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A NONLOCAL

COAGULATION-FRAGMENTATION MODEL

Abstract. A new nonlocal discrete model of cluster coagulation and frag-
mentation is proposed. In the model the spatial structure of the processes
is taken into account: the clusters may coalesce at a distance between their
centers and may diffuse in the physical space Ω. The model is expressed
in terms of an infinite system of integro-differential bilinear equations. We
prove that some results known in the spatially homogeneous case can be
extended to the nonlocal model. In contrast to the corresponding local
models the analysis can be carried out in the L1(Ω) setting. Our purpose
is to study global (in time) existence, mass conservation and well-posedness
of the model.

1. Introduction. In this paper a new model of coagulation and frag-
mentation is proposed. The model is a generalization of the discrete co-
agulation-fragmentation model describing the dynamics of cluster growth.
Such models arise in polymer science ([HEZ], [Zf] and [ZM]), atmosphere
physics ([Dr]), colloidal chemistry ([Sm]), biology and immunology ([DKB]),
to give a few examples. An infinite system of equations was originally intro-
duced by Smoluchowski ([Sm]) as a model for coagulation of colloids moving
according to a Brownian motion.

The main novelty we introduce is related to the nonlocal (in space) mech-
anism of cluster interaction. Roughly speaking, we assume that a cluster
with center of mass at y ∈ Ω ⊂ R

n may coalesce with another one with
center at z ∈ Ω. The cluster formed in this way has center at a point x ∈ Ω
somewhere in the vicinity of y and z. Since the shape and the geometrical
structure of clusters may be fairly complicated we assume that the point x
is distributed according to a given probability law (the form of this law car-
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ries some information on the structure of clusters). Similarly, after cluster
fragmentation new clusters have different centers distributed according to a
given probability law. Additionally we assume that the clusters may diffuse
according to Fick’s law.

Consequently, the model of (nonlocal) coagulation-fragmentation process
is expressed in terms of an infinite system of integro-differential bilinear
equations

(1.1) ∂tuj +Aju = Jj [u], j = 1, 2, . . . , on ]0,∞[ ×Ω ⊂ R
n+1,

with the initial data

(1.2) u|t=0 = U

and the boundary condition

(1.3) Bju = 0, j = 1, 2, . . .

Here and subsequently

u = (u1, u2, . . .), uj : ]0,∞[×Ω → R
1, j = 1, 2, . . .

uj = uj(t, x) is the number density of the clusters consisting of j elementary
objects (particles) at time t ∈ ]0,∞[ with center at x ∈ Ω ⊂ R

n; Ω is
a bounded domain in R

n of class C2; (Aj ,Bj), j = 1, 2, . . . , are regular
boundary value problems (cf. [A1]),

(1.4) Aju(x) = −
n∑

k,l=1

∂xk
(d

(j)
k,l(x)∂xl

uj), j = 1, 2, . . . ,

(1.5a) d
(j)
k,l = d

(j)
l,k ∈ C1(Ω,R1),

(1.5b)
n∑

k,l=1

d
(j)
k,l(x)ξkξl > 0 ∀x ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ R

n − {0},

(1.6) Bj(u) =
∂uj

∂ν
on ]0,∞[× ∂Ω,

and ν ∈ C1(Γ1,R
n) is the outer normal vector field to ∂Ω. Condition (1.3)

is the Neumann condition on ∂Ω and it corresponds to the no-flux boundary
condition.

Remark 1.1. It is possible (cf. [A1] and [A2])—under some additional
assumptions—to consider the more general diffusion-convection operator

(1.7a) Aju(x) = −
n∑

k,l=1

∂xk
(d

(j)
kl (x)∂xl

uj) +

n∑

k=1

d
(j)
k (x)∂xk

uj + d
(j)
0 (x)uj ,

with

(1.7b) d
(j)
k , d

(j)
0 ∈ C0(Ω,R1)
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and the more general boundary condition

(1.7c) Bj(u) =





uj on Γ0,
∂uj

∂ν̃(j) + ν
(j)
0 u

on Γ1,

where ∂Ω = Γ0∪Γ1, Γ0 and Γ1 are both open and closed in ∂Ω, Γ0∩Γ1 = ∅,
and ν̃(j) ∈ C1(Γ1,R

n) is an outward pointing, nowhere tangent vector field

and ν
(j)
0 ∈ C1(Γ1,R), but we will not develop this point here.

In this paper we assume that the x-variable is interpreted as the center
of clusters, but a more general theory is also possible when x is interpreted
as a set of variables describing additionally the cluster shape and/or cluster
orientation (cf. [Z1], [Z2], [ZJ]).

