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WITH AVERAGE COSTS

Abstract. This paper studies semi-Markov control models with Borel
state and control spaces, and unbounded cost functions, under the average
cost criterion. Conditions are given for (i) the existence of a solution to the
average cost optimality equation, and for (ii) the existence of strong opti-
mal control policies. These conditions are illustrated with a semi-Markov
replacement model.

1. Introduction. This paper deals with semi-Markov control models
(SMCMs) with Borel state and action spaces, possibly unbounded costs,
and the average cost (AC) criterion. Under suitable assumptions on the
transition law, the cost functions and the distribution of the sojourn times,
our main result (Theorem 3.5) shows the existence of a solution to the
average cost optimality equation and the existence of a strong AC-optimal
stationary policy.

Our approach is a combination of facts and techniques from different
sources. For instance, our Assumptions 3.1 and 3.2 are partly based on
hypotheses previously used in [7] for Markov control models (MCMs), but
with very important differences:

(a) In contrast to [7, Assumption 2.3], we do not impose the condition
of positive Harris recurrence. Instead, in Lemma 4.1 below we prove that
the latter condition is a consequence of our Assumptions 3.2 and 3.3. (The
former is the same as [7, Assumption 2.4].)
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(b) We consider cost-per-stage functions that may take positive as well
negative values. Thus, since these functions may also be unbounded, we
cannot use the standard vanishing-discount argument (as in the proof of
Theorem 2.6 in [7]) to obtain a stationary policy, say f∗, which is AC-
optimal in the class of all policies; we deduce instead that f∗ is AC-optimal
in the (much smaller) subclass of stationary policies.

(c) We do not require a Lipschitz-like condition as in [7, Assumption 2.7],
and, therefore, we cannot use the Ascoli Theorem to obtain a solution to
the AC-optimality equation (ACOE); see Theorem 2.8 and §6 in [7]. In the
present paper, to obtain the ACOE (in (6) below) we use a version of the pol-
icy iteration (or Howard’s) algorithm which at the initialization step uses the
policy f∗ mentioned in (b). In this part we essentially follow [24], [10, §10.3.B].

Another key step in the proof of our main result, Theorem 3.5, is that
we use a data transformation to associate a MCM with our original SMCM.
This transformation has been used by several authors (for example, [4, 5,
21]) to study SMCMs with a countable state space. Finally, as is well known,
for SMCMs the AC criterion itself can be defined in several different forms.
Here we use the form in Definition 2.3, which has been previously studied
by many authors, for example [2–5, 8, 11, 16, 18, 19, 21–23]. Note, however,
that most of these references deal with a countable state space (see also [12,
20]), whereas those that consider general Borel spaces follow the so-called
vanishing-discount approach [2, 13, 19] and/or use bounded costs [11].

The remainder of the paper is organized in six sections. In Section 2 we
introduce the SMCM we will be dealing with, together with the performance
criterion. In Section 3 we introduce the hypotheses and present our main
result, Theorem 3.5. Section 4 presents some preliminary facts, and in
Section 5 we introduce the data transformation and some results related to
the associated MCM. The proof of Theorem 3.5 is given in Section 6. The
paper concludes in Section 7 with an example of a replacement model that
satisfies the assumptions of our main result.

Terminology and notation. A Borel subset, say X, of a complete and
separable metric space is called a Borel space, and it is endowed with the
Borel σ-algebra B(X). If X and Y are Borel spaces, a stochastic kernel on

X given Y is a function P (· | ·) such that P (· | y) is a probability measure on
X for every fixed y ∈ Y and P (B | ·) is a (Borel-) measurable function on Y
for every B ∈ B(X). We denote by N (respectively N0) the set of positive
(resp. nonnegative) integers; R (resp. R+) denotes the set of real (resp.
nonnegative real) numbers.

2. The semi-Markov control model. The semi-Markov control

model (X,A, {A(x) : x ∈ X}, Q, F,D, d) consists of the state space X and the
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control set A, which are assumed to be Borel spaces. For each x ∈ X, there
exists a non-empty Borel subset A(x) of A whose elements are the admissible

controls if the state of the system is x. It is assumed that the set

K := {(x, a) : x ∈ X, a ∈ A(x)}

is a Borel subset of X × A and that it contains the graph of a measurable
function f : X → A. Moreover, Q is a stochastic kernel on X given K and
represents the transition law , whereas for each (x, a) ∈ K, F (· |x, a) is a
distribution function and represents the distribution of the sojourn times.
The measurable functions D and d on K are cost functions.

