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OPTIMAL STATIONARY POLICIES IN
RISK-SENSITIVE DYNAMIC PROGRAMS WITH

FINITE STATE SPACE AND NONNEGATIVE REWARDS

Abstract. This work concerns controlled Markov chains with finite state
space and nonnegative rewards; it is assumed that the controller has a con-
stant risk-sensitivity, and that the performance of a control policy is mea-
sured by a risk-sensitive expected total-reward criterion. The existence of
optimal stationary policies is studied within this context, and the main
result establishes the optimality of a stationary policy achieving the supre-
mum in the corresponding optimality equation, whenever the associated
Markov chain has a unique positive recurrent class. Two explicit examples
are provided to show that, if such an additional condition fails, an optimal
stationary policy cannot be generally guaranteed. The results of this note,
which consider both the risk-seeking and the risk-averse cases, answer an
extended version of a question recently posed in Puterman (1994).

1. Introduction. This work concerns finite-state Markov decision pro-
cesses (MDP’s) endowed with a special type of expected total-reward cri-
terion; such a performance index considers the controller’s attitude toward
risk when picking actions leading to random rewards. In this note it is as-
sumed that the decison maker has a constant risk-sensitivity in the sense of
Pratt (1964), so that the corresponding utility function, determined up to
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an increasing affin transformation (Fishburn (1970)), is of the exponential
type given in (2.1) below, and a control policy is graded via the expected
utility of the total rewards obtained over an infinite horizon.

The incorporation of the controller’s risk-sensitivity to the performace
index of a control policy can be traced back, at least, to Howard and Math-
eson (1972), where finite MDP’s endowed with a long run risk-sensitive
average criterion were considered. Interest in this criterion in more general
frameworks has recently sparkled; see for instance, Fleming and Hernández-
Hernández (1997), Cavazos-Cadena and Fernández-Gaucherand (1999), and
the references therein. In particular, in the latter reference the risk-sensitive
expected total-reward criterion, formally introduced in Section 2 below, was
used to obtain solutions to the average reward optimality equation. On the
other hand, there is a vast amount of literature on the expected total-reward
criterion in the risk-neutral case, and it is well known that important differ-
ences exist between negative and positive dynamic programs, corresponding
to a nonpositive and a nonnegative reward function, respectively. For in-
stance, in the negative case, every stationary policy achieving the optimum
on the right-hand side of the optimality equation is optimal, but this asser-
tion is no longer valid for positive dynamic programs; for details see, e.g.,
Chapter 7 in Puterman (1994). Recently, Ávila-Godoy (1998) studied finite
MDP’s endowed with the risk-sensitive expected total-reward criterion and,
for nonpositive rewards, she proved that a stationary policy achieving the
maximum in the corresponding optimality equation is necessarily optimal,
extending a result by Strauch (1966) to the risk-sensitive context.

The main objective of the paper is to study the existence of optimal
stationary policies with respect to the risk-sensitive expected total-reward
criterion for positive dynamic programs, i.e., when the reward function is
nonnegative. The results in this direction can be summarized as follows:
(i) If a stationary policy f is obtained maximizing the right-hand side of the
optimality equation, then f is optimal whenever it induces a Markov chain
with a unique positive recurrent class (the unichain property); however,
(ii) via two examples, it is shown that if this property fails, the existence
of an optimal policy cannot be generally ensured. These results answer the
risk-sensitive version of a question posed on page 324 of Puterman (1994).

The organization of the paper is as follows: In Section 2 the decision
model and the idea of (exponential) utility function are introduced, and the
optimality equation associated with the risk-sensitive expected total reward
is established in Section 3. Next, in Section 4 the main result of the paper is
stated as Theorem 4.1, and the role played by the unichain property in the
existence of optimal stationary policies is discussed. The proof of Theorem
4.1 is given in Section 6 after the preliminary results presented in Section 5.
Finally, the paper concludes in Section 7 with some brief comments.
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2. Decision model. Throughout the remainder M = (S, A, {A(x)},
R, P ) stands for the usual MDP, where the state space S is finite, the metric
space A is the control (or action) set, and for each x ∈ S, A(x) ⊂ A is the
(nonempty and) measurable subset of admissible actions at state x; define
the class of admissible pairs by K := {(x, a) | a ∈ A(x), x ∈ S}. On
the other hand, R : K → R is the reward function and P = [pxy(·)] is the
controlled transition law. This model M has the following interpretation: At
each time t ∈ N := {0, 1, 2, . . .} the state of a dynamical system is observed,
say Xt = x ∈ S, and an action At = a ∈ A(x) is chosen. As a consequence,
a reward R(x, a) is earned and, regardless of which states and actions were
observed and applied before t, the state of the system at time t + 1 will be
Xt+1 = y ∈ S with probability pxy(a); this is the Markov property of the
decision model.