Jj [u] is the following nonlocal coagulation-fragmentation operator:

J1[u](t, x) = − u1(t, x)

∞∑

k=1

\
Ω

a1,k(x, y)uk(t, y) dy(1.8a)

+

∞∑

k=1

\
Ω

B1,k(x, y)u1+k(t, y) dy,

Jj [u](t, x) =
1

2

j−1∑

k=1

\
Ω×Ω

Aj−k,k(x, y, z)uj−k(t, y)uk(t, z) dy dz(1.8b)

− uj(t, x)
∞∑

k=1

\
Ω

aj,k(x, y)uk(t, y) dy

+
∞∑

k=1

\
Ω

Bj,k(x, y)uj+k(t, y) dy

−
1

2
uj(t, x)

j−1∑

k=1

bj−k,k(x),

for j = 2, 3, . . .
The coefficient aj,k = aj,k(x, y) is the coagulation rate, that is, the num-

ber of coalescences, per unit time, of a j-cluster (with center at x) with a
k-cluster (with center at y); we assume that

(1.9a) aj,k(x, y) = ak,j(y, x)

and

(1.9b) aj,k(x, y) ≥ 0

for j, k = 1, 2, . . . and almost all (a.a.) x, y ∈ Ω;

(1.10a) Aj,k(x, y, z) = Ãj,k(x; y, z)aj,k(y, z)
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is such that Ãj,k = Ãj,k( · ; y, z), for a.a. y ∈ Ω and a.a. z ∈ Ω, is the
probability density that after the coalescence of a j-cluster (with center
at y) with a k-cluster (with center at z), the newly formed (j + k)-cluster
will have center at x; therefore we assume

(1.10b)
\
Ω

Ãj,k(x; y, z) dx = 1

and

(1.10c) Ãj,k(x; y, z) ≥ 0

for j, k = 1, 2, . . . , a.a. x ∈ Ω, a.a. y ∈ Ω, a.a. z ∈ Ω.
The coefficient bj,k = bj,k(x) is the fragmentation rate, that is, the num-

ber of fragmentations, per unit time, of a (j + k)-cluster (with center at x)
into j- and k-clusters; we assume that

(1.11a) bj,k(x) = bk,j(x)

and

(1.11b) bj,k(x) ≥ 0

for j, k = 1, 2, . . . and a.a. x ∈ Ω;

(1.12a) Bj,k(x, y) = B̃j,k(x, y)bj,k(y)

is such that B̃j,k = B̃j,k( ·, y), for a.a. y ∈ Ω, is the probability density that
after the breakup of a (j + k)-cluster (with center at y), the newly formed
j-cluster will have center at x; therefore we assume

(1.12b)
\
Ω

B̃j,k(x, y) dx = 1

and

(1.12c) B̃j,k(x, y) ≥ 0

for j, k = 1, 2, . . . , a.a. x ∈ Ω, and a.a. y ∈ Ω.
The model defined by (1.1) has a nonlocal structure. In the case when all

functions are independent of the position variable, the model reduces to the
usual spatially homogeneous coagulation-fragmentation model considered
in [BC]. On the other hand, assuming

(1.13a) aj,k(x, y) = αj,kδ(y − x), bj,k(x) = βj,k,

(1.13b) Aj,k(x; y, z) = αj,kδ(y − x)δ(z − y), Bj,k(x, y) = βj,kδ(y − x),

where the quantities αj,k, βj,k are constants for all j, k ∈ {1, 2, . . .}, one
formally obtains the coagulation-fragmentation local model with diffusion
considered in [vD], [Sl], [CP] and [Wr]. In such local models clusters are
regarded as point masses.

In the model defined by (1.1) the spatial structure of the processes of co-
agulation and fragmentation is taken into account: the positions of centers of
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newly formed clusters are randomly distributed according to the probability
densities Ãj,k and B̃j,k.

The idea of nonlocal interactions in the model defined by (1.1) is similar
to the one of Jäger and Segel [JS], where the state was however “dominance”,
characterizing the individuals of a certain population of interacting insects,
rather than position in the physical space. Mathematical aspects related to
various generalizations of the Jäger and Segel model were studied in [BL],
[AL], and [ABL] (see also references therein). Various models describing
spatial nonlocal interactions were considered in kinetic theory in the papers
[Mo], [Po], [LP] and [BP], to give but a few examples. The model taking into
account spatial nonlocal interactions in population dynamics was studied
in [BL].

It is worth comparing the nonlocal model (1.1) with the correspond-
ing local version which one obtains formally setting (1.13). Well-posedness
and other mathematical properties of solutions to the local model have
been recently studied in a number of papers (see [BW], [CP], [LW], [Wr]
and [A2]). It turns out that due to the spatial “smearing” of the process
of coagulation, the operator J is well defined in the space L1(Ω), unlike
the corresponding operator for the local model. For the latter, some L∞-
bounds, at least for each component of u, are necessary in order to state
the problem correctly in the L1-setting. This requirement leads, however, to
some additional “technical” assumptions on the coagulation and fragmen-
tation coefficients (cf. Assumption (H3) in [Wr]; the optimal assumptions
are not known yet), which are not needed in the spatially homogeneous
case ([BC]). Moreover, in order to obtain the existence result comparable
with that in the spatially homogeneous case (i.e. under the analogous mild
growth restrictions (1.17)—see [BC]), one should estimate some finite sums
of components of u in the L∞(]0, T [×Ω) norm. This is possible under some
additional assumptions on the diffusion operator (the diffusion coefficients
should be the same at least for large j—cf. [Wr], Assumption (H4)). In-
deed, it is well known ([PS]) that for the reaction-diffusion systems one may
need some extra assumption on the diffusion coefficients in order to warrant
L∞-bounds.

In this paper, we show that some results known for the spatially homo-
geneous case may also be proved for the nonlocal model (1.1) under rather
mild assumptions. In particular, neither special restrictions for the diffusion
operator nor for the coagulation and fragmentation rates are needed.