If xn and an denote the state of the system and the control action at the
nth decision time Tn (n = 0, 1, . . . , with T0 := 0), then D(xn, an) stands
for the immediate cost incurred at time Tn, and d(xn, an) is the cost rate
during the interval [Tn, Tn+1). The corresponding transition (or sojourn)
time δn+1 := Tn+1 − Tn (n = 0, 1, . . .) has the distribution F (· |xn, an).

Definition 2.1. F denotes the set of measurable functions f : X → A
such that f(x) ∈ A(x) for x ∈ X.

For each n = 0, 1, . . . define the space of admissible histories until the
nth transition by H0 := X and

Hn := (K× R)n ×X for n = 1, 2, . . .

Definition 2.2. A control policy (or briefly, a policy) is a sequence
π = {πn} of stochastic kernels πn on A given Hn satisfying the constraint
πn(A(xn) | in) = 1 for all in = (x0, a0, δ1, . . . , xn−1, an−1, δn, xn) ∈ Hn,
n ∈ N0. The collection of all policies is denoted by Π. A policy π = {πn}
is said to be a stationary policy if there exists f ∈ F such that πn(· | in)
is concentrated at f(xn) for each n. We will identify F with the class of
stationary policies.

Let (Ω,F) be the measurable space consisting of the sample space Ω :=
(X ×A×R+)

∞ and the corresponding product σ-algebra F . By a theorem
of C. Ionescu Tulcea (see [1], Theorem 2.7.2, p. 109), for each initial state
x ∈ X and each policy π ∈ Π, there exists a probability measure Pπ

x such
that for all B ∈ B(A), C ∈ B(X) and in = (x0, a0, δ1, . . . , xn−1, an−1, δn, xn)
in Hn, with n = 0, 1, . . . , we have

Pπ
x (x0 = x) = 1,

Pπ
x (an ∈ B | in) = πn(B | in),

Pπ
x (xn+1 ∈ C | in, an, δn+1) = Q(C |xn, an),(1)

and

Pπ
x (δn+1 ≤ t | in, an) = F (t |xn, an).

Eπ
x denotes the expectation operator with respect to Pπ

x .
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For a policy π ∈ Π, the random variable xn describes the state of the
system at the time of the nth transition, when the controls are chosen ac-
cording to the policy π. It is clear that, in general, such a state depends
on the evolution of the system in the first n − 1 transitions; however, for
a stationary policy f , {xn} is a Markov chain with transition probability
Q(· |x, f(x)). This is a consequence of the properties of the conditional ex-
pectation and the Markov-like property (1).

Themean holding time in the state x when the control a ∈ A(x) is chosen
is given by

τ(x, a) :=
\
R

t F (dt |x, a).

Definition 2.3. For x ∈ X and π ∈ Π, define the expected average cost

by

J(π, x) := lim sup
n→∞

Eπ
x {

∑n−1
k=0 [D(xk, ak) + δk+1d(xk, ak)]}

Eπ
x (Tn)

.

The function

J(x) := inf
π∈Π

J(π, x)

is the optimal average cost function, and a policy π∗ ∈ Π is said to be
average cost optimal (AC-optimal) if J(x) = J(π∗, x) for all x ∈ X.

Using properties of the conditional expectation we can write

(2) J(π, x) = lim sup
n→∞

Eπ
x [
∑n−1

k=0 C(xk, ak)]

Eπ
x [
∑n−1

k=0 τ(xk, ak)]
,

where C(x, a) := D(x, a) + τ(x, a)d(x, a).

Remark 2.4. A Markov control model (MCM) is the particular case of
a SMCM in which δn ≡ 1 for all n, so that τ(x, a) = 1 and

J(π, x) = lim sup
n→∞

Eπ
x [
∑n−1

k=0 C(xk, ak)]

n
.

Remark 2.5. For a stationary policy f ∈ F, we will use the abbreviated
notation (x, f) in lieu of (x, f(x)). In particular, C(x, f) := C(x, f(x)), and
Q(· |x, f) := Q(· |x, f(x)).

3. The optimality conditions and main result. The problem we
are concerned with is to show the existence of AC-optimal policies, which
requires imposing suitable assumptions on the model. As was already men-
tioned in §1, the assumptions we use here are partly based on the hypotheses
introduced in [7] for MCMs.
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Assumption 3.1. (a) A(x) is compact for each state x ∈ X.
(b) C(x, ·) is l.s.c. (lower semicontinuous) on A(x) for each x ∈ X;

moreover, there exist a measurable function v : X → [1,∞) and γ ∈ R such
that for each x ∈ X,

(3) sup
a∈A(x)

|C(x, a)| ≤ γv(x),

and

a 7→
\
v(y)Q(dy |x, a) is continuous on A(x).

