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A UNIFIED APPROACH TO SOME STRATEGIES
FOR THE TREATMENT OF BREAKDOWN

IN LANCZOS-TYPE ALGORITHMS

Abstract. The Lanczos method for solving systems of linear equations is
implemented by using some recurrence relationships between polynomials of
a family of formal orthogonal polynomials or between those of two adjacent
families of formal orthogonal polynomials. A division by zero can occur
in these relations, thus producing a breakdown in the algorithm which has
to be stopped. In this paper, three strategies to avoid this drawback are
discussed: the MRZ and its variants, the normalized and unnormalized
BIORES algorithm and the composite step biconjugate algorithm. We prove
that all these algorithms can be derived from a unified framework; in fact,
we give a formalism for finding all the recurrence relationships used in these
algorithms, which shows that the three strategies use the same techniques.

1. Introduction. Let c be the linear functional on the space of complex
polynomials defined by c(ζi) = ci for i = 0, 1, . . . , where the ci’s are given
complex numbers. The family of formal orthogonal polynomials {Pk} with
respect to c is defined by

(1) c(ζiPk(ζ)) = 0 for i = 0, . . . , k − 1.

These polynomials are given by the determinant formula

Pk(ζ) =

∣∣∣∣∣∣∣
1 ζ . . . ζk

c0 c1 . . . ck

. . . . . . . . . . . .
ck−1 ck . . . c2k−1

∣∣∣∣∣∣∣
dk

,
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where dk is an arbitrary constant, which is determined by a normalization
condition. In the sequel, Pk denotes the formal orthogonal polynomial nor-
malized by the condition Pk(0) = 1, and P

(0)
k is the monic formal orthogonal

polynomial with respect to c.

Remark 1. Pk exists if and only if

H
(1)
k =

∣∣∣∣∣∣
c1 . . . ck

. . . . . . . . .
ck . . . c2k

∣∣∣∣∣∣ 6= 0,

moreover, it is of degree k if and only if

H
(0)
k =

∣∣∣∣∣∣
c0 . . . ck−1

. . . . . . . . .
ck−1 . . . c2k−2

∣∣∣∣∣∣ 6= 0.

Now consider the monic polynomials P
(1)
k defined by

P
(1)
k (ζ) =

∣∣∣∣∣∣∣
c1 c2 . . . ck+1

. . . . . . . . . . . .
ck ck+1 . . . c2k

1 ζ . . . ζk

∣∣∣∣∣∣∣∣∣∣∣∣∣
c1 . . . ck

. . . . . . . . .
ck . . . c2k−1

∣∣∣∣∣∣
.

Pk and P
(1)
k exist under the same condition H

(1)
k 6= 0 (see [4]). Moreover,

P
(1)
k satisfies

(2) c(ζi+1P
(1)
k ) = 0, i = 0, 1, . . . , k − 1.

If we define the linear functional c(1) by

c(1)(ζi) = c(ζi+1) = ci+1, i = 0, 1, . . . ,

then the conditions (2) become

c(1)(ζiP
(1)
k ) = 0 for i = 0, . . . , k − 1,

which shows that the polynomials P
(1)
k form a family of formal orthogo-

nal polynomials with respect to c(1). {Pk} and {P (1)
k } are called adjacent

families of formal orthogonal polynomials.
It is well known that, when using reccurence relationships between formal

orthogonal polynomials (belonging to one family or two adjacent ones), a
division by zero can occur in the coefficients of the relation used. Such a
division by zero is called a breakdown.
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2. Lanczos-type algorithms. We consider a system of p linear equa-
tions in p unknowns

(3) Ax = b,

where A ∈ Cp×p, b ∈ Cp and x ∈ Cp.
Let x0 be an initial guess, y a non-zero arbitrary vector, and let (xk) be

the sequence of vectors defined by

(4) xk − x0 ∈ Kk(A, r0),

and

(5) rk = b−Axk ⊥ Kk(A∗, y),

where Kk(A, r) = span(r, Ar, . . . , Ak−1r), and A∗ denotes the conjugate
transpose of A.

From (4), xk − x0 can be written as

xk − x0 = −α1r0 − . . .− αkAk−1r0,

and thus we have

rk = r0 + α1Ar0 + . . . + αkAkr0 = Pk(A)r0,

where
Pk(ζ) = 1 + α1ζ + . . . + αkζk.

