
APPLICATIONES MATHEMATICAE

26,3 (1999), pp. 281–291
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A NOTE ON ORTHOGONAL SERIES

REGRESSION FUNCTION ESTIMATORS

Abstract. The problem of nonparametric estimation of the regression
function f(x) = E(Y |X = x) using the orthonormal system of trigono-
metric functions or Legendre polynomials ek, k = 0, 1, 2, . . . , is consid-
ered in the case where a sample of i.i.d. copies (Xi, Yi), i = 1, . . . , n, of
the random variable (X,Y ) is available and the marginal distribution of
X has density ̺ ∈ L1[a, b]. The constructed estimators are of the form

f̂n(x) =
∑N(n)

k=0 ĉkek(x), where the coefficients ĉ0, ĉ1, . . . , ĉN are determined

by minimizing the empirical risk n−1
∑n

i=1(Yi −
∑N

k=0 ckek(Xi))
2. Suffi-

cient conditions for consistency of the estimators in the sense of the errors
EX |f(X)− f̂n(X)|2 and n−1

∑n
i=1E(f(Xi)− f̂n(Xi))

2 are obtained.

1. Introduction. Let X and Y be random variables taking their values
in [a, b] and R, respectively, with EY 2 < ∞, and let X have a distribution
with density ̺. Let Dn = ((X1, Y1), . . . , (Xn, Yn)) be a sample of indepen-
dent and identically distributed copies of the random variable (X,Y ). In
the regression estimation problem the aim is to find a function g with small
mean squared error E(g(X)−Y )2 on the basis of the available observations
Dn. As is well known, if E|Y | <∞ and g is any measurable function one has

E(g(X) − Y )2 = E(f(X) − Y )2 + E(f(X)− g(X))2

= E(f(X) − Y )2 +

b\
a

(f(x)− g(x))2̺(x) dx,

where f(x) = E(Y |X = x). Clearly the mean squared error for g is close
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to its minimum if and only if the excess error

J(g) =

b\
a

(f(x)− g(x))2̺(x) dx

is close to zero. We will study asymptotic properties of the excess error for
certain series type estimators, namely, for estimators of the form

fn(x) =

N(n)∑

k=0

ĉkek(x),

where the functions ek, k = 0, 1, 2, . . . , constitute an orthonormal system
in L2[a, b] and the coefficients ĉ0, ĉ1, . . . , ĉN(n) are chosen according to some
rule defined in the sequel. In this work we consider the case when either
a = 0, b = 2π or a = −1, b = 1 and ek, k = 0, 1, 2, . . . , denotes the well-
known complete orthonormal system of trigonometric functions in L2[0, 2π]
or Legendre polynomials in L2[−1, 1] (see [6]), respectively.

Lugosi and Zeger [3] proved the following general theorem for series type
regression estimators:

Theorem 1.1 (Lugosi and Zeger). Let hk, k = 1, 2, . . . , be a sequence of

uniformly bounded functions such that the set of all finite linear combina-

tions
∞⋃

k=1

{ k∑

j=1

ajhj(x) : a1, . . . , ak ∈ R

}

is dense in L2([a, b], µ) for any probability measure µ. Let the coefficients

â1, . . . , âN(n) minimize the empirical error

1

n

n∑

i=1

(
Yi −

N(n)∑

k=1

akhk(Xi)
)2

under the constraint
∑N(n)

k=1 |ak| ≤ βn, and define the empirically optimal

estimator fn (of series type) as

fn(x) =

N(n)∑

k=1

âkhk(x).

If N(n) and βn satisfy

N(n) → ∞, βn → ∞ and n−1N(n)β4
n ln(βn) → 0,

as n→ ∞, then J(fn) → 0 in probability , for all distributions of (X,Y ) with
EY 2 < ∞. If , in addition, β4

n = o(n1−δ) for some δ > 0, then J(fn) → 0
almost surely , i.e. the estimator fn is universally consistent.
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However, as remarked in [2], obtaining the empirically optimal estimator
fn is difficult if the minimum is not unique. In Section 2 of the present paper
it is shown that if the density ̺ (of the marginal distribution of the predictor
variable X) satisfies the condition ̺ ≥ c > 0 we can obtain weakly consistent
series type estimators without the necessity of solving the minimization
problem described above. In order to construct such estimators one only
has to solve a system of linear equations with unique solution, which may
also reduce the computation time. Thus, the aim of this work, similarly to
[2], is to offer a remedy, at least in certain cases, for the numerical difficulties
which appear in obtaining the estimators described in the above theorem.