The operator J , defined by (1.8), formally satisfies

(1.14)

∞∑

j=1

\
Ω

jJj [u] dx = 0,

which corresponds to the (total) mass conservation law.
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Note, however, that pointwise,

(1.15)
∞∑

j=1

jJj [u] = 0

need not be satisfied, in contrast to the corresponding local model (see e.g.
[Sl], [Wr]) in which (1.15) formally holds.

For r ≥ 0 let Xr be the Banach space

Xr =
{
u = u(x) :

∞∑

j=1

\
Ω

jr |uj(x)| dx < ∞
}
,

equipped with the norm

‖u‖r =

∞∑

j=1

\
Ω

jr |uj(x)| dx.

The nonnegative cone of Xr is denoted by X+
r :

X+
r = {u ∈ Xr : uj(x) ≥ 0, ∀j = 1, 2, . . . , and a.a. x ∈ Ω}.

Note that the L1–realization of the boundary value problem (Aj ,Bj), for
j = 1, 2, . . . , given by (1.4)–(1.6), generates a positive contraction semigroup
on L1(Ω)—see [A1].

Throughout the paper, we use two different concepts of solutions. The
first one is the standard mild solution (cf. [Pa]) in a given Banach space
Y on the time interval [0, T ]—it will be referred to as an m-solution in Y
on [0, T ]. If the m-solution in Y is defined on [0, T ] for all T > 0, it will
be referred to as a global m-solution in Y . Frequently we will consider
an m-solution in X1. However, we also need a weaker concept of solution
(analogous to those of [BC] and [LW]):

Definition 1.1. We say a function u = u(t) is a global w-solution of
the IBVP (1.1)–(1.3) if

(i) u : [0,∞[ → X+
1 ,

and if, for each T > 0,

(ii) uj ∈ C([0, T ]; L1(Ω)) for all j ≥ 1,

(iii) uj = uj(t), for each j ≥ 1, is an m-solution in L1(Ω) on [0, T ] to the
jth equation of (1.1) with initial data Uj and with boundary conditions (1.3).

In the majority of papers (e.g. [BC], [BW], [CP]) a solution to the
infinite system of coagulation-fragmentation equations is constructed as a
limit of solutions to some auxiliary truncated systems (we mention however
a different approach by Amann [A2]). In Section 2 we study such auxiliary
truncated systems corresponding to (1.1).
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In Sections 2 and 3 we assume that the coagulation and fragmentation
rates satisfy

(1.17) ∃α > 0, ∀j, k = 1, 2, . . . , ‖Aj,k‖L∞(Ω3) ≤ α(j + k),

(1.18) ∀j, k = 1, 2, . . . , ∃βj,k ∈ ]0,∞[, ‖Bj,k‖L∞(Ω2) ≤ βj,k.

Then, by (1.10a,b) and (1.12a,b), we have

(1.19) ∃α′ > 0, ∀j, k = 1, 2, . . . , ‖aj,k‖L∞(Ω2) ≤ α′(j + k),

(1.20) ∀j, k = 1, 2, . . . , ∃β′
j,k ∈ ]0,∞[, ‖bj,k‖L∞(Ω) ≤ β′

j,k.

We will use α(0) and β
(0)
j,k to denote max{α,α′} and max{βj,k, β

′
j,k}, respec-

tively.

In Section 3 we state and prove the main result of the paper: the global
existence (Theorem 3.1) of solutions and the property of total mass conser-
vation (3.1). We adopt Ball and Carr’s idea of proof ([BC], developed for
the spatially homogeneous case). It is worth pointing out that this method
does not seem to be applicable to the local model by the reasons already
mentioned.

The result we obtain seems to be nearly optimal:

(i) Under some extra (mild) assumption on the initial data (i.e. U ∈
X+

1+r, for r > 1—cf. (I) in Lemma 2.3) we prove the result analogous to
that by Ball and Carr regarding the spatially homogeneous case (actually,
they assumed a growth condition analogous to (1.17) for the coagulation
rates and no restrictions on the fragmentation rates).

(ii) Some additional restriction on the growth of the fragmentation rates
(cf. (2.12)) enables us to obtain the results for arbitrary initial dataU ∈ X+

1

and for coagulation rates satisfying (1.17).

In contrast to the existence theory, the method of proof of uniqueness
in [BC] does not seem to be applicable to (1.1).

In Section 4, we assume the following conditions on the coagulation and
fragmentation rates: the coagulation rates are uniformly bounded:

(1.21) ∃α(1) > 0, ∀j, k = 1, 2, . . . , ‖Aj,k‖L∞(Ω3) ≤ α(1),

and the fragmentation rates correspond to weak fragmentation (cf. [BC],
[CD]):

(1.22) ∃β(1) > 0, ∀j, k = 1, 2, . . . ,

j−1∑

k=1

k‖Bj−k,k‖L∞(Ω2) ≤ β(1)j.

Under these rather restrictive—but physically reasonable—assumptions we
prove that the operator J given by (1.8) is locally Lipschitz continuous in
the space X1. Therefore, we obtain the uniqueness of solutions and their
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continuous dependence on initial data (cf. Theorem 4.1). The result in X1

is possible due to the nonlocal stucture of the operator J .