The orthogonality condition (5) can be written as

(y, Airk) = 0 for i = 0, . . . , k − 1.

If we set
c(ζi) = ci = (y, Air0) for i = 0, 1, . . . ,

we have
c(ζiPk(ζ)) = 0 for i = 0, . . . k − 1.

These conditions show that Pk is a polynomial of degree at most k belonging
to the family of formal orthogonal polynomials with respect to the linear
functional c, normalized by the condition Pk(0) = 1.

A Lanczos-type method [11, 12] consists in computing Pk recursively,
then rk and finally xk such that rk = b − Axk. Such a method gives the
exact solution of the system (3) in at most p iterations; for more details,
see [4].

If one of the scalar products appearing in the denominators of the co-
efficients of the recurrence relations is zero, then a breakdown occurs in
the algorithm. This is due to the non-existence of some of the polynomials
Pk (pivot or true breakdown) or to the impossibility of using this relation
(Lanczos or ghost breakdown).

There are many strategies for avoiding a breakdown, for instance, the
MRZ and its variants proposed by Brezinski, Redivo Zaglia and Sadok [2]
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where they jump over the singular polynomials (which does not exist), and
they compute only the existing ones. Gutknecht [10] proposes another algo-
rithm, called BIORES (normalized and unnormalized), where he introduces
the deficient polynomials (they will be defined in Subsection 3.1) and makes
use of a recurrence relation between them and the regular ones. Chan and
Bank [5, 6] introduce a simple modification of the BCG algorithm [9], called
the composite step bi-conjugate gradient algorithm (CSBCG), which elim-
inates pivot breakdowns, under the assumption that a Lanczos breakdown
does not occur, i.e. H

(0)
k 6= 0 for all k.

In this paper, a formalism for finding all the recurrence relationships
used in these three algorithms is given. It consists in expressing a particular
polynomial in a basis formed by the regular polynomials and the deficient
ones. This is the subject of the next section.

We note that no new algorithm for solving the breakdown problem is
given in this paper. The aim of this work is to give a unified approach to
some known breakdown-free Lanczos-type algorithns. This new approach
allows us to derive the non-generic BIORES algorithm of Gutknecht in a
simpler way than in [10], and to obtain a polynomial interpretation of the
composite step bi-conjugate gradient algorithm [5].

3. Choice of basis and recurrence formulas

3.1. Notations and definitions. We denote by 0 = n0 < n1 < . . . the
indices for which the regular polynomials Pnk

and P
(1)
nk exist, mk being the

jump in the degrees between P
(1)
nk and P

(1)
nk+1 , that is,

nk+1 = nk + mk.

For nk < n < nk+1, we introduce the polynomials

(6) Pn(ζ) = ωn−nk
(ζ)Pnk

(ζ),

called deficient in [10], where ωn−nk
is an arbitrary polynomial of exact

degree n−nk. It was proved by Draux [7] that mk is defined by the conditions

(7) c(1)(ζiP (1)
nk

) = 0 for i = 0, . . . , nk + mk − 2,

and

(8) c(1)(ζiP (1)
nk

) 6= 0 for i = nk + mk − 1.

If we denote by 0 = n0 < n1 < . . . the indices for which the monic regular
polynomials P

(0)
nk

with respect to the functional c exist, the conditions (7)
and (8) become

(9) c(ζiP
(0)
nk

) = 0 for i = 0, . . . , nk + mk − 2,
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and

(10) c(ζiP
(0)
nk

) 6= 0 for i = nk + mk − 1,

where mk is the jump in the degrees between P
(0)
nk

and P
(0)
nk+1

and nk+1 =

nk + mk. The deficient polynomials corresponding to P
(0)
n and P

(1)
n are

defined by formulas similar to (6).

3.2. Recurrence formulas. In the following, we will compute Pnk+1 in
terms of Pnk

and P
(1)
nk . First we suppose that the polynomial Pnk

has degree
exactly nk, which is equivalent to saying that the monic polynomial P

(0)
nk

exists. Thus nk is equal to some index nl.
Consider the family

(11) {P (0)
n0

, ζP
(0)
n0

, . . . , ζn0−1P
(0)
n0

, . . . , P
(0)
nl−1

, ζP
(0)
nl−1

, . . . , ζnl−1−1P
(0)
nl−1

,

Pnk
, ζP (1)

nk
, . . . , ζmkP (1)

nk
},

where Pni , P
(0)
ni

and P
(1)
ni are the orthogonal polynomials defined previously.