Assumption 2.1. For every x, y ∈ S, the mappings a 7→ R(x, a) and
a 7→ pxy(a) are measurable on A(x).

Utility function. Given λ ∈ R, hereafter referred to as the (constant)
risk-sensitivity coefficient, the corresponding utility function Uλ : R → R is
defined as follows: For x ∈ R,

(2.1) Uλ(x) :=
{

sign(λ)eλx if λ 6= 0,
x if λ = 0;

notice that Uλ(·) is always a strictly increasing function, and

(2.2) Uλ(c + x) = eλcUλ(x), λ 6= 0, x, c ∈ R.

A controller with risk-sensitivity λ grades a random reward Y via the
expectation of Uλ(Y ), so that if two decision strategies δ1 and δ2 lead
to obtain random rewards Y1 and Y2, respectively, δ1 will be preferred if
E[Uλ(Y1)] > E[Uλ(Y2)], whereas the controller will be indifferent between
δ1 and δ2 when E[Uλ(Y1)] = E[Uλ(Y2)]. Let Y be a given random variable,
and suppose that the expected value of Uλ(Y ) is well defined, a condition
that is always valid when λ 6= 0. In this case, the certain equivalent of Y
with respect to Uλ(·) is defined by

(2.3) E(λ, Y ) =

{ 1
λ

log(E[eλY ]), λ 6= 0,

E[Y ], λ = 0,

where the usual conventions log(∞) = ∞ and log(0) = −∞ are in force;
combining (2.1) and (2.3) it follows that

(2.4) Uλ(E(λ, Y )) = E[Uλ(Y )].

Thus, for a controller with risk-sensitivity λ, the opportunity of getting
a random reward Y can be fairly interchanged with obtaining the corre-
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sponding certain equivalent E(λ, Y ) for sure. Suppose now that the random
variable Y is not constant. When λ > 0 the utility function Uλ(·) in (2.1)
is convex, so that Jensen’s inequality yields that E(λ, Y ) > E[Y ]; similarly,
E(λ, Y ) < E[Y ] if λ < 0, since in this case Uλ(·) is strictly concave. A deci-
sion maker grading a random reward Y according to the certain equivalent
E(λ, Y ) is referred to as risk-seeking if λ > 0, and risk-averse when λ < 0;
if λ = 0, the decision maker is risk-neutral .

Remark 2.1. (i) Notice that if P [Y = c] = 1 for some c ∈ R, then
E(λ, Y ) = c.

(ii) Let Y and W be two random variables satisfying P [Y ≥ W ] = 1.
Since Uλ(·) is increasing, it follows that Uλ(E(λ, Y ))=E[Uλ(Y )]≥E[Uλ(W )]
= Uλ(E(λ, W )), and then E(λ, Y ) ≥ E(λ, W ). In particular,

(iii) If P [Y ≥ 0] = 1 (resp. P [Y ≤ 0] = 1) then E(λ, Y ) ≥ 0 (resp.
E(λ, Y ) ≤ 0).

Policies. For each t ∈ N, the space of histories up to time t is recursively
defined by H0 = S, and Ht = K × Ht−1 for t ≥ 1; a generic element of
Ht is denoted by ht = (x0, a0, x1, . . . , xt−1, at−1, xt). A policy is a sequence
{πt | t ∈ N} such that πt is a stochastic kernel on A given Ht of a special type;
more precisely, for each ht ∈ Ht, πt(· |ht) is a probability measure on B(A),
the space of Borel subsets of A, and it satisfies πt(A(xt) |ht) = 1, whereas for
each B ∈ B(A), the mapping ht 7→ πt(B |ht) is a measurable function on Ht.
When the policy π is used to pick the action to be applied at every decision
time, πt(B |ht) is the probability of the event [At ∈ B] given the history of
the decison process up to time t; throughout the remainder P denotes the
class of all policies. Given the initial state X0 = x and the policy π ∈ P being
used to drive the system, under Assumption 2.1 the distribution of the state-
action process {(Xt, At)} is uniquely determined via the Ionescu Tulcea’s
theorem (see, for instance, Hernández-Lerma (1989), Hinderer (1970) or
Puterman (1994)); such a distribution is denoted by Pπ[· |X0 = x] whereas
Eπ[· |X0 = x] stands for the corresponding expectation operator. Define
F :=

∏
x∈S A(x), so that F consists of all (choice) functions f : S → A

satisfying f(x) ∈ A(x) for all x ∈ S. A policy π is stationary if there exists
f ∈ F such that when Xt = x is observed, the action prescribed by π is
always f(x), i.e., πt({f(xt)} |ht) = 1 for every ht ∈ Ht and t ∈ N; the class
of stationary policies is naturally identified with F, and with this convention
F ⊂ P. Notice, finally, that under the action of each policy f ∈ F, the state
process {Xt} is a Markov chain with stationary transition mechanism [Ross
(1970)].