2. Approximation of solutions. A solution u of the infinite system
(1.1) is constructed from successive approximations {uN}N=1,2,..., where u

N

is defined as a solution to a suitable truncated system of N equations (cf.
[BC]):

(2.1) ∂tu
N
j +Aju

N = JN
j [uN ], j = 1, . . . , N,

where

JN
1 [uN ](t, x) = − uN

1 (t, x)

N−1∑

k=1

\
Ω

a1,k(x, y)u
N
k (t, y) dy(2.2a)

+
N−1∑

k=1

\
Ω

B1,k(x, y)u
N
1+k(t, y) dy,

JN
j [uN ](t, x) =

1

2

j−1∑

k=1

\
Ω×Ω

Aj−k,k(x, y, z)u
N
j−k(t, y)u

N
k (t, z) dy dz(2.2b)

− uN
j (t, x)

N−j∑

k=1

\
Ω

aj,k(x, y)u
N
k (t, y) dy

+

N−j∑

k=1

\
Ω

Bj,k(x, y)u
N
j+k(t, y) dy

−
1

2
uN
j (t, x)

j−1∑

k=1

bj−k,k(x)

for j = 2, . . . , N .

System (2.1) may be obtained from (1.1) by setting

(2.3) aj,k ≡ 0, bj,k ≡ 0 for j + k > N.

Straightforward computations together with (1.9a), (1.10b), (1.11a) and
(1.12b) show that the total mass conservation law is formally satisfied:

(2.4)

N∑

j=1

\
Ω

jJN
j [u] dx = 0.

We adhere to the convention that every finite sequence (u1, . . . , uN ) is
treated as an infinite one, (u1, . . . , uN , 0, 0, . . .).
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We have

Proposition 2.1. Fix U ∈ X+
1 and N > 2. There exists a unique global

m-solution uN = uN (t) to the IBVP (2.1), (1.2), (1.3) in X1. Moreover,

(2.5) uN (t) ∈ X+
1

and

(2.6) ‖uN (t)‖1 = ‖U‖1 for t ≥ 0.

P r o o f. The proof is based on the following facts:

(i) the L1-realization of the boundary value problem (Aj ,Bj), for j =
1, 2, . . . , generates a positive contraction semigroup on L1(Ω) (cf. [A1]),

(ii) the nonlinear operator (JN
1 , . . . , JN

N ) is locally Lipschitz continuous
in X1 (the proof is straightforward and is based on the nonlocal structure
of the operator),

(iii) the solution to (2.1) with nonnegative initial data (U ∈ X+
1 ) is

nonnegative (cf. [Ma]),

(iv) (2.4) is satisfied for each u ∈ X1, hence (2.6) follows and therefore
the local solution can be prolonged onto ]0,∞[ by the usual continuation
argument.

Throughout the paper, we use the notation

Wi,k[u](t) =
\

Ω3

Ai,k(x, y, z)ui(t, y)uk(t, z) dx dy dz(2.7)

−
\

Ω2

Bi,k(x, y)ui+k(t, y) dx dy

=
\

Ω2

ai,k(x, y)ui(t, x)uk(t, y) dx dy −
\
Ω

bi,k(x)ui+k(t, x) dx

for i, k = 1, 2, . . .

The following lemma is adapted from [BC]:

Lemma 2.2. Let uN be the solution of (2.1) and {gi}i=1,2,... be a sequence

of real numbers. Then

(2.8)
N∑

i=m

gi
\
Ω

uN
i (t, x) dx −

N∑

i=m

gi
\
Ω

uN
i (τ, x) dx

=
1

2

t\
τ

∑

T1

(gi+k − gi − gk)Wi,k[u
N ](s) ds

+
1

2

t\
τ

∑

T2

gi+kWi,k[u
N ](s) ds +

t\
τ

∑

T3

(gi+k − gk)Wi,k[u
N ](s) ds,



54 M. Lachowicz and D. Wrzosek

where

T1 = {(i, k) : i, k ≥ m, i+ k ≤ N},

T2 = {(i, k) : m ≤ i+ k ≤ N, i, k < m},

T3 = {(i, k) : 1 ≤ i ≤ m− 1, k ≥ m, i+ k ≤ N}.

P r o o f. As a consequence of the no-flux boundary conditions (1.3) we
obtain

(2.9)
\
Ω

uN
i (t, x)dx−

\
Ω

uN
i (τ, x) dx =

t\
τ

\
Ω

JN
i [uN ](s, x) dx ds

for i = 1, . . . , N .
Multiplying the ith equation of (2.9) by gi and summing up from m to

N we obtain (2.8) proceeding similarly to Lemma 2.1 in [BC]. Note that
Assumptions (1.9a) and (1.11a) are essential to the proof of (2.8).

Note that setting gi = i, m = 1 and τ = 0 we obtain

(2.10)
\
Ω

N∑

i=1

iuN
i (t, x) dx =

\
Ω

N∑

i=1

iUi(x) dx for each t > 0.

This corresponds to (2.4) and states that the solution uN conserves the total
mass.

Lemma 2.3. Let uN be the global m-solution of the IBVP (2.1), (1.2),
(1.3). Suppose that Assumptions (1.17) and (1.18) hold.

(I) If U ∈ X+
1+r for some r > 0, then there exist u = u(t) ∈ X+

1 , for
t > 0, and a subsequence again denoted by {uN}N=1,2,... such that

(2.11) uN
j −−−→

N→∞
uj in Lq(0, T ;L1(Ω)) and a.e. in ]0, T [ ×Ω,

for all T > 0 and 1 ≤ q < ∞.

