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A CONJUGATE GRADIENT METHOD WITH
QUASI-NEWTON APPROXIMATION

Abstract. The conjugate gradient method of Liu and Storey is an efficient
minimization algorithm which uses second derivatives information, without
saving matrices, by finite difference approximation. It is shown that the
finite difference scheme can be removed by using a quasi-Newton approx-
imation for computing a search direction, without loss of convergence. A
conjugate gradient method based on BFGS approximation is proposed and
compared with existing methods of the same class.

1. Introduction. We are concerned with the unconstrained minimiza-
tion problem

(P ) min f(x), x ∈ Rn,

with f a twice continuously differentiable function. When the dimension of
(P ) is large, conjugate gradient (CG) methods are particularly useful thanks
to their storage saving properties. The classical conjugate gradient methods
aim to solve (P ) by a sequence of line searches

xk+1 = xk + tkdk, k = 1, 2, . . . ,

where tk is the step length and the search direction dk is of the form

dk = −gk + βkdk−1

with gk = ∇f(xk). There are many formulas for computing the coefficient
βk; they can be found in [9], [3], [12] and [8].

Liu and Storey [9] propose a new CG method in which the search direc-
tion is of the form

(1) dk = −αkgk + βkdk−1, αk > 0,
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by considering the effects of an inexact line search. First, they write the
Newton approximation of f(xk+1), i.e.

F (xk + tkdk) = f(xk) + (gT
k dk)tk + 1

2 (dT
k Hkdk)t2k, k ≥ 2,

where Hk = ∇2f(xk) is the Hessian of f at xk. If Hk is positive definite,
then

(2) min
tk>0

F (xk + tkdk)− f(xk) ≤ F (xk + dk)− f(xk).

Finally, in order to improve the line search, Liu and Storey propose to
compute (αk, βk) in (1) as a minimizer of the right hand side of (2), i.e. of
the function

Φ(α, β) = F (xk + dk)− f(xk) = (gT
k dk)tk + 1

2 (dT
k Hkdk)t2k.

By a straightforward calculation, the coefficients αk and βk of the search
direction (1) are then given by

αk =
1

Dk
[‖gk‖2vk − (gT

k dk−1)wk],(3)

βk =
1

Dk
[‖gk‖2wk − (gT

k dk−1)uk],(4)

where

uk = gT
k Hkgk,(5)

vk = dT
k−1Hkdk−1,(6)

wk = gT
k Hkdk−1, Dk = ukvk − w2

k > 0.(7)

Liu and Storey [9, Theorem 2.1] show that their CG algorithm is globally
convergent under line search conditions

f(xk + tkdk)− f(xk) ≤ σ1tk∇f(xk)T dk, 0 < σ1 < 1/2,(8)
|∇f(xk + tkdk)T dk| ≤ −σ2∇f(xk)T dk, 0 < σ1 < σ2 < 1,(9)

assuming that the level set L = {x | f(x) ≤ f(x0)} is bounded. The main
conditions of their convergence theorem are:

uk > 0, vk > 0,(10)

1− w2
k

ukvk
≥ 1

4rk
, ∞ > rk > 0,(11)

uk

‖gk‖2

(
vk

‖dk−1‖2

)−1

≤ rk, ∞ > rk > 0.(12)

In this paper, we will refer to CG of Liu and Storey [9] as the LS algorithm.
To avoid the computation and storage of Hk, Liu and Storey [9] propose
computing uk, vk and wk using some form of finite difference approximation

uk =
1
γk

gT
k (∇f(xk + γkgk)− gk),(13)
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vk =
1
δk

dT
k−1(∇f(xk + δkdk−1)− gk),(14)

wk =
1
δk

gT
k (∇f(xk + δkdk−1)− gk),(15)

where δk and γk are suitable small positive numbers. To avoid some extra
gradient evaluations, Hu and Storey [7] propose computing vk and wk using
the relation

(16) Hkdk−1 ≈
1

tk−1
(gk − gk−1),

derived from the mean-value theorem.
Since conditions (10) must be satisfied, Hk must be positive definite. But

it is well known that this is possible, in general, only in some neighborhood
of a local minimum. In addition, if the function evaluation is costly in time,
it is preferable to evaluate it as rarely as possible. In this paper, we propose
computing uk, vk and wk using a BFGS approximation formula so that (10)
and extra gradient evaluations are removed. In the next section we derive
a LS type algorithm using BFGS approximation. Numerical results on test
problems are presented in Section 3.