(c) For each x ∈ X, the transition law Q is strongly continuous on A(x);
that is, for each bounded measurable function u : X → R, the function

a 7→
\
u(y)Q(dy |x, a)

is continuous on A(x).
(d) For each x ∈ X, τ(x, ·) is continuous on A(x), and there exist positive

constants m and M such that

(4) m ≤ τ(x, a) ≤M ∀(x, a) ∈ K.

Assumption 3.2. There exist a probability measure ν on X and a
number 0 < α < 1 for which the following holds: For each f ∈ F there is
a nonnegative measurable function φf on X such that for every x ∈ X and
B ∈ B(X):

(a) Q(B |x, f) ≥ φf (x)ν(B).
(b)

T
v(y)Q(dy |x, f) ≤ φf (x)‖ν‖v + αv(x), where the norm is defined

by ‖ν‖v :=
T
v(y) ν(dy) <∞.

(c) infF
T
φf (y) ν(dy) > 0.

Note that taking B = X in Assumption 3.2(a), we obtain φf (x) ≤ 1 for
all x ∈ X.

Assumption 3.3. There is a σ-finite measure ψ on X with respect to
which, for each f ∈ F, the Markov chain defined byQ(· | ·, f) is ψ-irreducible.

We denote by L∞
v the normed linear space of measurable functions u :

X → R with norm

‖u‖v := sup
x∈X

|u(x)|

v(x)
<∞.

Definition 3.4. A pair (j, h(·)) consisting of a real number j and a
measurable function h is said to be a solution to the average cost optimality

equation (ACOE) if, for all x ∈ X,

(5) h(x) = min
a∈A(x)

{
C(x, a)− jτ(x, a) +

\
h(y)Q(dy |x, a)

}
.

In the case of a MCM (as in Remark 2.4), τ(x, a) ≡ 1 in (5).
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We are now ready to state our main result, Theorem 3.5. The proof
is presented in Section 6, and Section 7 shows an example for which the
hypotheses of the theorem are satisfied.

Theorem 3.5. If Assumptions 3.1–3.3 hold , then there exist j ∈ R,
h ∈ L∞

v and f ∈ F such that :

(a) (j, h(·)) is a solution to the ACOE (5) and , furthermore,

(6) h(x) = C(x, f)− jτ(x, f) +
\
h(y)Q(dy |x, f).

(b) f is AC-optimal and j = J(x) = J(f, x) for all x ∈ X; in fact , f is

strong AC-optimal , in the sense that

J(f, x) ≤ lim inf
n→∞

Eπ
x [
∑n−1

k=0 C(xk, ak)]

Eπ
x (Tn)

≤ J(π, x)

for each π ∈ Π and x ∈ X.

Assumptions 3.1–3.3 are supposed to hold throughout the sequel. In
the next two sections we present preliminary results needed to prove Theo-
rem 3.5.

4. Preliminary results. Concerning Lemma 4.1 see the paragraph (a)
in Section 1. In the proof of the lemma we use the notions of small and
petite sets, for which the reader is referred to [6, 14, 15], for instance. Also
recall that the function φf in Assumption 3.2 satisfies 0 ≤ φf ≤ 1.

Lemma 4.1. If Assumptions 3.2 and 3.3 hold , then, for each f ∈ F,
the Markov chain defined by Q(· | ·, f) is positive Harris recurrent ; hence,
in particular , Q(· | ·, f) admits a unique invariant probability measure which

will be denoted by qf .

P r o o f. Choose an arbitrary stationary policy f . Then, by Assumption
3.2(c), there is a positive number d = df for which the set C = Cf given by

C := {x ∈ X : φf (x) ≥ d}

has positive ν-measure. Moreover, by Assumption 3.2(a),

Q(B|x, f) ≥ dν(B) ∀x ∈ C, B ∈ B(X),

which implies that C is a small set, and, therefore, petite (by [14], Proposi-
tion 5.5.3). Now note that we may take d = df to satisfy d ≤ (1−α)/(2‖ν‖v).
Then, from Assumption 3.2(b) and the fact that 0 ≤ φf ≤ 1, we obtain\

v(y)Q(dy |x, f) ≤ αv(x) + ‖ν‖vIC(x) + d‖ν‖v ,

(where IC denotes the indicator of C), which yields\
v(y)Q(dy |x, f) ≤ βv(x) + bIC(x)
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with β := (α+1)/2 < 1 and b := ‖ν‖v . This inequality and Assumption 3.3
imply that Q(· | ·, f) is positive Harris recurrent, by Theorem 2.2 in [6].