(II) If U ∈ X+
1 and for each j ≥ 1 there exists βj > 0 such that

(2.12) ‖Bj,k−j‖L∞(Ω2) ≤ βjk, k ≥ 1,

then there exists u = u(t) ∈ X+
1 , for t > 0, and a subsequence again denoted

by {uN}N=1,2... such that

(2.13) uN
j −−−→

N→∞
uj in C([0, T ];L1(Ω)) and a.e. in ]0, T [×Ω,

for any T > 0.

P r o o f. Let us first give the main idea of the proof. We claim that, for
each j ≥ 1,

(2.14) ‖JN
j [uN ]‖L1(0,T ;L1(Ω)) ≤ c

(1)
j

and
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(2.15) ‖JN
j [uN ]‖L∞(0,T ;L1(Ω)) ≤ c

(2)
j

in cases (I) and (II), respectively, where c
(1)
j and c

(2)
j are constants indepen-

dent of N . Then, in both cases, we may use the compactness argument from
[BHV] to each of the equations of (2.1) separately and then apply the Can-
tor diagonal procedure. Therefore (2.14) will imply (2.11), whereas (2.15)
will imply (2.13).

We begin by proving (2.15) in case (II). Fix j. We conclude from (2.10)
that, for any N > 1,

(2.16)
\
Ω

N∑

i=1

iuN
i (t, x) dx ≤ ‖U‖1 for t ∈ [0, T ].

Hence by (1.17),

(2.17)
\

Ω3

N−j∑

k=1

Aj,k(x, y, z)u
N
j (t, y)uN

k (t, z) dx dy dz

≤ 2α(0)‖uN (t)‖1‖u
N (t)‖0 ≤ 2α(0)‖U‖21 for t ∈ [0, T ],

and by (2.12),

(2.18)
\

Ω2

N∑

k=j+1

Bj,k−j(x, y)u
N
k (t, y) dx dy ≤ β

(0)
j ‖uN (t)‖1 ≤ β

(0)
j ‖U‖1

for t ∈ [0, T ], where β
(0)
j = βj max{1, |Ω|}.

Similar considerations can be applied to the remaining terms in the jth
equation of (2.1) in order to get (2.15).

In case (I) we proceed in a different way since we do not assume any
growth condition on the fragmentation rates.

Setting m = 1, τ = 0 and gi = i1+r in (2.8) we have

(2.19)
\
Ω

N∑

i=1

i1+ruN
i (t, x) dx −

\
Ω

N∑

i=1

i1+rUi(x) dx

=
1

2

t\
0

∑

1<i+k≤N

((i+ k)1+r − i1+r − k1+r)Wi,k[u
N ](s) ds.

Hence using (1.17) and (1.18) yields

(2.20)
\
Ω

N∑

i=1

i1+ruN
i (t, x) dx −

\
Ω

N∑

i=1

i1+rUi(x) dx

+
1

2

t\
0

\
Ω

∑

1<i+k≤N

((i+ k)1+r − i1+r − k1+r)bi,k(x)u
N
i+k(s, x) dx ds
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≤
α(0)

2

t\
0

\
Ω2

∑

1<i+k≤N

(i+ k)((i + k)1+r − i1+r − k1+r)

×uN
i (s, x)uN

k (s, y) dx dy ds.

In order to estimate the coagulation terms from above and the frag-
mentation terms from below, we use the following inequalities (cf. [Ca],
Lemma 2.3):

(2.21a) (i+ k)((i + k)1+r − i1+r − k1+r) ≤ cr(i k
1+r + i1+r k),

for i, k = 1, 2, . . . , where cr is a positive constant (depending on r), and

(2.21b) l1+r − i1+r − (l − i)1+r ≥ 21+r − 2 for 1 ≤ i ≤ l − 1, l ≥ 2.

By (2.21b) we have

(2.22)
1

2

t\
0

\
Ω

∑

1<i+k≤N

((i+ k)1+r − i1+r − k1+r)bi,k(x)u
N
i+k(s, x) dx ds

=
1

2

t\
0

\
Ω

N∑

l=2

l−1∑

i=1

(l1+r − i1+r − (l − i)1+r)bi,l−i(x)u
N
l (s, x) dx ds

≥ (2r − 1)

t\
0

\
Ω

N∑

l=2

bj,l−j(x)u
N
l (s, x) dx ds,

for fixed j. Finally, from (2.20)–(2.22) we obtain

(2.23) ‖uN (t)‖1+r + (2r − 1)

t\
0

\
Ω

N∑

l=2

bj,l−j(x)u
N
l (s, x) dx ds

≤ ‖U‖1+r + 2α(0)cr‖U‖1

t\
0

‖uN (s)‖1+r ds.

Hence the Gronwall lemma yields

(2.24) sup
t∈[0,T ]

‖uN (t)‖1+r +

t\
0

\
Ω

N∑

l=2

bj,l−j(x)u
N
l (s, x) dx ds

≤ ‖U‖1+r(1 + exp(2α(0)cr‖U‖1T )).

By (2.17) and (2.24) we obtain (2.14), which completes the proof.

