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A. EL GUENNOUNTI (Lille)

A UNIFIED APPROACH TO SOME STRATEGIES
FOR THE TREATMENT OF BREAKDOWN
IN LANCZOS-TYPE ALGORITHMS

Abstract. The Lanczos method for solving systems of linear equations is
implemented by using some recurrence relationships between polynomials of
a family of formal orthogonal polynomials or between those of two adjacent
families of formal orthogonal polynomials. A division by zero can occur
in these relations, thus producing a breakdown in the algorithm which has
to be stopped. In this paper, three strategies to avoid this drawback are
discussed: the MRZ and its variants, the normalized and unnormalized
BIORES algorithm and the composite step biconjugate algorithm. We prove
that all these algorithms can be derived from a unified framework; in fact,
we give a formalism for finding all the recurrence relationships used in these
algorithms, which shows that the three strategies use the same techniques.

1. Introduction. Let ¢ be the linear functional on the space of complex
polynomials defined by ¢((?) = ¢; for i = 0,1,..., where the ¢;’s are given
complex numbers. The family of formal orthogonal polynomials { P} with
respect to ¢ is defined by

(1) c(C'Pp(¢)) =0 fori=0,...,k—1.
These polynomials are given by the determinant formula
1 ¢ ... (F
co €1 ... Ck
Pk;(c) — Ck—1 Ck y coe Cop—1 7
k
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where dj, is an arbitrary constant, which is determined by a normalization
condition. In the sequel, Py denotes the formal orthogonal polynomial nor-

malized by the condition Py (0) = 1, and P}go) is the monic formal orthogonal
polynomial with respect to c.

REMARK 1. Py exists if and only if

C1 Ck
gl =|... ... . |#0,
Ck oo Cok

moreover, it is of degree k if and only if

0 Co Clk—1
HY = | ... ... .. |#0
Ck—1 ... C2k—2

Now consider the monic polynomials P,gl) defined by

Cq Co coe Ck41
C Ck+1 - Cof
k
(1) 1 ¢ ¢
PO =
C1 e Cl
Ck e C2k—1

Py, and P,El) exist under the same condition H ,51) # 0 (see [4]). Moreover,
P,gl) satisfies

(2) (¢t PMy=0, i=01,... k-1
If we define the linear functional ¢(*) by
D¢ = e(¢F) = e, i=0,1,...,

then the conditions (2) become
CDPMY=0 fori=0,... k-1,

which shows that the polynomials P,El) form a family of formal orthogo-

nal polynomials with respect to c¢(). {P} and {P,El)} are called adjacent
families of formal orthogonal polynomials.

It is well known that, when using reccurence relationships between formal
orthogonal polynomials (belonging to one family or two adjacent ones), a
division by zero can occur in the coefficients of the relation used. Such a
division by zero is called a breakdown.
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2. Lanczos-type algorithms. We consider a system of p linear equa-
tions in p unknowns

(3) Az = b,
where A € CP*P_b € CP and z € CP.

Let xp be an initial guess, y a non-zero arbitrary vector, and let (zj) be
the sequence of vectors defined by

(4) xp — x0 € Ki(A,ro),
and
(5) ry, =b— Az, L Kip(A%,y),

where K (A,r) = span(r, Ar,..., A*=1r), and A* denotes the conjugate
transpose of A.
From (4), ) — z¢ can be written as

Ty — o = —airg — ... — a AF g,
and thus we have
e =104+ a1 Aro + ... + apAFry = Pi(A)ro,
where

Pe(Q) =14 ai{+...+ "

The orthogonality condition (5) can be written as

(y,A'rpy) =0 fori=0,...,k—1.
If we set

() =¢ = (y,Arg) fori=0,1,...,

we have

c(C"Pr(¢)) =0 fori=0,...k—1.
These conditions show that Py is a polynomial of degree at most k belonging
to the family of formal orthogonal polynomials with respect to the linear
functional ¢, normalized by the condition P (0) = 1.