From Lemma 4.1 above and Lemma 3.4 in [7] we obtain the following.

Lemma 4.2. If Assumptions 3.2 and 3.3 hold , then there exist constants

k ≥ 0 and 0 < η < 1 such that for every g ∈ L∞
v and x ∈ X,

(7) sup
f∈F

∣∣∣
\
g(y)Qn(dy | x, f)−

\
g(y) qf (dy)

∣∣∣ ≤ ‖g‖vkv(x)η
n,

where Qn(· | ·, f) denotes the n-step transition kernel.

A consequence of Lemma 4.2 is that, for each f ∈ F, the expected
average cost in (2) is a constant:

(8) J(f, x) =

T
C(y, f) qf(dy)T
τ(y, f) qf (dy)

=: Jf ∀x ∈ X.

On the other hand, for each n ∈ N and f ∈ F, Assumption 3.1(b) gives
∣∣∣
\
C(y, f)Qn(dy |x, f)

∣∣∣ ≤ γ
\
v(y)Qn(dy |x, f),

and, by Assumption 3.2(b),\
v(y)Qn(dy |x, f) ≤ ‖ν‖v(1 + α+ . . .+ αn−1) + αnv(x)

since φf (·) ≤ 1. Hence

sup
f∈F

\
C(y, f) qf (dy) ≤

γ‖ν‖v
1− α

=: γ′,

which in turn yields

(9) sup
f∈F

|Jf | ≤
γ′

m
,

where m is the constant in (4).

Lemma 4.3. Suppose that Assumptions 3.1–3.3 hold. Then:

(a) For each f ∈ F there exists hf ∈ L∞
v such that

(10) hf (x) = C(x, f)− Jfτ(x, f) +
\
hf (y)Q(dy |x, f) ∀x ∈ X.

(b) If the pair (J ′
f , h

′
f ), with J

′
f ∈ R and h′f ∈ L∞

v , is another solution

to the equation (10), i.e.,

(11) h′f (x) = C(x, f)− J ′
fτ(x, f) +

\
h′f (y)Q(dy |x, f) ∀x ∈ X,

then J ′
f = Jf and h′f (x) = hf (x) + k for all x ∈ X and some constant k.

(c) For x ∈ X, π ∈ Π, and u ∈ L∞
v ,

(12) lim
n→∞

Eπ
xu(xn)

n
= 0.
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P r o o f. (a) Define

hf (x) :=

∞∑

n=0

Ef
x [C(xn, f)− Jf τ(xn, f)].

First we prove that hf ∈ L∞
v . To do this, observe that, using (8) and (7),

for each n = 0, 1, . . . we obtain

|Ef
x [C(xn, f)− Jfτ(xn, f)]|

=
∣∣∣
\
C(y, f)Qn(dy | x, f)− Jf

\
τ(y, f)Qn(dy |x, f)

∣∣∣

≤
∣∣∣
\
C(y, f)Qn(dy |x, f)−

\
C(y, f) qf (dy)

∣∣∣

+ |Jf |
∣∣∣
\
τ(y, f)Qn(dy |x, f)−

\
τ(y, f) qf (dy)

∣∣∣

≤Mv(x)ηn

for some constant M . Therefore

(13) |hf (x)| ≤
M

1− η
v(x) ∀x ∈ X,

and so hf ∈ L∞
v . Finally, (10) follows from the definition of hf and the

Markov property.
(b) Integrating both sides of (11) with respect to the invariant probability

measure qf , we obtain J ′
f = Jf . On the other hand, subtracting (11) from

(10), it follows that the function u ∈ L∞
v defined by u(x) := hf (x) − h′f (x)

is an f -harmonic function, i.e.,

u(x) =
\
u(y)Q(dy |x, f) for all x ∈ X.

This implies that

u(x) =
\
u(y)Qn(dy |x, f) for all x ∈ X and n = 0, 1, . . . ,

and, therefore, letting n→ ∞, we deduce from (7) that u(·) is the constant
k :=

T
u dqf .

(c) Using Example 2.6 in [17], it can be shown that for each x ∈ X and
a ∈ A(x), there exists f ∈ F such that a = f(x). Thus, Assumption 3.2(b)
implies that

sup
a∈A(x)

\
v(y)Q(dy |x, a) ≤ ‖ν‖v + αv(x),

because φf (·) ≤ 1. Then, for u ∈ L∞
v , x ∈ X and π ∈ Π,

(14) |Eπ
xu(xn)| ≤ ‖u‖v

[
‖ν‖v
1− α

+ αnv(x)

]
∀n ∈ N,

which yields (12).
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5. The associated Markov model. The proof of Theorem 3.5 uses,
in particular, the transformation introduced in [21] and applied by several
authors for SMCMs with denumerable state space (see e.g. [4, 5, 21]). In
this section we define the transformation in our present context and prove
some results related to the Markov control model (MCM) associated with
the SMCM.