2. LS-BFGS algorithm. Let Zk−1 = span{−gk, dk−1} and Qk−1 =
(−gk dk−1). Hu and Storey [8] show that the LS method is a two-dimensional
Newton method in the sense that it uses as new direction, at the current
point xk, the Newton direction of the restriction of f to Zk−1. Indeed, on
Zk−1 the Hessian of f , at the current point, is

(17) H̃k = QT
k−1HkQk−1,

where Hk = ∇2f(xk); and the gradient is g̃k = QT
k−1gk. Thus, the new

direction is given by

(18) dk = −
(
Qk−1H̃

−1
k QT

k−1

)
gk,

or, in extended form, dk = −αkgk + βkdk−1, where

(19)
(

αk

βk

)
= −H̃−1

k g̃k.

The interest of the analysis of Hu and Storey [8] is that it is possible to
replace the true matrix H̃k given by (17) by another one computed by quasi-
Newton techniques.

All quantities (vectors and matrices) in the transformed space Zk will
be marked by attaching a tilde to the untransformed ones.

The matrix H̃k, given by (17), is of the form

H̃k =
(

uk −wk

−wk vk

)
,
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and the condition (11) can be rewritten as

0 < ukvk/(4rk) ≤ ukvk − w2
k = det H̃k.

Thus, at each iteration k, (11) gives a bound from below for the determinant
of H̃k. The conditions (10)–(11) therefore ensure that H̃k is positive definite.
Before replacing H̃k in (18) by another positive definite matrix it is necessary
to know whether the corresponding algorithm converges.

Corollary 1. Suppose that the level set L of f is bounded and the
line search conditions are (8)–(9). Let

H̃k =
(

uk −wk

−wk vk

)
be a 2 × 2 matrix that satisfies (10)–(12), and Qk−1 = (−gk dk−1). Then
any LS type algorithm with search direction given by

(20) dk = −(Qk−1H̃
−1
k QT

k−1)gk

converges.

P r o o f. Since Liu and Storey [9, Theorem 2.1] used the quantities uk,
vk and wk without replacing them by (5)–(7), the corollary is valid. Note
also that if H̃k satisfies (11) then wk <

√
ukvk, and therefore gT

k dk < 0.

Corollary 1 enables us to use in (18) or (19) any other 2 × 2 positive
definite matrices satisfying (10)–(12), instead of H̃k given by (17). Since H̃k

is the reduced Hessian, we can replace it by a reduced Hessian approximation
using the BFGS correction formula. Details on the latter can be found, for
example, in [1] and [2].

Let ∆xk = xk+1 − xk and ∆gk = gk+1 − gk with ∆xT
k ∆gk > 0. Then

the BFGS correction formula, which constructs an approximation to the
Hessian matrix of f , is defined by

Hk+1 = UBFGS(∆xk,∆gk,Hk)(21)
m

Hk+1 = Hk +
∆gk∆gT

k

∆xT
k ∆gk

− Hk∆xk∆xT
k Hk

∆xT
k Hk∆xk

.(22)

We will use the update function (21), introduced by Dennis and Moré [2],
to write (22) with suitable arguments. As in Nazareth’s SAR methods [10],
[11], the general scheme for updating H̃k at each iteration is as follows:

(i) Hk = QT
k HkQk, the projection of Hk onto Zk = span{−gk+1, dk}.

(ii) ∆x̃k = QT
k ∆xk, ∆g̃k = QT

k ∆gk.
(iii) If ∆x̃T

k ∆g̃k > 0 then use the BFGS correction formula

H̃k+1 = UBFGS(∆x̃k,∆g̃k, Hk).