Performance index. Throughout the remainder λ stands for a nonzero
real number, and the λ-sensitive expected total reward at state x ∈ S under
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policy π ∈ P is defined by

(2.5) Vλ(π, x) =
1
λ

log(Eπ[eλ
∑∞

t=0 R(Xt,At) |X0 = x]),

so that

(2.6) Uλ(Vλ(π, x)) = Eπ

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x

]
(see (2.3) and (2.4)). Thus, when the system is driven by the policy π start-
ing at x, Vλ(π, x) is the certain equivalent of the total reward

∑∞
t=0 R(Xt, At)

with respect to Uλ(·); the λ-optimal value function is

(2.7) V ∗
λ (x) = sup

π
Vλ(π, x),

and a policy π is λ-optimal if Vλ(π, x) = V ∗
λ (x) for all x ∈ S. Although the

expected value in (2.5) is always well defined, under Assumption 2.1 alone
it can happen that V ∗

λ (x) is not finite for some x ∈ S; such an inconvenience
is now excluded from the discussion.

Assumption 2.2. For each x ∈ S, V ∗
λ (x) is finite.

3. The risk-sensitive optimality equation. As already mentioned,
the main objective of the paper is to study the existence of λ-optimal station-
ary policies, and the first step in this direction is to establish the optimality
equation satisfied by the optimal value function V ∗

λ .

Lemma 3.1. Under Assumptions 2.1 and 2.2 the optimal value function
V ∗

λ (·) in (2.7) satisfies the following λ-optimality equation (λ-OE ):

(3.1) Uλ(V ∗
λ (x)) = sup

a∈A(x)

[
eλR(x,a)

∑
y

pxy(a)Uλ(V ∗
λ (y))

]
, x ∈ S.

This result has been established in the literature under several condi-
tions. In Cavazos-Cadena and Fernández-Gaucherand (1999), equation (3.1)
was proved for models with denumerable state space under a simultaneous
Doeblin condition, and then it was used to show the existence of solutions
to the λ-sensitive average reward optimality equation. Also, Ávila-Godoy
(1998) obtained the above λ-OE for models with finite state and action
spaces. Since Lemma 3.1 plays a central role in the subsequent develop-
ment, a detailed proof will be provided.

Proof of Lemma 3.1. Observe that (2.2) yields

Uλ

( ∞∑
t=0

R(Xt, At)
)

= eλR(X0,A0)Uλ

( ∞∑
t=1

R(Xt, At)
)
,
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so that, for arbitrary π ∈ P, x, x1 ∈ S and a0 ∈ A(x), the Markov property
implies

(3.2) Eπ

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x, A0 = a0, X1 = x1

]
= eλR(x,a0)Eπ

[
Uλ

( ∞∑
t=1

R(Xt, At)
) ∣∣∣ X0 = x, A0 = a0, X1 = x1

]

= eλR(x,a0)Eπ′

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x1

]
where the shifted policy π′ is defined by π′t(· |ht) = πt+1(· |x, a0, ht). Com-
bining the last equality with (2.6) and (2.7) gives

Eπ

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x, A0 = a0, X1 = x1

]
= eλR(x,a0)Uλ(Vλ(π′, x1)) ≤ eλR(x,a0)Uλ(V ∗

λ (x1)),

since Uλ(·) is increasing. Taking expectation with respect to X1 yields

Eπ

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x, A0 = a0

]
≤ eλR(x,a0)

∑
y

pxy(a0)Uλ(V ∗
λ (y))

≤ sup
a∈A(x)

[
eλR(x,a)

∑
y

pxy(a)Uλ(V ∗
λ (y))

]
,

and then, taking the expected value with respect to A0 and using (2.6), we
get

Uλ(Vλ(π, x)) = Eπ

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x

]
≤ sup

a∈A(x)

[
eλR(x,a)

∑
y

pxy(a)Uλ(V ∗
λ (y))

]
.

Since the policy π is arbitrary in this argument and Uλ(·) is increasing and
continuous, the last inequality and (2.7) together yield

(3.3) Uλ

(
V ∗

λ (x)
)
≤ sup

a∈A(x)

[
eλR(x,a)

∑
y

pxy(a)Uλ(V ∗
λ (y))

]
.