Definition 5.1. Let τ be a real number such that 0 < τ < m (see (4)).

Define the function Ĉ : K → R and the stochastic kernel Q̂ on X given K by

(15) Ĉ(x, a) :=
C(x, a)

τ(x, a)
and

(16) Q̂(B |x, a) :=
τ

τ(x, a)
Q(B | x, a) +

(
1−

τ

τ(x, a)

)
δx(B)

where δx(·) is the Dirac measure concentrated at x.

We refer to (X,A, {A(x) : x ∈ X}, Q̂, Ĉ) as the Markov control model

associated with the SMCM. The following lemmas essentially show that the
associated MCM satisfies Assumptions 3.1–3.3.

Lemma 5.2. Parts (b) and (c) of Assumption 3.1 hold when C and Q

are replaced by Ĉ and Q̂, respectively.

P r o o f. The lemma trivially follows from (15), (16) and Assumption 3.1.
In particular, note that for x ∈ X and u a bounded measurable function
on X, the function defined on A(x) by

u′(a) :=
\
u(y) Q̂(dy |x, a)

can be written as

u′(a) =
τ

τ(x, a)

\
u(y)Q(dy |x, a) + u(x)

(
1−

τ

τ(x, a)

)
.

The following two lemmas state that the associated MCM satisfies As-
sumptions 3.2 and 3.3.

Lemma 5.3. Suppose that Assumption 3.2 holds and for each f ∈ F, let
φ̂f (x) := [τ/τ(x, f)]φf (x). Then for all B ∈ B(X) and x ∈ X,

(a) Q̂(B |x, f) ≥ φ̂f (x)ν(B).
(b) Under the additional condition (4),\

v(y) Q̂(dy |x, f) ≤ φ̂f (x)‖ν‖v + α̂v(x),

where 0 < α̂ < 1 is the constant α̂ := [1− (τ/M)(1 − α)].

(c) infF
T
φ̂f (y) ν(dy) > 0.

P r o o f. Parts (a) and (c) follow directly from Assumption 3.2(a), 3.2(c)
and from (16). On the other hand, by Assumption 3.2(b), defining T (x, f) :=
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τ/τ(x, f) we have\
v(y) Q̂(dy |x, f) = T (x, f)

\
v(y)Q(dy |x, f) + [1− T (x, f)]v(x)

≤ T (x, f)φf (x)‖ν‖v + T (x, f)αv(x) + [1− T (x, f)]v(x)

≤ φ̂f (x)‖ν‖v + v(x)[1 − T (x, f)(1− α)]

≤ φ̂f (x)‖ν‖v + α̂v(x).

Lemma 5.4. For each stationary policy f , the Markov chain defined by

Q̂(· | ·, f) is ψ-irreducible, where ψ is the irreducibility measure in Assump-

tion 3.3.

P r o o f. Choose an arbitrary stationary policy f , and let T (x, f) be as
in the proof of Lemma 5.3. Then, for all x ∈ X and B ∈ B(X), we deduce
from (16) that

(17) Q̂(B |x, f) ≥ T (x, f)Q(B |x, f) ≥
τ

M
Q(B |x, f),

where M is the constant in (4). The latter inequality and Assumption 3.3
yield the desired conclusion.

As a consequence of Lemmas 5.3, 5.4, and 4.1 we obtain:

Lemma 5.5. For each stationary policy f , the Markov chain defined by

Q̂(· | ·, f) is positive Harris recurrent. Hence, in particular , it admits a

unique invariant probability measure q̂f .

We can also note in passing that Q̂(· | ·, f) is aperiodic since, by (16),

Q̂({x} |x, f) ≥ 1− τ/m > 0 for each x ∈ X.

Remark 5.6. From Lemmas 5.2 to 5.5 and 4.3, it follows that for each
stationary policy f ∈ F, there exists a pair (Ĵf , ĥf ) with Ĵf ∈ R and ĥ ∈ L∞

v

that is a solution to the Poisson equation for Q̂(· | ·, f), that is,

(18) ĥf (x) = Ĉ(x, f)− Ĵf +
\̂
hf (y) Q̂(dy |x, f)

for all x ∈ X. Therefore, integrating with respect to q̂f (the invariant prob-

ability measure for Q̂) on both sides of (18), we get

Ĵf =
\̂
C(y, f) q̂f (dy) = Ĵ(f, x) := lim

n→∞

Ef
x

∑n−1
k=0 Ĉ(xk, ak)

n
.