The family (11) forms a basis of the vector space of polynomials of degree
at most nk+1. Thus the polynomial Pnk+1 can be expressed as

Pnk+1 = α
(0)
n0

P
(0)
n0

+ α
(0)
n0

ζP (0)
n0

+ . . . + α
(m0−1)
n0

ζn0−1P
(0)
n0

+ . . .

+ α
(0)
nl−1

Pnl−1 + α
(1)
nl−1

ζP
(1)
nl−1

+ . . . + α
(ml−1−1)
nl−1

ζnl−1−1P
(1)
nl−1

+ α(0)
nk

Pnk
+ α(1)

nk
ζP (1)

nk
+ . . . + α(mk)

nk
ζmkP (1)

nk
.

Using the orthogonality conditions

c(ζnj+iPnk+1) = 0 for i = 0, . . . ,mj − 1 and j = 0, . . . , l − 1,

we obtain

α
(i)
nj

= 0 for i = 0, . . . ,mj − 1 and j = 0, . . . , l − 1.

Finally, the condition Pnk+1(0) = 1 gives α
(0)
nk = 1 and we obtain

(12) Pnk+1(ζ) = Pnk
(ζ) + ζωk(ζ)P (1)

nk
(ζ),

where
ωk(ζ) = α(1)

nk
+ . . . + α(mk−1)

nk
ζmk−2 + α(mk)

nk
ζmk−1.

Lemma 1. Even if the polynomial Pnk
does not have exact degree nk, the

relationship (12) holds.

P r o o f. It is enough to remark that the coefficients of ωk are chosen so
that the polynomial

Qnk
(ζ) = Pnk+1(ζ)− ζωk(ζ)P (1)

nk
(ζ)
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has degree at most nk. Moreover, c(ζiQnk
) = 0 for i = 0, . . . , nk − 1, thus,

since Qnk
(0) = 1, Qnk

is identical to Pnk
.

The recurrence relationship (12) is the first relation used in the MRZ
algorithm.

Now we consider the family

(13) {P (1)
n0

, ζP (1)
n0

, . . . , ζm0−1P (1)
n0

,

P (1)
n1

, ζP (1)
n1

, . . . , ζm1−1P (1)
n1

, . . . P (1)
nk

, ζP (1)
nk

, . . . , ζmk−1P (1)
nk
}.

For the same reasons as in the case (11), we can prove that (13) forms a basis
of the vector space of polynomials of degree at most nk +mk−1 = nk+1−1.
Thus we can express the polynomial P

(1)
nk+1 − ζmkP

(1)
nk of degree nk+1 − 1 as

P (1)
nk+1

− ζmkP (1)
nk

= α(0)
n0

P (1)
n0

+ α(1)
n0

ζP (1)
n0

+ . . . + α(m0−1)
n0

ζm0−1P (1)
n0

+ α(0)
n1

P (1)
n1

+ α(1)
n1

ζP (1)
n1

+ . . . + α(m1−1)
n1

ζm1−1P (1)
n1

+ . . .

+ α(0)
nk

P (1)
nk

+ α(1)
nk

ζP (1)
nk

+ . . . + α(mk−1)
nk

ζmk−1P (1)
nk

.

So, we obtain

P (1)
nk+1

= α(0)
n0

P (1)
n0

+ α(1)
n0

ζP (1)
n0

+ . . . + α(m0−1)
n0

ζm0−1P (1)
n0

+ α(0)
n1

P (1)
n1

+ α(1)
n1

ζP (1)
n1

+ . . . + α(m1−1)
n1

ζm1−1P (1)
n1

+ . . .

+ α(0)
nk

P (1)
nk

+ α(1)
nk

ζP (1)
nk

+ . . . + α(mk−1)
nk

ζmk−1P (1)
nk

+ ζmkP (1)
nk

.