Other approaches to nonparametric regression function estimation giv-
ing weakly and universally consistent estimators are described and briefly
discussed in [2].

In Section 3 we examine the asymptotic mean squared prediction error
n−1

∑n
i=1E(f(Xi) − f̂n(Xi))

2 of the series type estimators considered, in
the case where Yi = f(Xi) + ηi, i = 1, . . . , n, and the observation errors
ηi are independent of the predictor variables Xi, i = 1, . . . , n. Hence, the
present work is also intended to complement and extend the results con-
cerning the consistency of the least squares trigonometric and polynomial
regression function estimators, obtained by the author in [4], [5]. A similar
approach but restricted to less general regression function classes is pre-
sented by Vapnik in the monograph [7].

2. Asymptotic excess error. Consider the vector of coefficients ĉN =
(ĉ0, ĉ1, . . . , ĉN )T determined, for fixed N , by minimizing the empirical risk:

ĉN = arg min
c∈RN+1

1

n

n∑

i=1

(Yi − 〈c, eN (Xi)〉)2,

where eN (x) = (e0(x), e1(x), . . . , eN (x))T . If the functions ek, k = 0, 1, . . . ,
are orthogonal in L2[a, b] and analytic in (a, b), then for N + 1 ≤ n the
vector ĉN can be uniquely determined with probability one as the solution
of the normal equations

(1) ĉN = G−1
n gn,

where

Gn =
1

n

n∑

i=1

eN (Xi)e
N (Xi)

T , gn =
1

n

n∑

i=1

Yie
N (Xi).

This follows from the author’s results (see Lemma 2.2 of [4]) yielding that
the matrices Gn are almost surely positive definite for N + 1 ≤ n, when
Xi, i = 1, . . . , n, form a random sample from a distribution with density
̺ ∈ L1[a, b].



284 W. Popiński

All these conditions hold for the observation model considered and sys-
tems of orthogonal functions ek, k = 0, 1, . . .

Let λn denote the smallest eigenvalue of the normal equations matrix
Gn defined in (1). It is easy to see that it is a measurable random variable
and (see inequality (7) in [5]) for the orthonormal systems considered and a
density ̺ satisfying ̺ ≥ c > 0,

P (0 ≤ λn < c/2) ≤ 4

nc2

b\
a

‖eN (s)‖4̺(s) ds ≤ 4

nc2
M2(eN ),

where M(eN ) = supa≤s≤b ‖eN (s)‖2 and N + 1 ≤ n.

According to Lemma 2.1 of [5] for the trigonometric system in L2[0, 2π]
and N = 2l we have M(eN ) = (N +1)/(2π), while M(eN ) ≤ (N +1)2/2 for
the Legendre system in L2[−1, 1]. Thus, for N + 1 ≤ n and ̺ ≥ c > 0, we
have

(2) P (0 ≤ λn < c/2) ≤ (N + 1)2r

nc2
,

where r = 2 in the Legendre case and r = 1, N = 2l in the trigonometric
case, respectively.

To prove the main results of this section we need the following lemma.

Lemma 2.1. If EY 2 < ∞ and the density ̺ ∈ L1[0, 2π] (resp. ̺ ∈
L1[−1, 1]) satisfies ̺ ≥ c > 0, then there exist constants B,C > 0 such that

the solution of the normal equations (1) minimizes the empirical risk

1

n

n∑

i=1

(
Yi −

N∑

k=0

ckek(Xi)
)2

under the constraint
∑N

k=0 |ck| ≤ B(N + 1)(r+1)/2 for N + 1 ≤ n and Dn 6∈
An, where P (Dn ∈ An) ≤ C(N + 1)2r/n, r = 1, N = 2l in the case of

trigonometric functions, and r = 2 in the case of Legendre polynomials.