Now, defining hf (·) := τ ĥf (·), from (18) we obtain

hf (x) = C(x, f)− Ĵf τ(x, f) +
\
hf (y)Q(dy |x, f),

which [by Lemma 4.3 and (8)] implies

(19) Ĵf = Ĵ(f, x) = J(f, x) = Jf .
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6. Proof of Theorem 3.5. (a) We begin exactly as in [7], by showing
the existence of a solution to the optimality inequality (20) below. However,
in contrast to Theorem 2.6 in [7], in our present context the stationary policy
f∗ in (20) turns out to be optimal in F only, not in all of Π [see paragraph

(b) in Section 1]. More explicitly, there exist j ∈ R, ĥ ∈ L∞
v and f∗ ∈ F

such that

(i) we have

ĥ(x) ≥ min
a∈A(x)

{
Ĉ(x, a) − j +

\̂
h(y) Q̂(dy |x, a)

}
(20)

= Ĉ(x, f∗)− j +
\̂
h(y)Q(dy |x, f∗),

(ii) j = Ĵ(f∗, x) and f∗ is AC-optimal on F for the associated MCM,
i.e.,

j = Ĵ(f∗, x) = inf
f∈F

Ĵ(f, x) ∀x ∈ X.

From the latter fact and (19) it follows that f∗ is AC-optimal on F for
the original SMCM, i.e.,

j = J(f∗, x) = inf
f∈F

J(f, x) ∀x ∈ X.

To complete the proof of part (a), we shall now proceed as in the policy

iteration (or Howard’s) algorithm (cf. [9, 10, 16, 18, 24]).

Let h′(x) := τ ĥ(x), where τ is the number in (16). If T is the operator
defined on L∞

v by

Tu(x) := min
a∈A(x)

{
C(x, a)− jτ(x, a) +

\
u(y)Q(dy |x, a)

}
,

then, from the inequality in (20), there exists f0 ∈ F such that

h′(x) ≥ Th′(x) = C(x, f0)− jτ(x, f0) +
\
h′(y)Q(dy |x, f0).

This implies that Ĵ(f∗, x) = j ≥ J(f0, x) = Ĵ(f0, x) ≥ Ĵ(f∗, x). Hence,
j = J(f0, x) for all x ∈ X and, therefore, also f0 is AC-optimal in the class
of stationary policies. On the other hand, taking h0 ∈ L∞

v satisfying [as in
(10)]

(21) h0(x) = C(x, f0)− jτ(x, f0) +
\
h0(y)Q(dy |x, f0),

we deduce that the function u(x) := h′(x) − h0(x) is an f0-superharmonic
function in L∞

v , that is, u(x) ≥
T
u(y)Q(dy |x, f0) for all x ∈ X. This

implies that u(·) is a constant qf0 -a.e., and so

h′(x) = Th′(x) qf0 -a.e.



326 F. Luque-Vásquez and O. Hernández-Lerma

Now let f1 be a stationary policy such that

(22) Th0(x) = C(x, f1)− jτ(x, f1) +
\
h0(y)Q(dy |x, f1),

and let (j1, h1) be a solution to the equation

(23) h1(x) = C(x, f1)− j1τ(x, f1) +
\
h1(y)Q(dy |x, f1).

Then, from (21) and (22), we obtain

(24) h0(x) ≥ C(x, f1)− jτ(x, f1) +
\
h0(y)Q(dy |x, f1),

and integrating both sides of (24) with respect to qf1 we have

j ≥

T
C(y, f1) qf1(dy)T
τ(y, f) qf1(dy)

= J(f1, x) = j1,

so that j = j1. Moreover, subtracting (23) from (24),

h0(x)− h1(x) ≥
\
[h0(y)− h1(y)]Q(dy |x, f1),

which implies [by (7)]

h0(x)− h1(x) ≥
\
[h0(y)− h1(y)] qf1(dy) ∀x ∈ X,

and this in turn yields

h0(x)− h1(x) =
\
[h0(y)− h1(y)] qf1(dy) qf1 -a.e.