(iv) Extend the approximation to the whole space Rn.
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In this scheme, the crucial points are (iii) and (iv). The relation ∆x̃T
k ∆g̃k

> 0 is needed to ensure that H̃k+1 is positive definite. Note that the line
search (8)–(9) will only ensure that ∆xT

k ∆gk > 0. Then we have to find
a relation between the line search (8)–(9) and the inner product ∆x̃T

k ∆g̃k.
The theorem below gives such a relation.

Theorem 1. Suppose that in the line search the stopping conditions
are (8)–(9). Then ∆x̃T

k ∆g̃k > 0 if and only if

(23) −‖dk‖2/σ2 < gT
k+1∆gk < (1− σ2)‖dk‖2/σ2.

P r o o f. From Qk = (−gk+1 dk), we have

∆x̃k = tk

(
−gT

k+1dk

dT
k dk

)
and ∆g̃k =

(
−gT

k+1∆gk

dT
k ∆gk

)
.

Then

(24) ∆x̃T
k ∆g̃k = tk[(gT

k+1dk)(gT
k+1∆gk) + (dT

k dk)dT
k ∆gk].

Note that ∆xT
k ∆gk > 0 implies dT

k ∆gk > 0. The troublesome term in (24)
is the first term on the right. But from (8)–(9) we know that

gT
k+1dk ∈ [σ2g

T
k dk,−σ2g

T
k dk].

Sufficiency. If gT
k+1∆gk > 0 then

∆x̃T
k ∆g̃k ≥ tk[σ2(gT

k dk)(gT
k+1∆gk) + ‖dk‖2(σ2 − 1)gT

k dk].

Taking σ2(gT
k dk) as a factor, it follows that

∆x̃T
k ∆g̃k > tkσ2(gT

k dk)[(gT
k+1∆gk) + (σ2 − 1)‖dk‖2/σ2] > 0.

In the same way, one shows that if gT
k+1∆gk < 0 then

∆x̃T
k ∆g̃k > −tkσ2(gT

k dk)[(gT
k+1∆gk) + ‖dk‖2/σ2] > 0.

Necessity. If ∆x̃T
k ∆g̃k > 0, then we have

(gT
k+1dk)(gT

k+1∆gk) + (dT
k dk)dT

k ∆gk > 0.

If gT
k+1dk > 0, then

gT
k+1∆gk > −‖dk‖2(dT

k ∆gk)/(gT
k+1dk).

Since dT
k ∆gk = dT

k gk+1 − dT
k gk > −gT

k dk and gT
k+1dk ≤ −σ2g

T
k dk, we get

gT
k+1∆gk > −‖dk‖2/σ2.

If gT
k+1dk < 0, then

gT
k+1∆gk < −‖dk‖2(dT

k ∆gk)/(gT
k+1dk).

Since −dT
k ∆gk = −dT

k gk+1 + dT
k gk < (1 − σ2)gT

k dk and gT
k+1dk > σ2g

T
k dk,

we have
gT

k+1dk < (1− σ2)‖dk‖2/σ2.
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Inequalities (23) show the relation between the line search parameter σ2

and the inner product ∆x̃T
k ∆g̃k. Greater values of σ2 will reduce the interval

defined by (23) for ∆x̃T
k ∆g̃k > 0. Note that if an exact line search is used

to determine the step length tk then ∆xT
k ∆gk > 0 implies ∆x̃T

k ∆g̃k > 0.
Suppose that ∆x̃T

k ∆g̃k > 0 with Hk = QT
k HkQk, the projection of the

Hessian Hk onto Zk. We compute H̃k+1 using the BFGS correction formula
(22). To extend this Hessian approximation to the whole space Rn, we have
to define Qk = (pk qk), the orthonormalized form of Qk , with

pk = − 1
‖gk+1‖

gk+1, qk =
1
sk

(
dk −

gT
k+1dk

‖gk+1‖2
gk+1

)
,

where

(25) sk =
(
‖dk‖2 −

(gT
k+1dk)2

‖gk+1‖2

)1/2

.