3. Existence and conservation of the total mass. We begin by
stating the main result of the paper.

Theorem 3.1. Let the assumptions of Lemma 2.3 (either (I) or (II)) be
satisfied. Then there exists a global w-solution u to the IBVP (1.1)–(1.3)
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with initial data U ∈ X+
1 such that

(3.1) ‖u(t)‖1 = ‖U‖1 for all t ≥ 0.

P r o o f. The proof is based on the method introduced by Ball and Carr
[BC] in the case of the spatially homogeneous coagulation-fragmentation
model.

Note that this method cannot be used for the corresponding local model
without a priori L∞(Ω)-bounds for

∑N

i=1 iu
N
i uniformly with respect to N

(cf. discussion in Section 1).
Fix T > 0. By Lemma 2.3 we may assume that there exists a subsequence

{uN}N=1,2,... and u ∈ X+
1 such that, for each j ≥ 1,

(3.2) uN
j −−−→

N→∞
uj in L1(0, 2T ;L1(Ω)) and a.e. in ]0, 2T [×Ω.

We shall show that

(3.3) JN
j [uN ]−−−→

N→∞
Jj [u] in L1(0, T ;L1(Ω))

for each j ≥ 1. In consequence, using the continuous dependence on data
for the mild solution to the diffusion equation, we obtain

(3.4) uN
j −−−→

N→∞
uj in C([0, T ];L1(Ω)).

In order to show (3.3) we shall find estimates for the tails of the corre-
sponding series. Let

RN
m(s) =

\
Ω

N∑

i=m

iuN
i (s, x) dx,(3.5)

QN
m(s) =

\
Ω

( 2m∑

i=m

iuN
i (s, x) + 2m

N∑

i=2m+1

uN
i (s, x)

)
dx,(3.6)

PN
m(s) =

\
Ω

m−1∑

i=1

N−i∑

k=2m

ibi,ku
N
i+k(s, x) dx(3.7)

for s ∈ [0, 2T ] and 1 < m < (N − 1)/2. Applying Lemma 2.2 with gi = i
yields

(3.8) RN
m(τ)−RN

m(0)

=

τ\
0

∑

T3

iWi,k[u
N ](s) ds +

1

2

τ\
0

∑

T2

(i+ k)Wi,k[u
N ](s) ds,

for τ ∈ ]0, 2T ]. Then setting in Lemma 2.2

gi =

{ 0, 1 ≤ i ≤ m− 1,
i, m ≤ i ≤ 2m,
2m, 2m+ 1 ≤ i ≤ N ,
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results in

QN
m(τ)−QN

m(0) =
1

2

τ\
0

∑

T1

µi,kWi,k[u
N ](s) ds(3.9)

+
1

2

τ\
0

∑

T2

(i+ k)Wi,k[u
N ](s) ds

+

τ\
0

∑

T3

λi,kWi,k[u
N ](s) ds

for τ ∈ ]0, 2T ], where µi,k = µk,i is defined by

(3.10) µi,k =





2m− (i+ k), i, k ≤ 2m,
−i, i ≤ 2m, k > 2m,
−2m, i > 2m, k > 2m,

and

(3.11) λi,k =

{
0, k ≥ 2m,
i, i+ k ≤ 2m,
2m− k, i+ k ≥ 2m+ 1, k < 2m.

Note that

0 ≤ −µi,k ≤ 2m for (i, k) ∈ T1,(3.12)

0 ≤ λi,k ≤ i for (i, k) ∈ T3.(3.13)

Subtracting (3.9) from (3.8) and then using (3.10)–(3.13) yields

(3.14) RN
m(τ) +

τ\
0

PN
m(s) ds ≤ RN

m(0) +QN
m(τ)

+

τ\
0

(∑

T3

i+ 2m
∑

T1

) \
Ω2

ai,k(x, y)u
N
i (s, x)uN

k (s, y) dx dy ds.

By the definition of T1 and T3 and (2.16) it follows that

(3.15)
∑

T3

\
Ω2

iai,k(x, y)u
N
i (s, x)uN

i (s, z) dx dy

≤ α(0)
(m−1∑

i=1

i
\
Ω

uN
i (s, x) dx

)( N−i∑

k=m

(i+ k)
\
Ω

uN
i (s, x) dx

)

≤ 2α(0)‖U‖1R
N
m(s)

and
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(3.16) 2m
∑

T1

\
Ω2

ai,k(x, y)u
N
i (s, x)uN

k (s, y) dx dy

≤ 2α(0)m
N∑

i=m

N∑

k=m

(i+ k)
( \

Ω

uN
i (s, x) dx

)( \
Ω

uN
k (s, x) dx

)

≤ 4α(0)‖U‖1R
N
m(s).

We are now in a position to let N → ∞ in the jth equation (j is fixed).
To this end we first prove that, for given ε > 0, there exist M > j and
N0 > 2M such that

(3.17)

τ\
0

QN
M < ε for N ≥ N0.

Indeed, using (3.2) we can pass to the limit in (2.16) to obtain

(3.18)
\
Ω

∞∑

i=1

iui(s, x) dx ≤ ‖U‖1 for a.a. s ∈ [0, 2T ].

