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QUADRATIC ISOCHRONOUS CENTERS COMMUTE

Abstract. We prove that every quadratic plane differential system having
an isochronous center commutes with a polynomial differential system.

1. Introduction. Consider an autonomous differential system in the
plane

(S)
{

ẋ = F (x, y),
ẏ = G(x, y),

with (x, y) ∈ U , an open connected subset of R2, and F,G ∈ C2(U, R).
An isolated critical point O of (S) is said to be a center if every orbit in
a punctured neighbourhood of O is a nontrivial cycle. It is said to be an
isochronous center if every cycle in a neighbourhood of O has the same
period.

The problem of determining whether a critical point is a center or not
has been studied by several authors (see [NS, SC, C]). The related problem
of determining whether a center is isochronous or not has attracted less
attention (see [NS, SC, MRT]), but a significant number of papers appeared
also on this subject. The most studied cases are systems equivalent to second
order scalar differential equations, and some classes of polynomial systems.
Even in these cases, a complete solution of the isochronicity problem is
avalaible only for special subclasses. For instance, this is the case of Liénard
differential equations

(L) ẍ + f(x)ẋ + g(x) = 0,
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with f and g odd functions [AFG, CDL, S1]. The equations of type (L)
contain, as a special subclass (f(x) ≡ 0), odd conservative second order
equations, studied in [O, U]. Another class of second order conservative
equations for which the isochronicity problem has been solved is that of poly-
nomial equations [CJ]. Also, a classification of isochronous centers exists for
quadratic polynomial systems [L] and for odd cubic polynomial systems [P].

Methods applied in the study of isochronous centers range from line-
arizations [MRT] to reduction to second order differential equations [L], com-
putation of isochronicity constants [GGM1], and the commutators method
[V, S4]. In this paper we focus on the so-called commutators method, which
relies on the following theorem. We recall that two plane differential systems
commute if their Lie brackets vanish. In this case the systems are said to
be commutators of each other.

Theorem [V, S4]. Let O be a center of (S). Then O is isochronous
if and only if there exists a second differential system (ST), defined in a
neighbourhood of O, such that (ST) is transversal to (S) at nonsingular
points and commutes with (S).

In general, finding commutators is not trivial. Given the differential sys-
tem (S), looking for a commutator (ST) is equivalent to solving a couple of
partial differential equations in two unknowns, the components of (ST). So
far, no results have been obtained by actually solving a system of partial dif-
ferential equations. On the other hand, several classes of commutators have
been found, and new classes of isochronous systems have been discovered,
by applying computer algebra methods to polynomial systems [S2, CGG1,
CGG2, CGG3]. Here we describe the first application of this method to the
study of plane systems: we show that every quadratic plane system having
an isochronous center has a polynomial commutator. In this way, we give
a different proof of the isochronicity of Loud’s centers. On the other hand,
even if the existence of a commutator is a necessary and sufficient condition
for a center to be isochronous, the method applied here does not seem to
be useful to prove that Loud’s centers are the unique isochronous quadratic
centers. This is due to the fact that polynomial isochronous centers do not
necessarily have polynomial commutators, as shown by Devlin’s example
[D]. This raises the problem of determining under which conditions a poly-
nomial system admits a polynomial commutator. However, we shall not
consider this problem here.

2. Commuting systems. In this section, for every class of quadratic
isochronous centers, we give a family of commuting systems. Computations
were performed using Maple, version 4.2.1, on an Apple Macintosh IIci.
The method used is as follows. Let (SQ) be a quadratic system with an
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isochronous center at the origin O. After a linear change of variables, it
appears in the following form:

(SQ)
{

ẋ = −y + p2(x, y),
ẏ = x + q2(x, y),

with p2(x, y) and q2(x, y) homogeneous polynomials of degree two [L]. We
consider a second polynomial system with indeterminate coefficients, a can-
didate to be a commuting system. We impose the commutativity condition
that gives a system of linear equations in its coefficients. Then we try to
solve such equations.

We look for commutators of minimal degree, so that we start with a
quadratic candidate commutator:

(ST
2 )

{
ẋ = x + r2(x, y),
ẏ = y + s2(x, y).