Note that the main property of Qk is QkQT
k z = z for all z ∈ Zk. Therefore,

(In −QkQT
k )gk+1 = 0, (In −QkQT

k )dk = 0.

The columns of (In −QkQT
k )T span Z⊥

k and

(26) Hk+1 = QkH̃−1
k+1Q

T
k + (In −QkQT

k )

gives the extension of the approximate Hessian inverse H̃−1
k+1 to the whole Rn.

The new search direction is then given by

dk+1 = −Hk+1gk+1 = −(QkH̃−1
k+1Q

T
k )gk+1.

The formula (26) is only used to compute the projection Hk of the Hessian
Hk onto the subspace Zk = span{−gk+1, dk}. It will appear implicitly in
the formula

(27) Hk = (QT
k Qk−1)H̃k(QT

k Qk−1)T + QT
k Qk − (QT

k Qk−1)(Q
T
k Qk−1)

T ,

the 2 × 2 matrix used as the previous approximation to the Hessian in the
BFGS correction formula. Note that Hk can be computed efficiently by
inner products using the vectors gk+1, dk, gk and dk−1 only.

LS-BFGS Algorithm
0. k ← 0, d0 ← −g0.

Line search (8)–(9): x1 = x0 + t0d0.
Q0 = (−g1 d0); H̃1 ← I2.

1. If ‖gk+1‖ < ε then STOP otherwise k ← k + 1.
2. If k > n then go to 7.
3. dk = −αkgk + βkdk−1.

Line search (8)–(9): xk+1 = xk + tkdk.
∆xk = xk+1 − xk; ∆gk = gk+1 − gk.

4. If σ2(gT
k+1∆gk) ≤ −‖dk‖2 or σ2(gT

k+1∆gk) ≥ (1− σ2)‖dk‖2 then go to 7.
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5. Qk = (−gk+1 dk); ∆x̃k = QT
k ∆xk; ∆g̃k = QT

k ∆gk; g̃k+1 = QT
k gk+1;

Vk = QT
k Qk−1; Wk = QT

k Qk−1 and Hk = V T
k H̃kVk + QT

k Qk −WT
k Wk.

BFGS update: H̃k+1 = UBFGS(∆x̃k,∆g̃k, Hk) with formula (22).
6. If 1− w2

k+1/(uk+1vk+1) ≥ 1/(4rk+1), and
uk+1‖dk‖2/(vk+1‖gk+1‖2) ≤ rk+1, rk+1 > 0,
then (αk+1 βk+1)T = −H̃−1

k+1g̃k+1 and go to 1.
7. x0 ← xk and go to 0.

Instead of H̃−1
k , we can work directly with the inverse reduced Hessian

approximation of f . But, for this, we have to “reverse” the conditions of
the convergence theorem of Liu and Storey [9, Theorem 2.1].

Corollary 2. Let

H̃k =
(

uk wk

wk vk

)
be a 2× 2 matrix such that :

(i) H̃k is positive definite,

(ii) 1− w2
k

ukvk
≥ 1

4rk
, ∞ > rk > 0,

(iii)
vk

‖dk−1‖2

(
uk

‖gk‖2

)−1

≤ rk, ∞ > rk > 0.

Then, under the line search conditions (8)–(9), any LS type algorithm with
the search direction given by

(28) dk = −(Qk−1H̃kQT
k−1)gk

converges.

The BFGS correction formula (22) is then replaced by

H̃k+1 = Hk +
(

1 +
∆g̃T

k Hk∆g̃k

∆x̃T
k ∆g̃k

)
∆x̃k∆x̃T

k

∆x̃T
k ∆g̃k

− ∆x̃k∆g̃T
k Hk + Hk∆g̃k∆x̃T

k

∆x̃T
k ∆g̃k

which constructs an inverse Hessian approximation.
To compute the new approximation to the reduced Hessian H̃k in step 5

of the LS-BFGS algorithm, we need at worst ten inner products; and at best
seven inner products, if ‖dk−1‖2, ‖gk‖2 and sk (given by (25)) are computed
in the previous iteration and saved. The SAR algorithm requires the same
number of operations for computing H̃k.