From (3.2) and (3.18) it follows that

(3.19)

∞∑

i=l

‖uN
i (s, ·)− ui(s, ·)‖L1(Ω)

≤ l−1
∞∑

i=l

i(‖uN
i (s, ·)‖L1(Ω) + ‖ui(s, ·)‖L1(Ω)) ≤ 2l−1‖U‖1

for a.a. s ∈ [0, 2T ]. Therefore, for fixed m and a.a. s ∈ [0, 2T ],

lim
N→∞

QN
m(s) = Qm(s)(3.20)

=

2m∑

i=m

i‖ui(s, ·)‖L1(Ω) + 2m

∞∑

i=2m+1

‖ui(s, ·)‖L1(Ω).

From (3.18) it follows that

(3.21) 0 ≤ QN
m(s) ≤ ‖U‖1

for a.a. s in ]0, 2T [; and

(3.22) Qm(s) ≤
∞∑

i=m

i‖ui(s·)‖L1(Ω)

for a.a. s in ]0, 2T [. Hence

(3.23) lim
m→∞

Qm(s) → 0
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for a.a. s in ]0, 2T [; and for given ε > 0 there exists M > j such that

(3.24)

τ\
0

QM (s) ds <
ε

2
for all τ ∈ [0, 2T ],

and

(3.25) RN
M (0) =

∞∑

i=M

iUi(x) <
ε

T
∀N > 2M.

From (3.21) and (3.23), by the Lebesgue dominated convergence theorem
it follows that

(3.26) lim
N→∞

τ\
0

|QN
M (s)−QM (s)| ds = 0.

Hence, using (3.24) there exists N0 > 2M such that

τ\
0

QN
M (s) ds ≤

τ\
0

|QN
M (s)−QM (s)| ds +

τ\
0

QM (s) ds < ε for N > N0,

which shows (3.17).

Integrating (3.14) on [0, t], where 0 < t ≤ 2T , and using (3.15), (3.17)
together with (3.24), and (3.25) yields

(3.27)

t\
0

RN
M (τ) dτ +

t\
0

τ\
0

PN
M (s) ds dτ ≤ 2ε+H0

t\
0

τ\
0

RN
M (s) ds dτ,

where H0 = 6α(0)‖U‖1. By the Gronwall lemma

(3.28)

t\
0

RN
M (τ) dτ ≤ εH1,

where H1 = 3exp(12α(0)‖U‖1T ), and by (3.27) it follows that

(3.29)

t\
0

τ\
0

PN
M (s) ds dτ ≤ εH2 for 0 < t ≤ 2T,

where H2 = 3 +H1. Since

(3.30)

t\
0

τ\
0

PN
M (s) ds dτ =

t\
0

(t− τ)PN
M (τ) dτ,

we conclude from (3.29) that for N > N0 and N0 > 2M ,

(3.31)

T\
0

PN
M (s) ds <

εH2

T
.
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Note that

(3.32)

∞∑

k=1

T\
0

\
Ω2

aj,k(x, y)uj(t, x)uk(t, y) dx dy dt < ∞,

(3.33)

∞∑

k=1

T\
0

\
Ω

bj,k(x)uj+k(t, x) dx dt < ∞.

Indeed, (3.32) follows from (1.17) and (3.18), whereas (3.33) results from
the uniform bounds (2.18) and (2.24), under Assumptions (I) and (II) in
Lemma 2.3, respectively. Note also that, letting N → ∞ in (3.31) gives

(3.34)

T\
0

\
Ω

M−1∑

i=1

∞∑

k=2M

ibi,k(x)uk(t, x) dx dt <
εH2

T
.

It follows from (3.28) and (1.17) that

(3.35)

T\
0

∣∣∣
\

Ω2

∞∑

k=1

aj,k(x, y)uj(t, x)uk(t, y) dx dy

−
\

Ω2

N−j∑

k=1

aj,k(x, y)u
N
j (t, x)uN

k (t, y) dx dy
∣∣∣ dt

≤ α(0)
T\
0

(
‖uj(t)‖L1(Ω)

(M−1∑

k=1

(j + k)‖uk(t)− uN
k (t)‖L1(Ω)

+ (j + 1)
( N−j∑

k=M

k‖uN
k (t)‖L1(Ω) + k‖uk(t)‖L1(Ω)

)

+

∞∑

k=N−j+1

k‖uk(t)‖L1(Ω)

)

+
∥∥∥

N−j∑

k=1

(j + k)uN
k (t)

∥∥∥
L1(Ω)

‖uj(t)− uN
j (t)‖L1(Ω)

)
dt

≤ α(0)
T\
0

‖U‖1

M−1∑

k=1

(j + k)‖uk(t)− uN
k (t)‖L1(Ω) dt+ (2j + 3)H1ε

+ (j + 1)‖U‖1

T\
0

‖uj(t)− uN
j (t)‖L1(Ω).

Using (3.31) and (3.34), the fragmentation terms may be handled in a



62 M. Lachowicz and D. Wrzosek

similar way:

(3.36)

T\
0

∣∣∣
\
Ω

∞∑

k=1

bj,k(x)uj+k(t, x) dx−
\
Ω

N−j∑

k=1

bj,k(x)u
N
j+k(t, x) dx

∣∣∣ dt

≤
T\
0

2M−1∑

k=1

‖bj,k(uj(t)− uN
j (t))‖L1(Ω) +

2H2

T
ε.

