = x(g′′(0)g′(x)− g′(0)g′′(x)) ≥ 0 for x ∈ (a, b).

(C2) Ψ(x) = G(x)/g(x)
2
is a convex function for x ∈ (a, b).

(C3)
{

(i) g′′(x) > 0 for x ∈ (a, b),

(ii) H3(x) = 5g′′(x)2 − 3g′(x)g(3)(x) ≥ 0 for x ∈ (g′
−1

(0), b).
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(C4) H4(x) = x

[

3g′(x)2−g(x)g′′(x)−
(

3
g′(0)2

g′′(0)

)

g′′(x)

]

≥ 0 for x ∈ (a, b).

We recall that conditions (C0) and (C1) are given by Chow and Wang
(see Corollary (2-5) and Proposition (3-1) of [6]). (C2) appears in Chicone
[1]. (C3) is due to R. Schaaf (see [4], [5]) but (i) is replaced by a weaker
condition:

if g′(x) = 0, then g(x)g′′(x) < 0.

Note that (C3)(ii) is equivalent to (G′′)−2/3 being convex. Finally, (C4)
was proposed by F. Rothe, and was denoted f4 (see [3]). Observe that the
assumption

xg′′(x) < 0 for all x 6= 0

implies (C4). But then necessarily g′′(0) = 0, which is a very strong condition
actually.

Our new criterion (C5) (see [2]) is more restrictive than (C0) but relatively
easy to check. This condition is more general than conditions (C1) and (C3),
and, with an additional assumption, more general than (C2) and (C4).

(C5)























(i) g′′(x) > 0 for x ∈ (a, b),

(ii) 3g′(x)2 − g(x)g′′(x)− 3g′(0)2

g′′(0)
g′′(x) ≤ 0 for x ∈ (g′

−1
(0), 0),

(iii)
g′(x)g′′(0)

g′′(x)g′(0)2
≥ 2G(x)

g(x)2
for x ∈ (0, b).

As we have seen in our preceding work, each of these five conditions
implies (C0).

In particular, as a corollary we may deduce

Proposition 1. The condition

(C6) H6(x) = x

(

g′(x)g′′(0)

g′′(x)g′(0)2
− 2G(x)

g(x)2

)

> 0 (resp. < 0)

for x ∈ (a, b), x 6= 0,

implies T ′(c) > 0 (resp. T ′(c) < 0) for 0 < c < γ.

P r o o f. Indeed, it suffices to prove that (C6) implies (C0). Notice that
the derivative

(2.1) H ′

0(x) =
g′′(0)

3g′(0)2
g(x)2g′(x)−2G(x)g′′(x)

is connected with H6(x) by g(x)2g′′(x)H6(x) = H ′

0(x). Thus, condition (C6)
implies H0(x) > 0 (resp. H0(x) < 0).

Furthermore, as we have seen before, an interesting question is to com-
pare these sufficient conditions. Indeed it is quite easy to give examples
satisfying (C3) and not (C1), or satisfying (C2) and not (C3). On the other
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hand, the existence of a function satisfying condition (C5) and none of the
others is harder to show. A relevant example was given in [2].

The starting point of our investigation was motivated by the example

g(x) = ex − 1

considered first by Chow–Wang [6], and later by Chicone [1]. They remark
that for this g the previous methods cannot be applied. These authors have
tested their monotonicity conditions (C1) and (C2), respectively.

The function we produce below is a modification of ex − 1. Let

gs(x) =

(

x+ s

2

)

sinh(2x)− cosh(2x)

4
+

1

4
, s > 0.

This function plays an important role in comparing these different condi-
tions. Indeed, there exist different values of s such that the corresponding
function

H0,s(x) = gs(x)
2 +

g′′s (0)

3g′s(0)
2
gs(x)

3 − 2Gs(x)g
′

s(x)

may vanish for an x = z0 6= 0.

We recall that for the parameter value s = 0.636, (C5) is satisfied but
neither (C1), (C2) nor (C3) is (see [2]). In fact, as one could easily see, the
conditions (C4) and (C6) are also applicable.

Unfortunately, we are not able to produce an example of a function g
satisfying condition (C5), but neither (C3), (C2) nor (C1).

3. Nonoptimality of the criteria. We recall below the result of Chow
and Wang [6], which plays a fundamental role in the monotonicity questions
of the energy-period function. Here, their condition is denoted by (C0).

Proposition 2 (Chow–Wang). Under the above conditions (A) on the

function g(x) and

(3.1)
R(x)

g(x)3
− R(A(x))

g(A(x))3
< 0 (or > 0) for x ∈ ]α, 0[,

where R(x) = g(x)2 − 2G(x)g′(x) and A(x) is defined by

G(A(x)) = G(x), x ∈ ]α, 0[, A(x) ∈ ]0, β[,

we have T ′(c) > 0 (or < 0) for 0 < c < γ.

To prove that, they use the following expression for the derivative:

cT ′(c) =

0\
a

g(x)
√

c−G(x)

(

R(x)

g(x)3
− R(A(x))

g(A(x))3

)

dx.
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Remark 1. The criterion (3.1) appears to be more general than criteria
(C0) to (C6). But the function A is only implicitly known:

A′(x) =
g(x)

g(A(x))
.

For testing the monotonicity of the period function, (3.1) seems to be more
difficult to apply.

In the following, we show that for some value of the parameter s, the
above function gs satisfies (C6) but not (C4).

As we have remarked above, (C6) and (C4) are the more general condi-
tions. Then we deduce that these examples do not satisfy any other condi-
tions (except (C0)).