Using the conditions

c(1)(ζnj+iP (1)
nk+1

) = 0 for i = 0, . . . ,mj − 1 and j = 0, . . . , k − 2,

we get

P (1)
nk+1

= α(0)
nk−1

P (1)
nk−1

+α(1)
nk−1

ζP (1)
nk−1

+. . .+α(mk−1−1)
nk−1

ζmk−1−1P (1)
nk−1

+qk(ζ)P (1)
nk

,

where qk is a monic polynomial of degree mk.
We also have

c(1)(ζnk−1+iP (1)
nk+1

) = 0 for i = 1, . . . ,mk−1 − 2,

and so
α(i)

nk−1
= 0 for i = 1, . . . ,mk−1 − 1.

Thus we recover the second recurrence relationship used in the MRZ algo-
rithm:

(14) P (1)
nk+1

(ζ) = α(0)
nk−1

P (1)
nk−1

(ζ) + qk(ζ)P (1)
nk

(ζ).

We will now see that we can also obtain the recurrence relationship used
in the BMRZ (cf. [2]).

In fact, it is enough to choose the coefficient αnk+1 such that P
(1)
nk+1 −

αnk+1Pnk+1 has degree nk+1 − 1 (here we require that Pnk+1 has degree
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nk+1). Expressing this polynomial in the basis (13), we can write

P (1)
nk+1

= α(0)
n0

P (1)
n0

+ α(1)
n0

ζP (1)
n0

+ . . . + α(m0−1)
n0

ζm0−1P (1)
n0

+ α(0)
n1

P (1)
n1

+ α(1)
n1

ζP (1)
n1

+ . . . + α(m1−1)
n1

ζm1−1P (1)
n1

+ . . .

+ α(0)
nk

P (1)
nk

+ α(1)
nk

ζP (1)
nk

+ . . . + α(mk−1)
nk

ζmk−1P (1)
nk

+ αnk+1Pnk+1 .

From the orthogonality conditions

c(1)(ζnj+iP (1)
nk+1

) = 0 for i = 0, . . . ,mj − 1 and j = 0, . . . , k − 1,

we obtain

α(0)
nj

= α(1)
nj

= . . . = α(mj−1)
nj

= 0 for j = 0, . . . , k − 1.

Using also the fact that

c(1)(ζnk+iP (1)
nk+1

) = 0 for i = 0, . . . ,mk − 2,

we obtain
α(mk−1−1)

nk
= . . . = α(1)

nk
= 0,

and finally

(15) P (1)
nk+1

(ζ) = α(0)
nk

P (1)
nk

(ζ) + αnk+1Pnk+1(ζ).

If we set rnk
= Pnk

(A)r0 and znk
= P

(1)
nk (A)r0 where r0 = Ax0 − b

(n0 = 0), then the recurrences (12) and (14) define the MRZ algorithm.
Similarly, the recurrences (12) and (15) define the BMRZ.

Since the polynomials {Pk} are normalized by the condition Pk(0) = 1,
the approximations xnk

of the solution of the system (3) can be computed
recursively. In fact,

rnk+1 = rnk
+ Aωk(A)znk

,

so
xnk+1 = xnk

+ ωk(A)znk
.

In the MRZ, we express the polynomial P
(1)
nk+1−ζmkP

(1)
nk in the basis (13).

The polynomial P
(1)
nk+1 − αnk+1Pnk+1 can be expressed in the same basis, in

order to obtain the BMRZ. However, the polynomial Pnk+1 does not always
have degree nk+1, and, in this case, the BMRZ has to be stopped.

Obviously, the recurrence relationship used in the BMRZ needs less com-
putation than that used in the MRZ. It seems that a combination of these
two methods is the best for solving the breakdown problem. It consists of
testing the degree of the polynomial Pnk+1 : if it is exactly equal to nk+1,
then we use the recurrence relationship of the BMRZ. In the opposite case,
we use the MRZ.

Now we study the non-generic BIORES algorithm [10] which is a break-
down-free version of the BIORES algorithm [4]. It is well known that this
last algorithm suffers from the ghost breakdown due to the fact that the
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polynomials {Pnk
} do not always have exact degree nk. For curing this

drawback we will use the monic formal orthogonal polynomials P
(0)
nk , and

we will show that we can find the recurrence relationships used in [10] by
the same techniques as previously.