To establish the reverse inequality, fix ε > 0, and for each x ∈ S select
an arbitrary action ax ∈ A(x) and a policy πxi∈P satisfying

(3.4) Vλ(πx, x) ≥ V ∗
λ (x)− ε;
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see (2.7).i Next, define a new policy π as follows: For each state x, π0({ax}|x)
= 1, whereas for ht ∈ Ht with t ≥ 1,

πt(· |ht) = πx1
t−1(· |xt, at−1, . . . , x2, a1, x1).

Thus, under π, the action ax is applied at time t = 0 whenever X0 = x, and
from time 1 onwards, if X1 = y actions are chosen according to πy as if the
process started again. Notice that for this policy π, the shifted policy π′ in
(3.2) is πx1 when X1 = x1, so that

Eπ

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x, A0 = ax, X1 = x1

]
= eλR(x,ax)Eπx1

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x1

]
= eλR(x,ax)Uλ(Vλ(πx1 , x1))

≥ eλR(x,ax)Uλ(V ∗
λ (x1)− ε)

= e−λεeλR(x,ax)Uλ(V ∗
λ (x1)),

where the inequality used (3.4) and the fact that Uλ(·) is strictly increasing,
and the last equality stems from (2.2). Taking expectation with respect to
A0 and X1 and using (2.6) yields

Uλ(Vλ(π, x)) = Eπ

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x

]
≥ e−λεeλR(x,ax)

∑
y

pxy(ax)Uλ(V ∗
λ (y)).

Since Uλ(V ∗
λ (x)) ≥ Uλ(Vλ(π, x)), this inequality implies

Uλ(V ∗
λ (x)) ≥ e−λεeλR(x,ax)

∑
y

pxy(ax)Uλ(V ∗
λ (y)),

and then, since ε > 0 and ax ∈ A(x) are arbitrary, it follows that

Uλ(V ∗
λ (x)) ≥ sup

a∈A(x)

[
eλR(x,ax)

∑
y

pxy(ax)Uλ(V ∗
λ (y))

]
,

and the desired conclusion is obtained by combining this inequality and
(3.3).

The λ-OE in (3.1) is an important tool to study the existence of λ-
optimal stationary policies. Recently, Ávila-Godoy (1998) proved that, when
the reward function satisfies R(·, ·)≤0, if a stationary policy f is such that
f(x) achieves the optimum on the right-hand side of (3.1) for each x ∈ S,
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then f is λ-optimal, providing an extension of a result established by Strauch
(1966) in risk-neutral dynamic programming; see also Puterman (1994).

Theorem 3.1 [Ávila-Godoy (1998)]. Suppose that Assumptions 2.1 and
2.2 are valid and that R(·, ·) ≤ 0. Let f ∈ F be such that , for every x ∈ S,
f(x) is a maximizer of the term in brackets on the right-hand side of the
λ-OE. In this case, f is λ-optimal.

Remark 3.1. Suppose that the word measurable in Assumption 2.1 is
replaced by continuous, and that this modified Assumption 2.1 as well as
Assumption 2.2 hold. Since the state space is finite, it follows that for each
x ∈ S, a 7→ eλR(x,a)

∑
y pxy(a)Uλ(V ∗

λ (y)) is a continuous mapping. Hence,
when the action sets are compact, it follows that there exists a policy f ∈ F
such that, for every x ∈ S, f(x) maximizes this mapping; by Theorem 3.1,
such a policy is λ-optimal whenever the reward function is nonpositive.

4. Risk-sensitive positive dynamic programs. This section con-
cerns the existence of λ-optimal stationary policies in dynamic programs
with nonnegative rewards. The main result of this note, stated below as
Theorem 4.1, provides an additional sufficient condition to ensure the λ-
optimality of a stationary policy f achieving the optimum on the right-hand
side of the λ-OE.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 hold and that
R(·, ·) ≥ 0. Assume that an f ∈ F satisfies:

(i) For each x ∈ S,

(4.1) Uλ(Vλ(x)) = eλR(x,f(x))
∑

y

pxy(f(x))Uλ(V ∗
λ (y)), x ∈ S.

(ii) f has the unichain property , i.e., the Markov chain induced by f has
a unique positive recurrent class.

In this case, f is λ-optimal.

This result will be proved in Section 6, after presenting the necessary
technical tools in the following section; at this moment, observe that the ex-
istence of a policy f satisfying (4.1) can be guaranteed under the continuity-
compactness conditions in Remark 3.1 but, in contrast to the conclusion of
Theorem 3.1, for nonnegative rewards the λ-optimality of such a policy is
asserted only if the corresponding Markov chain has a unique positive recur-
rent class. The remainder of this section concerns the role of the unichain
property in the existence of λ-optimal stationary policies but, before going
directly over this point, it is convenient to establish the following charac-
terization of the optimal value function V ∗

λ (·), which will be very useful
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in the analysis of Examples 4.1 and 4.2 below, as well as in the proof of
Theorem 4.1.