Thus, if we assume condition (A) holds, then the less general mono-
tonicity criteria (C4) and (C6) for the energy-period function of the planar
Hamiltonian system

H(u, v) = 1
2v

2 +G(u)

are not optimal.

In fact we have more:

Theorem 1. Under the hypothesis (A), the most general condition (C0)
is not an optimal criterion.

P r o o f. To prove that, it suffices to produce a function g for which (C0)
is not satisfied. But the period function T (c) depending on the energy of
the (periodic) solutions for the differential equation

d2u

dt2
+ g(u) = 0

has a derivative T ′(c) 6= 0 for all c ∈ (0, γ).

We need the following result, which improves the above Proposition 2.

Proposition 3. Suppose that the function H0(x) vanishes for z0 6= 0.
Using the notation of Proposition 2,

(i) if H0(x) > 0 for y0 = A−1(z0) < x < z0, then

(3.3)
R(x)

g(x)3
− R(A(x))

g(A(x))3
< 0 for y0 ≤ x < 0,

(ii) if H0(x) < 0 for z0 < x < y0 = A(z0), then

(3.4)
R(x)

g(x)3
− R(A(x))

g(A(x))3
> 0 for z0 ≤ x < 0.
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Remark 2. In case (i), this proposition implies that T (c) is increasing
in [0, G(z0)]. In the other case, T (c) is decreasing in [0, G(z0)].

P r o o f (of Proposition 3). Indeed, we deduce from H0(z0) = 0 that

R(z0)

g(z0)3
= − g′′(0)

3g′(0)2
.

Moreover, to prove (i) we use (2.1) and y0 < g′(0)−1, we deduce H ′

0(y0) < 0,
and then z0 > 0. Under the hypothesis on H, we have in particular H0(y0)
> 0, implying that

R(x)

g(x)3
− R(A(x))

g(A(x))3
< 0 for y0 < x < 0,

and
R(y0)

g(y0)3
< − g′′(0)

3g′(0)2
=

R(A(y0))

g(A(y0))3
.

Thus, we obtain (3.3).
Similarly, we prove (ii).

This proposition will be illustrated below by some examples.

4. Examples. Consider again the function

gs(x) =

(

x+ s

2

)

sinh(2x) − cosh(2x)

4
+

1

4
.

As we shall see in Figures 3 and 6, we have

H0,s(x) = gs(x)
2 +

g′′s (0)

3g′s(0)
2
gs(x)

3 − 2Gs(x)g
′

s(x) ≥ 0 (resp. ≤ 0),

for a suitable choice of α, β, γ such that Gs(α) = Gs(β) = γ. z0 is defined
by Proposition 4. The condition H0,s(x) ≥ 0 occurs only if we assume that
s satisfies s < s+ (resp. s > s−) where s+ = 0.63848 . . . (resp. s− =
0.6458 . . .).

In the following, we consider gs for different values of the parameter s.
We use Maple. The details of the calculation are available upon request.

4.1. The value s = 0.63845. With α = −0.073736 . . . and β = 0.071 the
function gs satisfies condition (C6) but not (C4). See Figures 1 and 2. We
take β between the zero of H4,s and the zero of H6,s, denoted by z4,s and
z6,s respectively.

For α = −∞ and β = ∞ the function gs satisfies condition (C0) but
neither (C4) nor (C6). See Figures 1, 2 and 3.

This choice of s is motivated by the fact that in ]−∞,∞[, H0,s(x) > 0
for x ∈ R − {0} and z4,s < z6,s. Thus, in the interval [−0.073736, 0.071],
condition (C6) is satisfied but (C4) is not.
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zero at : 0.070297682
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Fig. 1. H4,s(x) with s = 0.63845, z4,s = 0.070297 . . .

zero at : 0.071015226
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Fig. 2. H6,s(x) with s = 0.63845, z6,s = 0.071015 . . .
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Fig. 3. H0,s(x) with s = 0.63845; here H0,s(x) > 0 for x ∈ ]−∞,∞[ and x 6= 0
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zero at : 0.0074959995
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Fig. 4. H4,s(x) with s = 0.6443, z4,s = 0.007495 . . .

zero at 0.0075004604
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Fig. 5. H6,s(x) with s = 0.6443, z6,s = 0.0075004 . . .

zero at : 0.0093898471
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Fig. 6. H0,s(x) with s = 0.6443, z0,s = 0.009389 . . . ;
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zero at : −0.0086065647
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Fig. 7. H4,s(x) with s = 0.647, z4,s = −0.008606 . . .
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Fig. 8. H6,s(x) with s = 0.647, z6,s = −0.0086009 . . .

zero at : −0.010736416
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Fig. 9. H0,s(x) with s = 0.647, z0,s = −0.010736 . . . ; H0,s(x) < 0 for x ∈ ]α, β], x > z0,s

and x 6= 0
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4.2. The value s = 0.6443. For α = −1.38184 . . . and β = 0.009 the
function gs satisfies condition (C0) but neither (C4) nor (C6). See Figures 4
and 5.

For α = −1.38184 . . . and β = z0,s = 0.0093898 . . . the function gs does
not satisfy condition (C0), we have T ′(c) > 0 for 0 < c < γ = Gs(z0,s) =
2.85424 . . . · 10−5. See Figures 4–6.

4.3. The value s = 0.647. For α = −0.01 and β = 9.94874 . . . · 10−3 the
function gs satisfies condition (C0) but neither (C4) nor (C6). See Figures 7
and 8.

For α = z0,s = −0.010736 . . . and β = 0.0106773 . . . the function gs does
not satisfy condition (C0), we have T ′(c) < 0 for 0 < c < γ = Gs(z0,s) =
3.7085 . . . · 10−5. See Figures 7, 8 and 9.
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