A Lanczos-type method [11, 12] consists in computing P recursively,
then rp and finally z; such that rp, = b — Azp. Such a method gives the
exact solution of the system (3) in at most p iterations; for more details,
see [4].

If one of the scalar products appearing in the denominators of the co-
efficients of the recurrence relations is zero, then a breakdown occurs in
the algorithm. This is due to the non-existence of some of the polynomials
Py (pivot or true breakdown) or to the impossibility of using this relation
(Lanczos or ghost breakdown).

There are many strategies for avoiding a breakdown, for instance, the
MRZ and its variants proposed by Brezinski, Redivo Zaglia and Sadok [2]
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where they jump over the singular polynomials (which does not exist), and
they compute only the existing ones. Gutknecht [10] proposes another algo-
rithm, called BIORES (normalized and unnormalized), where he introduces
the deficient polynomials (they will be defined in Subsection 3.1) and makes
use of a recurrence relation between them and the regular ones. Chan and
Bank [5, 6] introduce a simple modification of the BCG algorithm [9], called
the composite step bi-conjugate gradient algorithm (CSBCG), which elim-
inates pivot breakdowns, under the assumption that a Lanczos breakdown
does not occur, i.e. H}go) = 0 for all k.

In this paper, a formalism for finding all the recurrence relationships
used in these three algorithms is given. It consists in expressing a particular
polynomial in a basis formed by the regular polynomials and the deficient
ones. This is the subject of the next section.

We note that no new algorithm for solving the breakdown problem is
given in this paper. The aim of this work is to give a unified approach to
some known breakdown-free Lanczos-type algorithns. This new approach
allows us to derive the non-generic BIORES algorithm of Gutknecht in a
simpler way than in [10], and to obtain a polynomial interpretation of the
composite step bi-conjugate gradient algorithm [5].

3. Choice of basis and recurrence formulas

3.1. Notations and definitions. We denote by 0 = ng < n; < ... the
indices for which the regular polynomials F,,, and P,S? exist, my being the

jump in the degrees between P,(Z,lg) and PV || that is,

N1

Ng41 = Ng + M.
For ny < n < ngy1, we introduce the polynomials
(6) Pr(€) = wn—n, ()P, (€),

called deficient in [10], where w,_,, is an arbitrary polynomial of exact
degree n—ny. It was proved by Draux [7] that my is defined by the conditions

(7) POy =0 fori=0,...,nk +my —2,
and
(8) c(l)((iPT(Li)) #0 fori=ni+mp—1.

If we denote by 0 =y < 1y < ... the indices for which the monic regular

polynomials P?(LZ) with respect to the functional ¢ exist, the conditions (7)
and (8) become

(9) (PP =0 fori=0,... 7 +mk —2,
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and
(10) c((iPéz)) #0 fori=ng+m; — 1,

where my, is the jump in the degrees between PTEZ) and PTS?CL and M4 =

nr + myg. The deficient polynomials corresponding to P,(ZO) and P,gl) are
defined by formulas similar to (6).

3.2. Recurrence formulas. In the following, we will compute P, , in

terms of P, and Péi). First we suppose that the polynomial P, has degree
exactly ng, which is equivalent to saying that the monic polynomial P,Sz)
exists. Thus ny is equal to some index n;.

Consider the family

©) ~p0) fio—1 p(0) ©) - pl0) Air_1—1 p(0)
11 AP, P, ¢t P P P ¢ P
Pnk7<Pr(Lt)’7<mkPr(Li)}7

where P, PTE?) and PT(L}) are the orthogonal polynomials defined previously.
The family (11) forms a basis of the vector space of polynomials of degree

at most nyy1. Thus the polynomial P, , can be expressed as

P,

NEk+1

=aOPO 1 QO ¢PO 4 alTo 1O
+a@ P+ a® pY 4 g gl efuoi-1ph)

fgq 15 Tii—1 [
+al) P, +aV¢PWY 44l e P,
Using the orthogonality conditions
c(CﬁjHPnkH) =0 fori=0,....,mj—1landj=0,...,1-1,
we obtain
o) =0 fori=0,...,m;—landj=0,...,1—1.