Lemma 4.1. Suppose that Assumption 2.1 is valid and that R ≥ 0. Let
W : S → [0,∞) be a function satisfying

(4.2) Uλ(W ) ≥ sup
a∈A(x)

[
eλR(x,a)

∑
y

pxy(a)Uλ(W (y))
]
, x ∈ S.

In this case W ≥ V ∗
λ .

P r o o f. Notice that (4.2) implies that the inequality

Uλ(W (x)) ≥ Eπ[eλR(X0,A0)Uλ(W (X1)) |X0 = x]

is always valid, and then, using the Markov property, an induction argument
yields that for every π ∈ P, x ∈ S and n ∈ N,

Uλ(W (x)) ≥ Eπ[eλ
∑n

t=0 R(Xt,At)Uλ(W (Xn+1)) |X0 = x].

Since W (·) ≥ 0 and Uλ(·) is increasing, it follows that Uλ(W (Xn+1)) ≥
Uλ(0), so that

Uλ(W (x)) ≥ Eπ[eλ
∑n

t=0 R(Xt,At)Uλ(0) |X0 = x](4.3)

= Eπ

[
Uλ

( n∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x

]
,

where (2.2) was used to obtain the equality. Consider now the following two
cases:

Case 1: λ > 0. In this situation

0 ≤ Uλ

( n∑
t=0

R(Xt, At)
)
↗ Uλ

( ∞∑
t=0

R(Xt, At)
)
,

since R(·, ·) ≥ 0. Thus, the monotone convergence theorem implies, after
taking the limit as n goes to ∞ on the right-hand side of (4.3), that for
every x ∈ S,

(4.4) Uλ(W (x)) ≥ Eπ

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = x

]
or, equivalently,

(4.5) Uλ(W (x)) ≥ Uλ(Vλ(π, x)), x ∈ S, π ∈ P;

see (2.6).
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Case 2: λ < 0. Under this condition, the nonnegativity of the reward
function and the definition of Uλ(·) in (2.1) together yield that

Uλ(R(X0, A0)) ≤ Uλ

( n∑
t=0

R(Xt, At)
)
↗ Uλ

( ∞∑
t=0

R(Xt, At)
)
≤ 0.

Then (4.3) implies, via the dominated convergence theorem, that (4.4) and
(4.5) are also valid for λ < 0.

To summarize, inequality (4.5) has been established for every λ 6= 0;
consequently, since Uλ(·) is increasing, W (x) ≥ Vλ(π, x) for every x ∈ S and
π ∈ P, and then (2.7) yields that W (·) ≥ V ∗

λ (·).

The following examples, built upon ideas presented in Strauch (1966)
and Cavazos-Cadena and Montes-de-Oca (1999), use Lemma 4.1 to show
explicitly that for nonnegative rewards the λ-optimality of a policy satisfying
(4.1) cannot be generally ensured if the unichain property fails. First, the
risk-seeking case λ > 0 is analyzed.

Example 4.1. Let λ > 0 be a fixed risk-sensitivity coefficient, and
consider an MDP with state and action spaces given by S = {0, 1} and A =
[0, 1], respectively, whereas the action sets are A(1) = [0, 1] and A(0) = {0}.
Define the transition law and the reward function by

p00(0) = 1, p11(a) = a = 1− p10(a), a ∈ [0, 1];(4.6)

R(0, 0) = 0, R(1, a) ≡ r(a) =
1− a

2λ
, a ∈ [0, 1].(4.7)

From the specifications in this example, it is clear that under the action of ev-
ery policy π∈P, state 0 is absorbing and Pπ[

∑∞
t=0 R(Xt, At)=0 |X0 =0]=1.

Therefore, Eπ[Uλ(
∑∞

t=0 R(Xt, At)) |X0 = 0] = 1, so that Vλ(π, 0) = 0 (by
Remark 2.1). Hence, V ∗

λ (0) = 0; see (2.5)–(2.7). On the other hand, the
stationary policies are naturally indexed by the action prescribed at state
1: fa ∈ F is given by

(4.8) fa(1) = a, fa(0) = 0, a ∈ [0, 1].

In the following proposition, the λ-optimal expected total reward is deter-
mined, and it is shown that no optimal stationary policy exists.

Proposition 4.1. For Example 4.1, the following assertions are valid :

(i) The expected total reward at state 1 under policy fa is determined by

λVλ(1, fa) =

 log
(

1− a

e−(1−a)/2 − a

)
if a ∈ [0, 1),

0 if a = 1.