Consider the family

(16) {P (0)
n0

, ζP
(0)
n0

, . . . , ζn0−1P
(0)
n0

,

P
(0)
n1

, ζP
(0)
n1

, . . . , ζn1−1P
(0)
n1

, . . . , P
(0)
nk

, ζP
(0)
nk

, . . . , ζnk−1P
(0)
nk
}.

Obviously, the family (16) forms a basis of the vector space of polynomials
of degree nk+1− 1. Expressing the polynomial Pnk+1 − ζnkPnk

in this basis,
we obtain

P
(0)
nk+1

= α
(0)
n0

P
(0)
n0

+ α
(1)
n0

ζP
(0)
n0

+ . . . + α
(m0−1)
n0

ζn0−1P
(0)
n0

+ . . .

+ α
(0)
nk

P
(0)
nk

+ α
(1)
nk

ζP
(0)
nk

+ . . . + α
(mk−1)
nk

ζnk−1P
(0)
nk

+ ζnkP
(0)
nk

.

Moreover, using the orthogonality conditions, we find

P
(0)
nk+1

(ζ) = α
(0)
nk−1

P
(0)
nk−1

(ζ) + qk(ζ)P (0)
nk

(ζ),

where qk is a monic polynomial of degree mk. This recurrence relationship
is already given in [1], but it was not used to avoid a breakdown.

To obtain all the previous recurrence relationships, we considered the
set of regular polynomials and we completed it by particular deficient poly-
nomials which have the form ζiP

(1)
nj and/or ζiP

(0)
nj

. Now, using the general
form of the deficient polynomials, we will find the recurrence relations used
in [10].

Thus we consider the family

(17) {P (0)
n0

, U0
1 P

(0)
n0

, . . . , U0
n0−1P

(0)
n0

,

P
(0)
n1

, U1
1 P

(0)
n1

, . . . , U1
n1−1P

(0)
n1

, . . . , P
(0)
nk

, Uk
1 P

(0)
nk

, . . . , Uk
nk−1P

(0)
nk
},

where the U j
i ’s are arbitrary monic polynomials of degree j. Taking the

polynomial P
(0)
nk+1

(ζ)− ωnk
(ζ)P (0)

nk
(ζ), with ωnk

an arbitrary monic polyno-
mial of degree mk, and expressing it in the basis (17), we obtain

P
(0)
nk+1

= α
(0)
n0

P
(0)
n0

+ α
(1)
n0

U0
1 P

(0)
n0

+ . . . + α
(m0−1)
n0

U0
n0−1P

(0)
n0

+ . . .

+ α
(0)
nk

P
(0)
nk

+ α
(1)
nk

Uk
1 P

(0)
nk

+ . . . + α
(mk−1)
nk

Uk
nk−1P

(0)
nk

+ ωnk
P

(0)
nk

.

The orthogonality conditions give

(18) P
(0)
nk+1

(ζ) = (ωnk
(ζ)− ak(ζ))P (0)

nk
(ζ)− αnk−1P

(0)
nk−1

(ζ),
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where

ak(ζ) = −
nk−1∑
j=1

α
(j)
nk

Uk
j (ζ).

For nk < n < nk+1, we use the deficient polynomials

P (0)
n (ζ) = ωn−nk

(ζ)P (0)
nk

(ζ).

If the polynomials ωm satisfy the three-term recurrence

(19) ωm+1(ζ) = (ζ − αm)ωm(ζ)− βmωm−1(ζ),

then the deficient polynomials satisfy

(20) P
(0)
n+1(ζ) = (ζ − αn−nk

)P (0)
n (ζ)− βn−nk

P
(0)
n−1(ζ), nk < n < nk+1.

We can express the polynomials ak as

ak(ζ) =
nk−1∑
i=0

αk
i ωi(ζ),

and the recurrence (18) becomes

P
(0)
nk+1

(ζ) = (ζ − αk
nk−1 − αnk−1)P

(0)
nk+1−1(ζ)(21)

− (αk
nk−2 + βnk−1)P

(0)
nk+1−2(ζ)

− αk
mk−3Pnk+1−3(ζ)− . . .− αk

0P
(0)
nk

(ζ)− αkP
(0)
nk−1

(ζ).

We set rn = P
(0)
n (A)r0Γn and r̃n = P

(0)
n (A∗)yΓn, where P

(0)
n is the poly-

nomial whose coefficients are complex conjugates of those of P
(0)
n , and Γn,

Γn are scale factors. Using the recurences (20) and (21), we recover the
non-generic BIORES algorithm of Gutknecht.