(0)

Finally, the condition P,, ,(0) =1 gives an, = 1 and we obtain

Nk4+1
(12) Pry 11 (€) = Pu (Q) + Cwr (O P ().
where
wr(¢) = o) + . alETDemET? el et
LEMMA 1. Even if the polynomial P,, does not have exact degree ny, the

relationship (12) holds.

Proof. It is enough to remark that the coefficients of wy are chosen so
that the polynomial

Qi (€) = Py, (€) = Cwrn(QPI(C)
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has degree at most ny. Moreover, ¢((*Q,,) =0 for i =0,...,n; — 1, thus,
since @, (0) =1, @y, is identical to P,,,. =

The recurrence relationship (12) is the first relation used in the MRZ
algorithm.
Now we consider the family

(13) {pPWM cp o ¢mo—1p)

1 1 mi1—1 1 1 1 mp—1 1
P£1)7<‘P7§1)7"'7C P?ng)?PT(Lk)7CP’I’(Lk)77C * Pék)}

For the same reasons as in the case (11), we can prove that (13) forms a basis
of the vector space of polynomials of degree at most ny +my —1 = ngq — 1.

Thus we can express the polynomial P,Si)ﬂ - Cm’“P&) of degree ngy1 — 1 as
P — ¢ P = o PY + ol P 4+ alpomD¢mo=t pll)
0) p(1 1 1 m1—1) rm1—1 p(1
+aDPW 4 aV¢pPM 4 afm-Dem-tiph 4
0) p(1 1 1 mi—1) rme—1 p(1
+al) P 4 afDepD 4 alme ) eme=t pll),
So, we obtain
1 0) p(1 1 1 mo—1 —1p(
S agm)pr(lo) + Q%O)Cpéo) 4.+ 0‘;00 ) ¢mo pr(m)
+af0PM 4 oVepM 4y gfmtemmip 4
+af0PM 4 afDeph) 4 e eme=t p(h g ¢mi p(b),
Using the conditions

D (¢tipM y=0 fori=0,...,m; —land j=0,...,k—2,

Nk41

we get
P =) PO 4ol CPD + ol D P (P,

Nk+4+1 k—1
where ¢ is a monic polynomial of degree my.
We also have

AV(tipD Yy =0 fori=1,...,mp_q —2,

NEk41
and so

ozg}z_l =0 fori=1,...,my_1 —1.
Thus we recover the second recurrence relationship used in the MRZ algo-

rithm:
(14) P Q) =al P Q)+ a(Q)P ().

We will now see that we can also obtain the recurrence relationship used
in the BMRZ (cf. [2]).

In fact, it is enough to choose the coefficient a,, ., such that P&,)ﬂ —

Qnyoiy Pryyy has degree ngy 1 — 1 (here we require that P,, , has degree
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nk+1). Expressing this polynomial in the basis (13), we can write
P =aQ P+ afePl) + . 4 afrom¢met Pl
+ oz%ol)P,(L}) + aflll)(P,g) +...+ a;’fl_l)qml_lPﬁ) +...
+ a0 P 4 aV¢pPWD 44 almemDememipM g, P

From the orthogonality conditions
cW¢tipM y=0 fori=0,...,m;—landj=0,...,k—1,

Nk+1
we obtain
al) =all) =...=alm™ V=0 forj=0,... k-1

Using also the fact that
D (mtipM) Y =0 fori=0,...,my —2,

Nkg+1
we obtain
afr ) = = afd) ~ 0,
and finally
(15) B (Q) = aD P () + anyyy Pagy (€.

If we set r,, = P, (A)ro and z,, = Pygi) (A)rg where 19 = Axzg — b
(ng = 0), then the recurrences (12) and (14) define the MRZ algorithm.
Similarly, the recurrences (12) and (15) define the BMRZ.