The most economical version of the LS method is obtained using (13)
and (16) for computing αk and βk. Then in the LS method, in addition to
one gradient evaluation, we need at worst six inner products.

It appears therefore that the LS-BFGS algorithm (or SAR algorithm) can
be profitable if evaluating∇f (or f) is more time-consuming than computing
six inner products.



160 J. Koko

3. Algorithms and implementation. We have tested the new algo-
rithm outlined in Section 2, the LS algorithm of Hu and Storey [7] and the
SAR algorithm of Nazareth [10] on the collection of test problems given in
Section 3.2.

We have used the line search given by Gilbert and Lemarechal [4] with
initial step length

t0 = min{2, 2(f(xk)− f∗)/gT
k dk},

where f∗ is an estimate of the optimal function value. For all the test
problems considered, we set f∗ = 0, since the optimal function values are
all nonnegative. The line search parameters in (8)–(9) are σ1 = 0.0001 and
σ2 = 0.1.

In all cases the stopping condition is

‖gk‖ < 10−5 max(1, ‖xk‖).
The sequence {rk} needed to ensure global convergence is given by rk ≡ 1010

for k ≥ 1. The sequence {γk} used in the finite difference scheme (13) is

γk = 4‖gk‖−110−10.

This choice is better for large scale problems and can affect the performance
of the LS algorithm in low-dimensional problems. On the other hand, a
very small value in the numerator of γk can cause numerical difficulties for
high-dimensional problems.

All the calculations were performed on a Sun Ultra 1 workstation, in
double precision arithmetic.

3.1. Algorithms. We now detail the algorithms used in our tests; they
differ mainly in computing the coefficients αk and βk of the search direc-
tion (1).

LS: The Generalized Conjugate Gradient algorithm of Liu and Storey,
using (13) and (16), outlined in Hu and Storey [7]. Storage require-
ment: 6n.

SAR: The Successive Affine Reduction algorithm of Nazareth [10], [11], the
two-dimensional case (zk = {∆xk,∆gk}). Restart is made with the
LS algorithm, i.e. H̃0 is computed with (13)–(16). Storage require-
ment: 6n.

LSB: The LS-BFGS algorithm outlined in Section 2. Restart is made with
the LS algorithm as in the SAR algorithm. Storage requirement: 6n.

Each algorithm was run in two versions:

1. The natural version.
2. The line search (8)–(9) is carried out if the conditions

(29) f(xk + dk)− f(xk) ≤ β′gT
k dk, β′ = 0.0001,
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(30) dT
k∇f(xk + dk) ≥ βgT

k dk, β = 0.9,

are not satisfied.

In the tables, the version corresponds to the number at the end of the
algorithm name, e.g. LS1 is the natural LS algorithm and LS2 is the LS
algorithm with unit step length strategy (29)–(30).

3.2. Test problems

Problem 1. The extended Beale function

f(x) =
n/2∑
i=1

[(1.5− x2i−1(1− x3
2i))

2 + (2.25− x2i−1(1− x2
2i))

2

+ (2.625− x2i−1(1− x3
2i))

2], n = 2, 4, 6, . . . ,

with x0 = (1, 1, . . . , 1)T .

Problem 2. The extended Miele and Cantrell function

f(x) =
n/4∑
i=1

[(exp(x4i−3)− x4i−2)2 + 100(x4i−2 − x4i−1)6

+ (tan(x4i−1 − x4i))4 + x8
4i−3], n = 4, 20, 40, 60, . . . ,

with x0 = (1, 2, 2, 2, 1, 2, 2, 2, . . . , 1, 2, 2, 2)T .

Problem 3. The penalty 1 function

f(x) = 10−5
n∑

i=1

(xi − 1)2 +
( n∑

i=1

x2
i − 0.25

)2

, n = 1, 2, . . . ,

with x0
i = i, i = 1, . . . , n.