P r o o f. First observe that according to (1),

‖ĉN‖ = ‖G−1
n gn‖ ≤ ‖G−1

n ‖ · ‖gn‖ ≤ λ−1
n ‖gn‖(3)

≤ λ−1
n (‖gn − gN‖+ ‖gN‖),

where gN = Egn = (EY e0(X), EY e1(X), . . . , EY eN (X))T , and further-
more

‖gN‖2 =
N∑

k=0

(EY ek(X))2 ≤
N∑

k=0

EY 2Ee2k(X) ≤ EY 2E
N∑

k=0

e2k(X)(4)

≤M(eN )EY 2 ≤ (N + 1)r

2
EY 2.
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Similarly we obtain

E‖gn − gN‖2 =
N∑

k=0

E

[
1

n

n∑

i=1

(Yiek(Xi)−EY ek(X))

]2

=
N∑

k=0

1

n
E(Y ek(X)− EY ek(X))2 ≤ 1

n

N∑

k=0

E(Y ek(X))2

≤ 1

n
EY 2

N∑

k=0

e2k(X) ≤ 1

n
M(eN )EY 2 ≤ (N + 1)r

2n
EY 2,

and from the Chebyshev inequality it follows immediately that

(5) P (‖gn − gN‖ > (N + 1)−r/2) ≤ (N + 1)2r

2n
EY 2.

From (2)–(5) we see that for N+1 ≤ n, ̺ ≥ c > 0, and appropriately chosen
constant B > 0, the inequality

(6) ‖ĉN‖ ≤ 2

c

[
(N + 1)r/2√

2
(EY 2)1/2 +

1

(N + 1)r/2

]
≤ B(N + 1)r/2

holds except for Dn belonging to a set An ⊂ R
2n, where

P (Dn ∈ An) ≤
(N + 1)2r

n

(
1

c2
+
EY 2

2

)
,

with r = 1, N = 2l in the trigonometric case, and r = 2 in the Legendre
case. It further follows from the Schwarz inequality that then we also have

(7)

N∑

k=0

|ĉk| ≤ (N + 1)1/2‖ĉN‖ ≤ B(N + 1)(r+1)/2

except for Dn ∈ An, where P (Dn ∈ An) ≤ C(N + 1)2r/n, B,C > 0.
By their definition the coefficients ĉ0, ĉ1, . . . , ĉN minimize the empirical

risk n−1
∑n

i=1(Yi−
∑N

k=0 ckek(Xi))
2 over (c0, c1, . . . , cN )T ∈ R

N+1 and con-
sequently according to (7) for Dn 6∈ An they also minimize this risk under

the constraint
∑N(n)

k=0 |ck| ≤ B(N + 1)(r+1)/2, which proves the lemma.

For any absolutely continuous probability measure µ the set of all finite
linear combinations of trigonometric functions or Legendre polynomials is
dense in L2([0, 2π], µ) or L2([−1, 1], µ), respectively, which follows from the
fact that the set of continuous functions of compact support is dense in those
function spaces [2]. Thus, if we define our regression function estimator by
the formula

(8) f̂n(x) =

N(n)∑

k=0

ĉkek(x),
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then the property of the coefficients (ĉ0, ĉ1, . . . , ĉN )T proved in Lemma 2.1
suggests that upon imposing appropriate conditions on the sequence of in-
tegers N(n) we can use Theorem 1.1 to prove the weak consistency of the
estimator.

Let us first consider the case of a trigonometric series estimator.

Theorem 2.1. If EY 2 <∞, the density ̺ ∈ L1[0, 2π] satisfies ̺ ≥ c > 0
and the sequence of even natural numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)5 lnN(n)

n
= 0,

then the trigonometric series estimator

f̂n(x) =

N(n)∑

k=0

ĉkek(x)

of the regression function with coefficients ĉ0, ĉ1, . . . , ĉN(n) minimizing the

empirical error

1

n

n∑

i=1

(
Yi −

N(n)∑

k=0

ckek(Xi)
)2

is weakly consistent , i.e. J(f̂n)
p→ 0 as n→ ∞.

P r o o f. By Lemma 2.1 for N = 2l, N + 1 ≤ n,

N∑

k=0

|ĉk| ≤ B(N + 1)

except for Dn ∈ An, where P (Dn ∈ An) ≤ C(N + 1)2/n.

Putting βn = B(N(n) + 1), where the sequence of even integers N(n),
n = 1, 2, . . . , satisfies N(n) → ∞, N(n)5 lnN(n)/n → 0, we have βn → ∞
and (N(n) + 1)β4

n ln βn/n→ 0 as n→ ∞, so for the estimator fn defined in
Theorem 1.1 we have Jn(fn) → 0 in probability. Since for the sequence N(n)
satisfying the above conditions we also have N(n)2/n→ 0 and consequently

P (Dn ∈ An) → 0 it is easy to see that J(f̂n) → 0 in probability, which
completes the proof.