Here r2(x, y) and s2(x, y) are homogeneous polynomials of degree two. The
linear part of (ST

2 ) is chosen in order to have transversality of (SQ) and (ST
2 )

at least in a neighbourhood of the origin, which is what we need in order to
apply the theorem quoted in the introduction. This ensures the transver-
sality in the whole central region [S5]. Then we compute the commutator
of (SQ) and (ST

2 ). It is a vector with polynomial components of degree at
most 3. We equate to zero the coefficients of such polynomials. This yields
a system of linear equations having the coefficients of (ST

2 ) as unknowns.
They are usually very simple, and can be even further simplified by succes-
sive substitutions. Sometimes this yields incompatible equations. In such
cases we look for commuting systems of higher degree, cubic or quartic. In
every case we find lowest degree systems of the type{

ẋ = x + r2(x, y) + r3(x, y) + r4(x, y),
ẏ = y + s2(x, y) + s3(x, y) + s4(x, y),

commuting with the given ones.
The same procedure has been applied to the study of odd cubic systems,

providing polynomial commutators of degree up to five [GGM2, MS]. In
general, it is not known how to give an a priori estimate of the degree of a
polynomial commutator.

We refer to the classification of quadratic isochronous centers given in
[L]. Loud proved that a (nonlinear) quadratic system has an isochronous
center at O if and only if there exists a linear transformation taking the
system to a system of the following form:{

ẋ = −y + Bxy,
ẏ = x + Dx2 + Fy2,
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with B 6= 0, and the ratios D/B and F/B assuming one of the following
pairs of values: (0, 1), (0, 1/4), (−1/2, 2), (−1/2, 1/2). All such systems are
reversible.

For every quadratic system, the commutator we give is the infinitesimal
generator of a Lie symmetry. In some cases, this allows us to find invariant
curves of the quadratic system. In all cases but the last one, we give an
invariant curve.

Case (0, 1). The system can be written as follows:

(S(0,1))
{

ẋ = −y + Bxy = −y(1−Bx),
ẏ = x + By2 = x + By2.

It commutes with the following system:

(ST
(0,1))

{
ẋ = x−Bx2 = x(1−Bx),
ẏ = y −Bxy = y(1−Bx).

(S(0,1)) has only one critical point, (0, 0), while (ST
(0,1)) has a critical

point, (0, 0), and a critical line of equation Bx−1 = 0. This line is invariant
for (S(0,1)).

Case (0, 1/4). The system can be written as follows:

(S(0,1/4))
{

ẋ = −y + Bxy = −y(1−Bx),
ẏ = x + By2/4 = x + By2/4.

It commutes with the following system:

(ST
(0,1/4))

{
ẋ = x−Bx2/2 + By2/4 + B3y4/32,
ẏ = y −Bxy/2 + B2y3/8.

Computations show that it is not possible to find polynomial systems of
degree lower than 4, commuting with (S(0,1/4)). The origin is the unique
critical point of (S(0,1/4)). (ST

(0,1/4)) has the same critical point, and a critical
parabola of equation B2y2 − 4Bx + 8 = 0. This parabola is invariant for
(S(0,1/4)).

Case (−1/2, 2). The system can be written as follows:

(S(−1/2,2))
{

ẋ = −y + Bxy = −y(1−Bx),
ẏ = x−Bx2/2 + 2By2 = x(1−Bx/2) + 2By2.

It commutes with the following system:

(ST
(−1/2,2))

{
ẋ = x− 3Bx2/2 + B2x3/2 = x(1−Bx)(1−Bx/2),
ẏ = y − 2Bxy + B2x2y = y(1−Bx)2.

Computations show that it is not possible to find polynomial systems of
degree lower than 3, commuting with (S(−1/2,2)). (S(−1/2,2)) has two critical
points, (0, 0), and (2/B, 0), both centers. (ST

(−1/2,2)) has the same critical
points and a critical line of equation Bx − 1 = 0. This line is invariant for
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(S(−1/2,2)). The vector field of (S(−1/2,2)) is symmetric with respect to that
line, hence the centers have the same period.

Case (−1/2, 1/2). The system can be written as follows:

(S(−1/2,1/2))
{

ẋ = −y + Bxy = −y(1−Bx),
ẏ = x−Bx2/2 + By2/2 = x(1−Bx/2) + By2/2.

Its components are a couple of conjugate harmonic functions, so that it
commutes with its orthogonal system [V]:

(ST
(−1/2,1/2))

{
ẋ = x−Bx2/2 + By2/2 = x(1−Bx/2) + By2/2,
ẏ = y −Bxy = y(1−Bx).

(S(−1/2,1/2)) and (ST
(−1/2,1/2)) have the same two critical points, (0, 0) and

(2/B, 0). They are both centers for (S(−1/2,1/2)).
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first Lyapunov and period constants with applications, J. Math. Anal. Appl.
211 (1997), 190–212.

[GGM2] —, —, —, Centre and isochronicity conditions for systems with homogeneous
nonlinearities, in: Proc. 2nd Catalan Days on Appl. Math., Collect. Études,
Presses Univ. Perpignan, Perpignan, 1995, 105–116.

[L] W. S. Loud, Behavior of the period of solutions of certain plane autonomous
systems near centers, Contrib. Differential Equations 3 (1964), 21–36.
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