Letting N → ∞ in (3.35) and (3.36) and using (3.2) we conclude that

uN
j

N−j∑

l=1

\
Ω

aj,l(·, y)u
N
l (·, y) dy −−−→

N→∞
uN
j

∞∑

l=1

\
Ω

aj,k(·, y)ul(·, y) dy

and

N−j∑

l=1

\
Ω

bj,k(·, y)u
N
j+k(·, y) dy−−−→

N→∞

∞∑

l=1

\
Ω

bj,k(·, y)uj+k(·, y) dy,

in the space L1(0, T ; L1(Ω)). By (3.2) we let N → ∞ in the remaining
sums in the jth equation. Thus (3.3) and (3.4) hold, which completes the
proof of the existence of solutions.

In order to prove the total mass conservation (3.1) it is sufficient to show
that, for fixed τ > 0 and given ε > 0, there exist M1 and N1 > M1 such
that

(3.37) RN
M1

(τ) < ε for N ≥ N1.

To this end we use (3.15)–(3.17) to obtain

(3.38) RN
m(τ) ≤ RN

m(0) +QN
m(τ) +H0

τ\
0

RN
m(s) ds.

By (3.4) we deduce that (3.20)–(3.23) hold for all s > 0. In particular,

lim
m→∞

Qm(τ) = 0 for each τ ≥ 0.

Thus for given ε1 > 0 there exist M1 and N1 > M1 such that

QN
M1

(τ) ≤ |QN
M1

(τ)−QM1
(τ)| +QM1

(τ) < ε1

and

RN
M1

(0) < ε1

for N > N1. Then by (3.38) and the Gronwall lemma we obtain

RN
M1

(τ) ≤ 2(1 + exp(H0))ε1,

and hence (3.37) follows.
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Finally, for N > N1 > M1 we have

∥∥∥
∞∑

i=1

iui(τ)−
N∑

i=1

iuN
i (τ)

∥∥∥
L1(Ω)

≤
M−1∑

i=1

i‖ui(τ)− uN
i (τ)‖L1(Ω) +

N∑

i=M

‖iuN
i (τ)‖L1(Ω)

+

∞∑

i=M

‖iui(τ)‖L1(Ω)

≤
M−1∑

i=1

i‖ui(τ)− uN
i (τ)‖L1(Ω) + 4(1 + exp(H0τ))ε.

Now we may let N → ∞ and then using (2.10) we obtain (3.1), which
completes the proof.

4. Well-posedness. In this section we consider the IBVP (1.1)–(1.3)
under rather restrictive assumptions (1.21) and (1.22) on the coagulation
and fragmentation rates.

Theorem 4.1. Let the assumptions (1.21) and (1.22) be satisfied. Then

there exists a unique global m-solution u = u(t) in X+
1 to the IBVP

(1.1)–(1.3) with initial data U ∈ X+
1 . Moreover , if Ũ ∈ X+

1 and if ũ = ũ(t)

is the global m-solution of (1.1)–(1.3) with initial data Ũ, then

(4.1) sup
t∈[0,T ]

‖u(t) − ũ(t)‖1 ≤ cT ‖U− Ũ‖1

for all T ≥ 0, where cT is a constant (depending on T ).

P r o o f. Note that (1.21) and (1.22) imply (1.17) and (2.12), respectively.
Therefore the assumptions of Theorem 3.1 are satisfied and the existence of
a global w-solution together with (3.1) follow.

Furthermore, note that the operator A given by

Au = (A1u,A2u, . . .)

generates a C0 semigroup of contractions in the space X1.

We claim that the operator J given by J [u] = (J1[u], J2[u], . . .) is locally
Lipschitz continuous in X1:

(4.2) ‖J [u] − J [ũ]‖1 ≤ 2(α(2)(‖u‖1 + ‖ũ‖1) + β(2))‖u− ũ‖1,

where α(2) = α(1) max{1, |Ω|}, β(2) = β(1) max{1, |Ω|} and α(1), β(1) are
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given in (1.21) and (1.22). Indeed,

(4.3)
∞∑

i=1

i
\
Ω

∣∣∣
∞∑

k=1

\
Ω

Bi,k(x, y)(ui+k(y)− ũi+k(y)) dy
∣∣∣ dx

≤
∞∑

i=1

∞∑

k=i+1

i
\

Ω2

Bi,k−i(x, y)|uk(y)− ũk(y)| dx dy

=

∞∑

k=2

k−1∑

i=1

i
\

Ω2

Bi,k−i(x, y)|uk(y)− ũk(y)| dx dy ≤ β(1)|Ω| · ‖u− ũ‖1,

(4.4)
1

2

∞∑

i=1

i
\
Ω

∣∣∣ (ui(x)− ũi(x))

i−1∑

k=1

bi−k,k(x)
∣∣∣ dx

≤
∞∑

i=1

\
Ω

i−1∑

k=1

kbi−k,k(x)|ui(x)− ũi(x)| dx ≤ β(1)|Ω| · ‖u− ũ‖1

and the detailed estimation of the remaining terms is left to the reader.
The above mentioned properties of the operator A together with (4.2)

imply the local existence of an m-solution, its uniqueness and (4.1) for some
T > 0. On the other hand, the local m-solution satisfies (3.1) and therefore
it can be prolonged onto ]0,∞[ by the usual continuation argument, which
completes the proof.
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