Since the polynomials { P} are normalized by the condition P (0) = 1,
the approximations x,, of the solution of the system (3) can be computed
recursively. In fact,

Trppr = Tny, + Awg(A) 2y,
SO
Tnjpr = Ty, + wk(A)an‘

In the MRZ, we express the polynomial Py(bi)ﬂ — (™M P%) in the basis (13).
The polynomial P&)ﬂ — Qi Py, can be expressed in the same basis, in
order to obtain the BMRZ. However, the polynomial P,, , does not always
have degree ng11, and, in this case, the BMRZ has to be stopped.

Obviously, the recurrence relationship used in the BMRZ needs less com-
putation than that used in the MRZ. It seems that a combination of these
two methods is the best for solving the breakdown problem. It consists of
testing the degree of the polynomial P, : if it is exactly equal to nyy1,
then we use the recurrence relationship of the BMRZ. In the opposite case,
we use the MRZ.

Now we study the non-generic BIORES algorithm [10] which is a break-
down-free version of the BIORES algorithm [4]. It is well known that this
last algorithm suffers from the ghost breakdown due to the fact that the
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polynomials {P,, } do not always have exact degree mj. For curing this

drawback we will use the monic formal orthogonal polynomials PT(L?C), and
we will show that we can find the recurrence relationships used in [10] by
the same techniques as previously.

Consider the family
(0) (0) fio—1 p(0)
(16) (PO, ¢PO,... o 1P,
(0) (0) n1—1 p(0) (0) (0) nr—1 p(0)
P (P, ¢ ST 1Y PPN G i
Obviously, the family (16) forms a basis of the vector space of polynomials

of degree ny 1 — 1. Expressing the polynomial Py, , — ¢™ P, in this basis,
we obtain

PO =P 4 oDepD gl enotplO)

N1
+ a0 PO 4 oMepO ol i plO),

nk

Moreover, using the orthogonality conditions, we find

PY () =al) P (©)+a(OPY ().

where g, is a monic polynomial of degree 7. This recurrence relationship
is already given in [1], but it was not used to avoid a breakdown.

To obtain all the previous recurrence relationships, we considered the
set of regular polynomials and we completed it by particular deficient poly-
nomials which have the form ( iPy(L;) and /or CiP;(LQ)- Now, using the general
form of the deficient polynomials, we will find the recurrence relations used
in [10].

Thus we consider the family

0 0 0
a7 (PO, uPY, .. U8 _ P,
(0) 771 p(0) 1 (0) (0) 77k p(0) k (0)
P U P U Py Py U P UG P Y
where the Uij’s are arbitrary monic polynomials of degree j. Taking the

polynomial PF(L(;)+1 (¢) —wa, (¢ )PF(LZ) (¢), with ws, an arbitrary monic polyno-
mial of degree 7, and expressing it in the basis (17), we obtain
0 0) (0 1 0 mo—1 0
PV =al P 1 oDUtpY ¢ oMl PO
+aOPO 4 MUk pY 4 o™ VUE PO 4w, PO

The orthogonality conditions give

(18) PO (0 = @ () — an(Q)PO(Q) ~ am, P (©),
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where
nk 1

Z a(J)Uk
For ny < n < ngy1, we use the deﬁc1ent polynomials

PO(C) = wnny (OPD(C).

If the polynomials w,, satisfy the three-term recurrence

(19) wm+1(¢) = (€ = am)wm(C) = Bmwm-1(C),
then the deficient polynomials satisfy

(200 P1(0) = (¢ = n- ) PO = i P21 (C)y Mk << M.
We can express the polynomials aj as

nE—1

and the recurrence (18) becomes
(21) PP () =(C—ak 1 —an )P ()
— (o, 5+ B, —0)PY Q)
- O/i P- (C) _ _ kP(O)( P(O)
mr—3L nEy1—3 (&7)) i C) Qf (C)

Nk—1

We set r,, = P” (A)rol, and 7, = pY (A*)yI',,, where P is the poly-
nomial whose coefficients are complex conjugates of those of quo), and I,
I, are scale factors. Using the recurences (20) and (21), we recover the
non-generic BIORES algorithm of Gutknecht.