Let us remark that we can use bases other than the Legendre polynomials
to construct the polynomial series estimator (8). In fact the estimator (8)
does not change if we use the vector function hN (x) = AeN (x), where A is
a nonsingular matrix, instead of eN (x) for constructing it.

For polynomial series estimators the following theorem holds.
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Theorem 2.2. If EY 2 <∞, the density ̺ ∈ L1[−1, 1] satisfies ̺ ≥ c > 0
and the sequence of natural numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)9 lnN(n)

n
= 0,

then the polynomial series estimator

f̂n(x) =

N(n)∑

k=0

ĉkek(x)

of the regression function with coefficients ĉ0, ĉ1, . . . , ĉN(n) minimizing the

empirical error

1

n

n∑

i=1

(
Yi −

N(n)∑

k=0

ckek(Xi)
)2

is weakly consistent , i.e. J(f̂n)
p→ 0 as n→ ∞.

P r o o f. We apply the same technique as for Theorem 2.1. However,
since the Legendre polynomials forming an orthonormal system in L2[−1, 1]
are not uniformly bounded we have to change the basis used to construct
the estimator in order to be able to use Theorem 1.1. We can represent
the polynomial series estimator f̂n using the basis of polynomials pk =
(2k + 1)−1/2ek, k = 0, 1, 2, . . . , which are uniformly bounded [6]; for this

basis the coefficients d̂0, d̂1, . . . , d̂N globally minimizing the empirical risk
satisfy d̂k =

√
(2k + 1) ĉk, k = 0, 1, . . . , N . Consequently, by Lemma 2.1 for

N + 1 ≤ n we obtain

N∑

k=0

|d̂k| =
N∑

k=0

√
2k + 1 |ĉk| ≤

√
2N + 1

N∑

k=0

|ĉk|

≤
√
2 (N + 1)1/2B(N + 1)3/2 ≤

√
2B(N + 1)2,

except for Dn ∈ An, where P (Dn ∈ An) ≤ C(N + 1)4/n.

Now, putting βn =
√
2B(N(n) + 1)2, where the sequence of integers

N(n), n = 1, 2, . . . , satisfies N(n) → ∞, N(n)9 lnN(n)/n → 0, we have
βn → ∞ and (N(n) + 1)β4

n ln βn/n→ 0 as n→ ∞. Since we then also have

P (Dn ∈ An) → 0 Theorem 1.1 yields that J(f̂n) → 0 in probability.

3. Asymptotic mean squared prediction error. In this section we
consider the special case of our observation model when Yi = f(Xi)+ηi, i =
1, . . . , n, where f ∈ L2([a, b], µ) is an unknown function and ηi, i = 1, . . . , n,
are independent identically distributed random variables with zero mean
value and finite variance σ2

η > 0. We assume that the random variable ω =
(X1, . . . ,Xn) is independent of the observation errors η = (η1, . . . , ηn). As
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in the previous section we consider series type regression function estimators

f̂n(x) =

N∑

k=0

ĉkek(x).

Define the mean squared prediction error by

RnN =
1

n
EωEη

n∑

i=1

(f(Xi)− f̂n(Xi))
2.

We prove the following theorem concerning consistency in the sense of the
error RnN of the series type estimators considered and next we show that
it has interesting consequences.

Theorem 3.1. If the points X1, . . . ,Xn form a random sample from

an absolutely continuous distribution µ with density ̺ ∈ L1[0, 2π] (resp.
̺ ∈ L1[−1, 1]) and the sequence of natural numbers N(n), n = 1, 2, . . . ,
satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)/n = 0,

then the trigonometric (resp. polynomial) series estimator f̂n of the regres-

sion function f ∈ L2([0, 2π], µ) (resp. f ∈ L2([−1, 1], µ)) is consistent in

the sense of the mean squared prediction error , i.e.

lim
n→∞

EωEη
1

n

n∑

i=1

(f(Xi)− f̂n(Xi))
2 = 0.

P r o o f. The standard squared bias plus variance decomposition with
respect to the η variable yields

RnN =
1

n
Eω

n∑

i=1

(f(Xi)− Eη f̂n(Xi))
2 +

1

n
Eω

n∑

i=1

Eη(f̂n(Xi)− Eη f̂n(Xi))
2.