(ii) The mapping a 7→ Vλ(fa, 1) is increasing in a ∈ [0, 1).
(iii) As a ↗ 1, Vλ(fa, 1) ↗ L, where L = λ−1 log(2).
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Moreover ,

(iv) L = V ∗
λ (1).

Consequently ,

(v) A λ-optimal stationary policy does not exist.

P r o o f. (i) First, notice that state 1 is absorbing under policy f1. Since
R(1, 1) = 0 (see (4.7)), it follows that if X0 = 1 and the system is driven
by policy f1, then a reward zero is earned forever, so that Vλ(f1, 1) = 0. To
complete the proof of part (i), fix a ∈ [0, 1) and notice

(4.9) aeλr(a) = ae(1−a)/2 < 1.

In fact, the strict concavity of the logarithmic function yields log(a) <
a− 1 < (a− 1)/2 (since a ∈ [0, 1)), so that log(a) + (1− a)/2 < 0, which is
equivalent to (4.9). Next, let T = min{n > 0 | Xn = 0} be the first return
time to state 0. From the specification of the transition law in (4.6), it is
clear that when the system is driven by fa and the initial state is X0 = 1,
T has a geometric distribution given by

Pfa
[T = k |X0 = 1] = ak−1(1− a), k = 1, 2, . . . ,

whereas a reward r(a) will be earned while the system stays at state 1.
Hence,

Uλ(Vλ(fa, 1)) = Efa

[
Uλ

( ∞∑
t=0

R(Xt, At)
) ∣∣∣ X0 = 1

]
= Efa

[
Uλ

(T−1∑
t=0

R(Xt, At)
) ∣∣∣ X0 = 1

]
= Efa [Uλ(Tr(At)) |X0 = 1] = Efa [Uλ(0)eλTr(At) |X0 = 1]

= Uλ(0)
∞∑

k=1

eλkr(a)ak−1(1− a) = Uλ(0)
eλr(a)(1− a)
1− aeλr(a)

;

notice that the geometric series in this argument is convergent, by (4.9).
Using the definition of Uλ(·) and r(·) in (2.1) and (4.7), respectively, shows
that

λVλ(fa, 1)) = log
(

eλr(a)(1− a)
1− aeλr(a)

)
= log

(
(1− a)

e−(1−a)/2 − a

)
.

(ii) From part (i), it follows that for a ∈ [0, 1),

(4.10) λ
dVλ(fa, 1)

da
= e−(1−a)/2 e(1−a)/2 − 1− (1− a)/2

(1− a)(e−(1−a)/2 − a)
,

where the derivative is from the right at a = 0. Since a ∈ [0, 1), (4.9)
yields that the denominator in this expression is positive. Also, the strict
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convexity of the exponential function yields that ex − 1 − x > 0 for every
x 6= 0. Therefore the numerator in (4.10) is also positive for every a ∈ [0, 1),
and then λdVλ(fa, 1)/da > 0; this yields the conclusion, since λ is positive.

(iii) The assertion follows by combining part (i) and the L’Hospital rule.
(iv) Define W (1) = L and W (0) = 0. In this case, for arbitrary a ∈

[0, 1), parts (ii) and (iii) yield W (1) > Vλ(fa, 1) and since Uλ(·) is strictly
increasing, it follows that

Uλ(W (1)) > Uλ(Vλ(fa, 1)) =
(1− a)e(1−a)/2

1− ae(1−a)/2
.

After some rearrangements using (4.6) and (4.7), this yields that for every
a ∈ [0, 1),

Uλ(W (1)) > eλR(1,a)[p11(a)Uλ(W (1)) + p10(0)Uλ(W (0))].

Since p11(1) = 1 and R(1, 1) = 0, this relation turns into equality for a = 1,
so that

Uλ(W (1)) = sup
a∈A(1)

[eλR(1,a){p11(a)Uλ(W (1)) + p10(0)Uλ(W (0))}].

On the other hand, as p00(0) = 1 and R(0, 0) = 0, it follows that

eλR(0,0)[p00(0)Uλ(W (0)) + p01(0)Uλ(W (1))] = Uλ(W (0)),

and then the nonnegative function W (·) satisfies the λ-OE. Therefore, L =
W (1) ≥ V ∗

λ (1) by Lemma 4.1, and then part (iii) implies that L = V ∗
λ (1).

(v) This part follows from (i)–(iv).

In Example 4.1 Assumptions 2.1 and 4.2 are valid; moreover, the con-
tinuity-compactness conditions of Remark 3.1 hold, so that there exists a
policy f ∈ F satisfying (4.1). However, such a policy is not λ-optimal, by
Proposition 4.1. According to Theorem 4.1, f does not have the unichain
property. In fact, it is not difficult to verify directly that the unique policy
satisfying (4.1) is f1, under which the sets {0} and {1} are closed, i.e., f1 is
not unichain. The following example considers a risk-averse controller.