To find the approximations xn of the solution of the problem (3), the
scale factors Γn and Γn are replaced by the relative scale factors

γn,i = Γn/Γn−i, γn,i = Γn/Γn−i.

With a particular choice of γi,j , we can eliminate b from both sides of the
recurrence satisfied by rn = b − Axn, and thus the recurrence relationship
between the approximations xn is established. The corresponding algorithm
is called the normalized BIORES. In the unnormalized BIORES algorithm,
Gutknecht uses another technique: he introduces two sequences zn and %n

related by rn = b%n − Azn. The second sequence %n is chosen to eliminate
b from both sides of the recurrence satisfied by rn. Thus the recurrence
relationship between the zn is established and the approximations xn are
given by xn = zn/%n.

Now, we are interested in the BCG algorithm. It is well known that it
suffers from two kinds of breakdowns. The first one is due to the breakdown
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of the underlying Lanczos process (Lanczos or ghost breakdown in [3]), and
the second one is due to the fact that some iterates are not well defined
by the Galerkin condition on the associated Krylov subspace (pivot or true
breakdown in [3]). Under the condition that Lanczos breakdowns do not
occur, i.e. H

(0)
k 6= 0 for all k, Chan and Bank [5, 6] propose the composite

step bi-conjugate gradient algorithm (CSBCG) for eliminating the pivot
breakdown. Under this condition, two consecutive Hankel determinants
H

(1)
k cannot be zero (see [8]), thus mk ≤ 2.

Recall that, under the condition H
(0)
k 6= 0, the monic orthogonal polyno-

mial P
(0)
k exists. Now, we assume that, at the kth step, a pivot breakdown

occurs in the BCG algorithm. The polynomial Pk+1 does not exist, and
thus H

(1)
k 6= 0, H

(1)
k+1 = 0 and H

(1)
k+2 6= 0.

Remark 2. When H
(1)
k+1 = 0, the polynomials Pk and Pk+2 have exact

degree k and k + 2 respectively.

Obviously, the family

(22) {P (0)
0 , P

(0)
1 , . . . , P

(0)
k−1, Pk, ζQk}

where
Qk = (−1)kH

(0)
k /H

(1)
k P

(1)
k ,

forms a basis of the vector space of polynomials of degree at most k + 1.
Expressing the polynomial Pk+2 + dk+2ζP

(0)
k+1 of degree k + 1, where

Pk+2(ζ) = −dk+2ζ
k+2 + . . . ,

in the basis (22), we obtain

Pk+2 = akPk − bkζQk − ckζP
(0)
k+1,

with
ck = dk+2.

Finally, using the condition Pk+2(0) = 1, we obtain

(23) Pk+2 = Pk − bkζQk − ckζP
(0)
k+1.

We can also express the polynomial P
(0)
k+1 in the basis (22), and we obtain

(24) P
(0)
k+1 = σkPk + %kζQk.

By construction of Qk+2, the polynomial Qk+2−Pk+2 has degree k+1, and
we can write

Qk+2 − Pk+2 = gkζk+1 + . . .

If we consider the polynomial Qk+2 − Pk+2 − gkP
(0)
k+1, of degree k, we can

express it in the basis {Q0, Q1, . . . , Qk}, and we easily obtain the recurrence
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relationship

(25) Qk+2 = Pk+2 + ekQk + gkP
(0)
k+1.

Setting

rk = Pk(A)r0, r̃k = P k(A∗)r̃0, pk = Qk(A)r0,

p̃k = Qk(A∗)r̃0, zk+1 = P
(0)
k+1(A)r0, z̃k+1 = P

(0)
k+1(A

∗)r̃0,

and using the recurrences (23)–(25), we recover the CSBCG algorithm.
From (23), the residuals rk satisfy the recurrence relation

rk+2 = rk −A[bkpk − ckzk+1],

thus the approximations xk can be computed recursively as

xk+2 = xk + [bkpk − ckzk+1].

4. Conclusion. In the present work we discuss three strategies for
treating the breakdown problem in the Lanczos-type algorithms. Theses
strategies are derived, using simple arguments, from a unified framework.
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