Problem 4. The penalty 2 function

f(x) =
n∑

i=1

(xi − 1)2 + 10−3
( n∑

i=1

x2
i − 0.25

)2

, n = 1, 2, . . . ,

with x0
i = i, i = 1, . . . , n.

Problem 5. The extended Rosenbrock function

f(x) =
n/2∑
i=1

[100(x2i − x2
2i−1)

2 + (1− x2i−1)2], n = 2, 4, 6, . . . ,

with {
x0

2i = 1.0,

x0
2i−1 = −1.2 + 0.4i/n,

i = 1, . . . , n/2.

The choice of this starting point is justified in [10].
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Problem 6. The trigonometric function

f(x) =
n∑

i=1

[
n + i−

n∑
j=1

(aij sinxj + bij cos xj)
]2

, n = 1, 2, . . . ,

where aij = δij , bij = iδij + 1 and δij is the Kronecker delta, with x0 =
(1/n, . . . , 1/n)T .

Problem 7. The Brown function

f(x) =
[ n/2∑

i=1

(x2i−1 − 3)
]2

+ 0.0001
n/2∑
i=1

[(x2i−1 − 3)2 − (x2i−1 − x2i)

+ exp(20(x2i−1 − x2i))], n = 2, 4, 6, . . . ,

with x0 = (0,−1, 0,−1, . . . , 0,−1)T .

Problem 8. The extended Powell function

f(x) =
n/4∑
i=1

[(x4i−3 + 10x4i−2)2 + 5(x4i−1 − x4i)2

+ (x4i−2 − 2x4i−1)4 + 10(x4i−3 − x4i)4], n = 4, 8, . . . ,

with x0 = (3,−1, 0, 3, 3,−1, 0, 3, . . . , 3,−1, 0, 3)T .

Problem 9. The tridiagonal function

f(x) =
n∑

i=2

[i(2xi − xi−1)2]

with x0 = (1, 1, . . . , 1)T .

Problem 10. The extended Wood function

f(x) =
n/4∑
i=1

[100(x4i−2 − x2
4i−3)

2 + (1− x4i−3)2

+ 90(x4i − x2
4i−1)

2 + (1− x4i−1)2

+ 10(x4i−2 + x4i − 2)2 + 0.1(x4i−2 − x4i)2], n = 4, 8, . . . ,

with x0 = (−3,−1,−3,−1, . . . ,−3,−1)T .

3.3. Tables. In the tables, No is the number of the problem and n the
number of variables. Since the conjugate gradient type methods are mainly
useful for large problems, in our test problems n is very large (except in
problem 6). NI is the number of iterations, NF/NG the number of func-
tion/gradient calls and CPU the Central Processor Unit time in seconds.
The symbol “∗”, in a table, means that the run of the corresponding algo-
rithm was stopped because the limit of 1500 function or gradient evaluations
was exceeded (max(NF,NG) > 1500).
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TABLE 1. Performance of SAR algorithms

Problems SAR1 SAR2
No n NI NF/NG CPU NI NF/NG CPU

1 1000 20 26/27 1.43 29 33/34 2.10
1 10000 19 24/25 13.21 28 35/36 20.05
2 1000 47 135/137 27.19 132 273/322 43.83
2 10000 49 140/142 39.31 217 382/489 195.83
3 1000 60 129/130 35.07 97 132/134 46.89
3 10000 66 141/142 46.28 98 134/135 70.26
4 1000 20 47/48 1.63 36 49/70 2.47
4 10000 23 66/67 19.90 37 76/77 38.36
5 1000 29 69/70 1.95 36 59/60 2.57
5 10000 29 69/70 119.30 36 59/60 24.95
6 100 25 126/134 7.17 26 132/140 8.22
6 1000 35 169/171 423.47 27 134/141 395.72
7 1000 20 90/91 1.62 13 91/92 1.27
7 10000 23 93/94 18.09 22 97/98 16.96
8 1000 120 204/209 16.94 213 421/429 17.68
8 10000 229 360/373 190.49 248 490/504 203.73
9 1000 329 647/649 24.28 343 951/952 29.52
9 10000 ∗ ∗ 557.66 ∗ ∗ 462.97
10 1000 68 117/120 6.32 260 666/672 21.98
10 10000 85 160/163 49.04 261 686/690 220.83