Example 4.2. Given a fixed negative risk-sensitivity coefficient λ, con-
sider an MDP whose state and action spaces, as well as the sets of admissible
actions are the same as in Example 4.1. Let the transition law be given as
in (4.6), and define the reward function as follows:

(4.11) R(0, 0) = 0, R(1, a) ≡ r(a) =
1− a

(1− a/2)|λ|
, a ∈ [0, 1].

Proposition 4.2. In Example 4.2, the following assertions (i)–(iv) hold ,
where the policy fa is defined in (4.8):
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(i) The expected total reward at state 1 under policy fa is determined by

λVλ(1, fa) =

 log
(

1− a

e(1−a)/(1−a/2) − a

)
if a ∈ [0, 1),

0 if a = 1.

(ii) The mapping a 7→ Vλ(fa, 1) is increasing in a ∈ [0, 1).
(iii) As a ↗ 1, Vλ(fa, 1) ↗ L, where L = λ−1 log(1/2) = |λ|−1 log(2).

Moreover ,

(iv) L = V ∗
λ (1) and thus, no stationary policy is λ-optimal.

P r o o f. (i) As in the proof of Proposition 4.1, it follows that Vλ(f1, 1)=0,
and for a ∈ [0, 1),

(4.12) λVλ(fa, 1) = log
(

eλr(a)(1− a)
1− aeλr(a)

)
= log

(
1− a

e−λr(a) − a

)
now the conclusion follows since, in the present case, −λr(a) = |λ|r(a) =
(1− a)/(1− a/2); see (4.11) and recall that λ < 0.

(ii) Straightforward calculations using (4.12) yield that for a ∈ [0, 1),

(4.13) λ
dVλ(fa, 1)

da
=

e−λr(a)

(1− a)(e−λr(a) − a)
[eλr(a) − 1 + λr′(a)(1− a)],

where the derivative is from the right at a = 0. To continue, notice that,
since λ is negative, (4.11) yields that λr(a) = −(1 − a)/(1 − a/2), so that
λr′(a) = 1/(1 − a/2) − (1 − a)/[2(1 − a/2)2], and then λr′(a)(1 − a) =
(1− a)/(1− a/2)− (1− a)2/[2(1− a/2)2], that is, λr′(a)(1− a) = −λr(a)−
(λr(a))2/2, so that

eλr(a) − 1 + λr′(a)(1− a) = eλr(a) − 1− λr(a)− (λr(a))2

2
.

Set G(x) = ex − 1 − x − x2/2 and observe that, by the strict convexity of
the exponential function, G′(x) = ex − 1 − x > 0 for every x 6= 0. Thus,
G(x) < G(0) = 0 if x < 0, and if we use this fact with x = λr(a), the last
displayed equality implies that

eλr(a) − 1 + λr′(a)(1− a) < 0, a ∈ [0, 1).

Since the quotient in (4.13) is positive, it follows that λdVλ(fa, 1)/da < 0,
and then, since λ is negative, dVλ(fa, 1)/da is positive for a ∈ [0, 1). This
establishes part (ii) and the other parts can be obtained along the same lines
as in the proof of Proposition 4.1.

In Example 4.2 the continuity-compactness conditions of Remark 3.1 are
satisfied, so that there exists a policy f ∈ F such that f(x) maximizes the
right-hand side of the λ-OE. By Proposition 4.2, that policy is not λ-optimal
and, from Theorem 4.1, the Markov chain induced by f does not have the
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unichain property. In fact, it can be directly verified that the unique policy
satisfying (4.1) is the policy f1 (see (4.8)) which, as already noted, does not
have the unichain property. To summarize, the two previous examples have
shown that, regardless of the sign of the nonzero risk-sensitivity coefficient,
when a policy f satisfying (4.1) does not have the unichain property, the
existence of a λ-optimal stationary policy cannot be ensured. After this
discussion, attention is now turned to the proof of Theorem 4.1.

5. Technical preliminaries. This section contains some preliminary
facts that will be used to establish Theorem 4.1 in the next section. The
starting point is the following lemma concerning the asymptotic behaviour
of the expected utility of V ∗

λ (Xn).

Lemma 5.1. Suppose that Assumptions 2.1 and 2.2 hold true, and that
the reward function is nonnegative. Let f ∈ F be a policy satisfying (4.1)
and assume that f has the unichain property described in the statement of
Theorem 4.1. For each x ∈ S and n ∈ N, let Ln(x) be the certain equivalent
of V ∗

λ (Xn) with respect to Uλ(·), so that Ln(x) is determined by

Uλ(Ln(x)) = Ef [Uλ(V ∗
λ (Xn)) |X0 = x].