Taking into account (1) we obtain for N + 1 ≤ n,

1

n

n∑

i=1

Eη(f̂n(Xi)− Eηf̂n(Xi))
2 =

1

n

n∑

i=1

Eη

〈
eN (Xi), G

−1
n

1

n

n∑

j=1

ηje
N (Xj)

〉2

=
σ2
η

n3

n∑

i=1

n∑

j=1

〈eN (Xi), G
−1
n eN (Xj)〉2

=
σ2
η

n2

n∑

i=1

〈eN (Xi), G
−1
n eN (Xi)〉

=
σ2
η

n
TrGnG

−1
n = σ2

η

N + 1

n
,
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which implies the equality

RnN =
1

n
Eω

n∑

i=1

(f(Xi)−Eη f̂n(Xi))
2 + σ2

η

N + 1

n
.

Now, since for fixed observation points Xi, i = 1, . . . , n, we have

1

n

n∑

i=1

(f(Xi)− Eηf̂n(Xi))
2 ≤ 1

n

n∑

i=1

(f(Xi)− fN(Xi))
2

for any linear combination fN =
∑N

k=0 ckek, we immediately obtain the
following bound for the risk RnN :

RnN ≤ 1

n

n∑

i=1

Eω(f(Xi)− fN(Xi))
2 + σ2

η

N + 1

n
(9)

=

b\
a

(f(x)− fN(x))2 dµ(x) + σ2
η

N + 1

n
,

where fN =
∑N

k=0 ckek, c0, c1, . . . , cN ∈ R. As already remarked, for any
absolutely continuous probability measure µ the set of all trigonometric or
algebraic polynomials is dense in L2([0, 2π], µ) or L2([−1, 1], µ), respectively.
Hence, in view of inequality (9) the assertion follows.

Note that the assertion of Theorem 3.1 can be rewritten in the form

lim
n→∞

EωEη

b\
a

(f − f̂n)
2 dFn = 0,

where Fn denotes the empirical distribution function of the random sample
X1, . . . ,Xn.

Let us now observe that the estimator ĉN , which is a function of the
independent random variables η1, . . . , ηn and X1, . . . ,Xn, has the following
symmetry property:

ĉN (η1, . . . , ηn,X1, . . . ,Xn) = ĉN (ηp(1), . . . , ηp(n),Xp(1), . . . ,Xp(n))

for any permutation p of {1, . . . , n}. This implies that the random vari-

ables f(Xi) − f̂n(Xi) = f(Xi) − 〈ĉN , eN (Xi)〉, i = 1, . . . , n, have the same
distribution and consequently

E(f(X1)− f̂n(X1))
2 = E(f(X2)− f̂n(X2))

2 = . . . = E(f(Xn)− f̂n(Xn))
2.

If the assumptions of Theorem 3.1 hold, then the above equalities imply
that for a fixed index i,

lim
n→∞

EωEη(f(Xi)− f̂n(Xi))
2 = 0

as n→ ∞.
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4. Conclusions. Originally, Theorem 1.1 was proved for the more gen-
eral case where the predictor variable X is multivariate [3]. In consequence,
using the same technique of proof as above we can obtain a theorem anal-
ogous to Theorem 2.1 for the regression function E(Y |X = x) using the
orthonormal system of trigonometric functions in the space L2(Q), Q =
[0, 2π]d ⊂ R

d, d > 1, when X takes values in the d-dimensional cube Q.
The same remark also concerns Theorem 3.1. Moreover, inspection of the
proof of Theorem 3.1 reveals that the theorem also holds in the case when
the observation errors are zero mean independent random variables with
bounded variances, i.e. when supi Eη

2
i ≤ C <∞.

Lugosi and Zeger [3] proved a theorem analogous to Theorem 1.1 also in
the case of neural network estimators, i.e. estimators of the form

(10) r̂(z) = ξ̂0 +

M∑

i=1

ξ̂iψ(〈γ̂i, z〉+ γ̂i0),

where ψ is the activation function, z ∈ R
d, and ξ̂0, ξ̂j , γ̂j0 ∈ R, γ̂j ∈ R

d,
j = 1, . . . ,M .

Our results also contribute to understanding the asymptotic properties
of neural network estimators. Namely, as shown by Gallant and White [1],
multivariate trigonometric series estimators can be represented as neural
network estimators of type (10) with the cosine-squasher activation function

and properly chosen weights ξ̂0, ξ̂j , γ̂j0 ∈ R, γ̂j ∈ R
d, j = 1, . . . ,M . Thus,

the above mentioned multivariate version of Theorem 3.1 assures existence
of neural network estimators which are consistent in the sense of the mean
squared prediction error for the observation model considered in Section 3.
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