TABLE 2. Performance of LS algorithms

Problems LS1 LS2
No n NI NF/NG CPU NI NF/NG CPU

1 1000 16 36/28 0.57 18 32/33 0.47
1 10000 17 36/28 5.87 18 32/33 4.76
2 1000 85 165/249 4.69 134 136/269 4.52
2 10000 83 158/240 44.95 34 137/269 45.20
3 1000 85 179/263 11.38 229 183/311 14.55
3 10000 102 248/349 51.00 239 413/651 105.09
4 1000 12 47/48 0.69 36 49/70 0.67
4 10000 17 49/51 9.84 12 47/68 8.75
5 1000 26 76/91 0.99 31 77/97 1.11
5 10000 26 76/91 9.98 31 77/97 11.30
6 100 21 67/97 4.27 22 65/86 3.99
6 1000 23 72/102 362.72 25 71/92 341.57
7 1000 20 89/108 0.75 21 81/92 0.83
7 10000 22 89/110 17.18 24 81/95 21.32
8 1000 67 103/169 2.92 ∗ ∗ 28.85
8 10000 91 149/239 41.36 ∗ ∗ 293.39
9 1000 288 576/862 12.48 288 288/575 10.05
9 10000 ∗ ∗ 220.06 ∗ ∗ 270.35
10 1000 105 179/283 4.46 148 154/301 5.40
10 10000 158 188/145 23.76 164 170/333 60.05
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TABLE 3. Performance of LSB algorithms

Problems LSB1 LSB2
No n NI NF/NG CPU NI NF/NG CPU

1 1000 10 44/51 1.52 17 44/48 1.45
1 10000 11 48/63 10.19 15 31/35 11.30
2 1000 42 110/125 2.83 34 116/129 3.31
2 10000 53 150/167 26.03 45 126/136 30.34
3 1000 25 85/97 1.92 28 126/139 2.87
3 10000 26 87/103 42.57 28 453/561 170.64
4 1000 18 40/49 1.00 36 49/70 1.47
4 10000 24 40/51 14.38 17 56/63 15.65
5 1000 27 65/77 1.20 27 79/91 1.68
5 10000 27 66/78 12.17 27 83/95 17.98
6 100 25 51/65 2.87 26 63/65 3.08
6 1000 27 55/68 110.72 27 67/72 128.43
7 1000 18 75/83 0.39 15 60/67 0.57
7 10000 27 85/93 14.78 20 75/83 20.68
8 1000 52 67/89 1.09 ∗ ∗ 3.63
8 10000 57 112/131 21.81 ∗ ∗ 41.70
9 1000 145 281/307 6.61 357 582/897 38.82
9 10000 ∗ ∗ 268.43 ∗ ∗ 376.35
10 1000 48 89/121 2.40 ∗ ∗ 41.01
10 10000 57 103/117 15.35 ∗ ∗ 411.76

4. Conclusions. We have investigated the behavior of our LS-BFGS
algorithm, the original LS algorithm and the SAR algorithm. The numerical
results are reported in Tables 1 to 3.

The LS algorithm appears to be better in terms of CPU time, for rel-
atively fast evaluation functions (problems 1, 3, 4, 5 and 9). The SAR
algorithms have the best rate NF/NG but require more function/gradient
evaluations than the LS type algorithms. For costly evaluation functions
(problems 2, 6, 7, 8 and 10) the saving time obtained with LSB1 is signif-
icant. The unit step test (29)–(30) does not work very well in the three
algorithms. Numerical experiments have shown that failures of LSB1 and
LSB2 are due to round-off errors in the computation of H̃k+1 in step 5
of LS-BFGS algorithm, because of using Qk and the orthonormalized ma-
trix Qk−1. Preconditioning H̃k before projection would probably clear the
round-off errors and improve the LS-BFGS algorithm. We are working in
this direction, using the results of [8].
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