Proceeding inductively we obtain sequences {fn} ⊂ F and {hn} ⊂ L∞
v

such that, for each n and x ∈ X, we have j = J(fn, x) and

hn(x) = C(x, fn)− jτ(x, fn) +
\
hn(y)Q(dy |x, fn);

moreover,

(25) Thn(x) = C(x, fn+1)− jτ(x, fn+1) +
\
hn(y)Q(dy |x, fn+1),

and there exist measurable subsets Nn+1 of X with qfn+1
(Nn+1) = 1 such

that

(26) hn(x)

{
= hn+1(x) + kn+1 if x ∈ Nn+1,
≥ hn+1(x) + kn+1 if x ∈ N c

n+1,

where kn+1 :=
T
[hn(y)− hn+1(y)] qfn+1

(dy), n = 0, 1, . . .
Now, define N :=

⋂∞
n=1Nn and observe that by Assumption 3.2(a), for

each B ∈ B(X), n = 1, 2, . . . , and f ∈ F,

Qn(B |x, f) ≥ ν(B)
\
φf (y)Q

n−1(dy |x, f),

which yields [by (7)]

(27) qf (B) ≥ ν(B)
\
φf (y) qf (dy).
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Hence, since by Lemma 3.1(c) in [7],

inf
f∈F

\
φf (y) qf (dy) > 0,

(27) implies that ν is absolutely continuous with respect to qf for all f ∈ F.
Thus, ν(Nn) = 1 for all n ∈ N and, therefore, ν(N) = 1. Let z ∈ N be an
arbitrary, fixed state and define the functions

(28) h∗n(x) := hn(x)− hn(z), x ∈ X, n = 0, 1, . . .

Then, from (26),

(29) h∗n(·) ≥ h∗n+1(·) ∀n = 0, 1, . . .

Define the function h(x) := limn→∞ h∗n(x), x ∈ X. Then [by (13)], h ∈
L∞
v and we prove that (j, h(·)) is a solution to the ACOE (5). Indeed,

observe first that for all x ∈ X and n ∈ N,

Th(x) ≤ Th∗n(x) ≤ C(x, fn)− jτ(x, fn) +
\
h∗n(y)Q(dy |x, fn) = h∗n(x);

therefore, by (29),

(30) Th(x) ≤ h(x) ∀x ∈ X.

On the other hand, combining (25) and (29) it follows that for all x ∈ X
and n ∈ N,

Th∗n(x) = C(x, fn+1)− jτ(x, fn+1) +
\
h∗n(y)Q(dy |x, fn+1)

≥ C(x, fn+1)− jτ(x, fn+1) +
\
h∗n+1(y)Q(dy |x, fn+1)

= h∗n+1(x) ≥ h(x).

As a consequence, for all x ∈ X and a ∈ A(x),

C(x, a)− jτ(x, a) +
\
h∗n(y)Q(dy |x, a) ≥ h(x).

Thus, letting n→ ∞, dominated convergence yields

C(x, a)− jτ(x, a) +
\
h(y)Q(dy |x, a) ≥ h(x).

Therefore, Th(x) ≥ h(x) for all x ∈ X, and using (30) we conclude that
(j, h(·)) satisfies the ACOE, that is,

(31) h(x) = inf
a∈A(x)

{
C(x, a)− jτ(x, a) +

\
h(y)Q(dy |x, a)

}
∀x ∈ X.

Finally, choosing f ∈ F such that f(x) minimizes the right side of (31),
we obtain (6), which completes the proof of part (a) of Theorem 3.5.

(b) Choose arbitrary x ∈ X and π ∈ Π, and for each k ∈ N0, consider
the corresponding history

ik = (x0, a0, δ1, . . . , xk−1, ak−1, δk, xk),
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and control ak ∈ A(xk). Then

Eπ
x [h(xk+1) | (ik , ak)] =

\
h(y)Q(dy |xk, ak)

= C(xk, ak)− jτ(xk, ak) +
\
h(y)Q(dy |xk, ak)

− C(xk, ak) + jτ(xk, ak)

≥ h(xk)−C(xk, ak) + jτ(xk, ak) [by (31)].

Hence,

jEπ
x

n−1∑

k=0

τ(xk, ak) ≤ Eπ
xh(xn)− h(x) + Eπ

x

n−1∑

k=0

C(xk, ak),

which yields

(32) j +
h(x)

Eπ
x

∑n−1
k=0 τ(xk, ak)

≤
Eπ

x

∑n−1
k=0 C(xk, ak) +Eπ

xh(xn)

Eπ
x

∑n−1
k=0 τ(xk, ak)

.

Thus, taking lim infn→∞ and noting that Eπ
x

∑n−1
k=0 τ(xk, ak) ≥ nm [by (4)],

from (12) we obtain

(33) j ≤ lim inf
n→∞

Eπ
x

∑n−1
k=0 C(xk, ak)

Eπ
x

∑n−1
k=0 τ(xk, ak)

≤ J(π, x).