To find the approximations z,, of the solution of the problem (3), the
scale factors I, and I',, are replaced by the relative scale factors

Yn,i = n/Fn—i7 ﬁn,i = Fn/Fn—z

With a particular choice of «; ;, we can eliminate b from both sides of the
recurrence satisfied by r, = b — Ax,, and thus the recurrence relationship
between the approximations x,, is established. The corresponding algorithm
is called the normalized BIORES. In the unnormalized BIORES algorithm,
Gutknecht uses another technique: he introduces two sequences z, and g,
related by r, = bp, — Az,. The second sequence o,, is chosen to eliminate
b from both sides of the recurrence satisfied by r,. Thus the recurrence
relationship between the z, is established and the approximations x,, are
given by x,, = z,/0n-

Now, we are interested in the BCG algorithm. It is well known that it
suffers from two kinds of breakdowns. The first one is due to the breakdown
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of the underlying Lanczos process (Lanczos or ghost breakdown in [3]), and
the second one is due to the fact that some iterates are not well defined
by the Galerkin condition on the associated Krylov subspace (pivot or true
breakdown in [3]). Under the condition that Lanczos breakdowns do not

occur, i.e. ngo) # 0 for all £, Chan and Bank [5, 6] propose the composite
step bi-conjugate gradient algorithm (CSBCG) for eliminating the pivot
breakdown. Under this condition, two consecutive Hankel determinants
H,gl) cannot be zero (see [8]), thus my < 2.

Recall that, under the condition H Igo) # 0, the monic orthogonal polyno-

mial P}go) exists. Now, we assume that, at the kth step, a pivot breakdown
occurs in the BCG algorithm. The polynomial Py,; does not exist, and

thus HY #0, HY, = 0 and HY, #0.
REMARK 2. When H ,&)1 = 0, the polynomials P, and P2 have exact
degree k and k + 2 respectively.
Obviously, the family
(22) (P, PO, PO, P Qi
where
Q= (-1'E" /H Y,
forms a basis of the vector space of polynomials of degree at most k + 1.
Expressing the polynomial Py o + dg42C P,E?r)l of degree k 4 1, where
Pria(C) = —dpi2(" 2+
in the basis (22), we obtain
Piio = apPyp — bp(Qr — CkCP]EE);_)la
with
Ci = dk+2.
Finally, using the condition Py 2(0) = 1, we obtain
(23) Pyyo = Pp — bp(Qr — CkCPéi)l-

We can also express the polynomial P,EE?I in the basis (22), and we obtain

(24) Plggr)l = 01 P + 01C Q-
By construction of Qy42, the polynomial Q2 — Pyt2 has degree k+ 1, and
we can write

Qr+2 — Pigo = geC" + .

If we consider the polynomial Qg2 — Prio — ng,gi)l, of degree k, we can
express it in the basis {Qo, Q1, ..., Qr}, and we easily obtain the recurrence
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relationship

(25) Qr+2 = Prio + €xQr + gk:P,i?r)y
Setting
e = Pe(A)rg, 7r = Pr(A%)T0, pr = Qr(A)ro,
Br = Qu(A")F0,  zra1 = PO (A)ro,  Zer = Py (A%,

and using the recurrences (23)—(25), we recover the CSBCG algorithm.
From (23), the residuals 7 satisfy the recurrence relation

Tk42 =Tk — A[bkpk - Ckszrl]a

thus the approximations xj can be computed recursively as

Tyo = Tp + [beDr — ChZh1)-

4. Conclusion. In the present work we discuss three strategies for
treating the breakdown problem in the Lanczos-type algorithms. Theses
strategies are derived, using simple arguments, from a unified framework.
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