Therefore, since j = J(f, x), and π ∈ Π and x ∈ X were arbitrary, part (b)
follows from (33).

7. Example: a replacement model. In this section we present
a semi-Markov replacement model that satisfies the hypotheses of Theo-
rem 3.5.

A device is subjected to shocks which occur randomly in time. Each
shock causes a random amount of damage and these damages accumulate
additively. The time between two consecutive shocks is a random variable
with distribution function H(·). Let G(· |x) be the conditional distribution
of the magnitude of the shock associated with the state x. A failure can only
happen at the time of a shock. If the accumulated damage is x and a shock
of magnitude y occurs, then the device fails with a known probability 1 −
r(x+ y), where r(·) is a nonincreasing function called the survival function.
When a device fails, it must be replaced by a new one and a failure cost
is incurred; if the device is replaced before failure, a smaller (replacement)
cost is incurred. The cost for operating the device is proportional to the
accumulated damage.

The system is controlled in the following manner: at the time of a shock
or after a replacement, one chooses the planned replacement time a, that is,
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the time for the next replacement. Thus, a transition epoch is the time of a
shock or the end of a planned replacement time.

This replacement model can be seen as a SMCM with the following
components: X = [0,∞), and A = A(x) for all x, where A is a compact
subset of the interval (0,M ] for some finite number M . Furthermore, the
transition law is

Q(B | x, a) := δ0(B)
[
1−H(a) +H(a)

∞\
0

(1− r(x+ y))G(dy |x)
]

(34)

+H(a)
\

{x+y∈B}

r(x+ y)G(dy |x),

with

F (t |x, a) :=

{
H(t) if t < a,
1 if t ≥ a,

and we take a cost function of the form C(x, a) := βxτ(x, a) + KH(a) +
k(1−H(a)), where β, k and K are positive constants with k < K.

Throughout the following we suppose:

Assumption 7.1. (a) H(·) is absolutely continuous with respect to the
Lebesgue measure on R, and H(M) < 1.

(b) There exists q > 0 such that for all x ∈ X,

(35)

∞\
0

eqyr(x+ y)G(dy |x) ≤ 1.

[Note that a sufficient condition for (35) is r(y) ≤ e−qy for all y ∈ X.]

The following propositions show that Assumption 7.1 implies Assump-
tions 3.1–3.3.

Proposition 7.2. Assumption 7.1(a) implies Assumption 3.1.

P r o o f. Assumption 3.1(a) follows from the definition of A(x), whereas
3.1(c) is a consequence of the continuity of H on A. On the other hand,
since

τ(x, a) =

a\
0

z H(dz) + a(1−H(a)),

Assumption 3.1(d) follows from the continuity of H and the fact that 0 <
m := inf A ≤ τ(x, a) ≤ M. To verify Assumption 3.1(b), consider the func-
tion v(x) := eqx. Then, taking a suitable constant γ for which (3) holds,
Assumption 3.1(b) follows from the continuity of H and the fact that for
(x, a) ∈ K,
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v(y)Q(dy |x, a) = 1−H(a) +H(a)

∞\
0

[1− r(x+ y)]G(dy |x)

+H(a)
\

{y>0}

eq(x+y)r(x+ y)G(dy |x).

Proposition 7.3. Assumption 7.1 implies Assumptions 3.2 and 3.3.

P r o o f. Let α := H(M), and ν(·) := δ0(·), the Dirac measure at x = 0.
For f ∈ F define

φf (x) := 1−H(f(x)) +H(f(x))

∞\
0

[1− r(x+ y)]G(dy |x).

Then Assumption 3.2(a) follows immediately from (34). Moreover, since
φf (x) ≥ 1−H(M) for all x ∈ X and f ∈ F, we obtain Assumption 3.2(c).

To verify Assumption 3.2(b), note that for any stationary policy f ∈ F,\
v(y)Q(dy |x, f) = φf (x)‖ν‖v +H(f(x))

\
{y>0}

eq(x+y)r(x+ y)G(dy |x)

≤ φf (x)‖ν‖v +H(M)eqx
∞\
0

eqyr(x+ y)G(dy |x),

and by Assumption 7.1(b), we obtain\
v(y)Q(dy |x, f) ≤ φf (x)‖ν‖v + αv(x).

Finally, using again the fact that φf (·) ≥ 1 − H(M) > 0 and the inequal-
ity already proved in Assumption 3.2(a) we obtain Assumption 3.3 with
ψ := ν.
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