In this case, there exists a nonnegative constant C such that

lim
n→∞

Ln(x) = C, x ∈ S.

Moreover ,
V ∗

λ (x) ≥ C, x ∈ S.

P r o o f. Since f satisfies (4.1), the Markov property yields

(5.1) Uλ(V ∗
λ (Xn)) = Ef [eλR(Xn,An)Uλ(V ∗

λ (Xn+1)) |Xn],

and, from the definition of the functions Lk(·), it follows that

Ef [Uλ(V ∗
λ (Xk+1)) |X1 = y] = Ef [Uλ(V ∗

λ (Xk)) |X0 = y] = Uλ(Lk(y)),

so that Ef [Uλ(V ∗
λ (Xk+1)) |X1] = Uλ(Lk(X1)), and then

Uλ(Lk+1(x)) = Ef [Uλ(V ∗
λ (Xk+1)) |X0 = x](5.2)

= Ef [Ef [Uλ(V ∗
λ (Xk+1)) |X1] |X0 = x]

= Ef [Uλ(Lk(X1)) |X0 = x].

It will be verified that

(5.3) Ln(·) ≥ Ln+1(·) ≥ 0.

To establish this assertion notice that, since R ≥ 0, the optimal value func-
tion is nonnegative, by Remark 2.1(iii), and thus Ln(·) ≥ 0 for every n ∈ N.
Next, consider the risk-seeking and risk-averse cases:
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Case 1: λ > 0. In this case Uλ(·) ≥ 0, and since R ≥ 0, it follows that
eλR(·,·)≥1, so that (5.1) implies that Uλ(V ∗

λ (Xn))≥Ef [Uλ(V ∗
λ (Xn+1)) |Xn]

for every n ∈ N; consequently, for every x ∈ S,

Uλ(Ln(x)) = Ef [Uλ(V ∗
λ (Xn)) |X0 = x]

≥ Ef [Ef [Uλ(V ∗
λ (Xn+1)) |Xn] |X0 = x]

= Ef [Uλ(V ∗
λ (Xn+1)) |X0 = x] = Uλ(Ln+1(x))

and as Uλ(·) is increasing, it follows that Ln(·) ≥ Ln+1(·), since x ∈ S was
arbitrary.

Case 2: λ < 0. Observe that R ≥ 0 implies that eλR(·,·) ≤ 1. Since
Uλ(·) ≤ 0, this yields eλR(Xn,An)Uλ(V ∗

λ (Xn+1)) ≥ Uλ(Vλ(Xn+1)), and thus
(5.1) yields

Uλ(V ∗
λ (Xn)) = Ef [eλR(Xn,An)Uλ(V ∗

λ (Xn+1)) |Xn]
≥ Ef [Uλ(V ∗

λ (Xn+1)) |Xn];

therefore, taking expectation with respect to Pf [· |X0 = x] shows that

Uλ(Ln(x)) = Ef [Uλ(V ∗
λ (Xn)) |X0 = x]

≥ Ef [Uλ(V ∗
λ (Xn+1)) |X0 = x]

= Uλ(Ln+1(x))

and thus (5.3) is also valid in the risk-averse case. The proof now goes as
follows: First notice that Ef [Uλ(V ∗

λ (X0)) |X0 = x] = Uλ(V ∗
λ (x)), so that

(5.4) L0(·) = V ∗
λ (·).

From (5.3), it follows that there exists a function L : S → [0,∞) such that

(5.5) lim
n→∞

Ln(x) = L(x), x ∈ S.

Taking the limit as k ↗ ∞ in (5.2) and using the bounded convergence
theorem implies

Uλ(L(x)) = Ef [Uλ(L(X1)) |X0 = x], x ∈ S,

and, via the Markov property, an induction argument yields that

Uλ(L(x)) = Ef [Uλ(L(Xn)) |X0 = x].

Therefore, for every x ∈ S,

Uλ(L(x)) = lim
n→∞

1
n + 1

n∑
t=0

Ef [Uλ(L(Xt)) |X0 = x] =
∑

y

µ(y)Uλ(y),

where µ(·) is the unique invariant distribution of the Markov chain induced
by f ; see, for instance, Loève (1977). Thus, Uλ(L(·)) is constant, and since
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Uλ(·) is strictly monotone, it follows that L(·) ≡ C for some constant C. To
conclude, observe that combining the convergence in (5.5) with (5.3) and
(5.4), it follows that V ∗

λ (·) = L0(·) ≥ C ≥ 0.

Lemma 5.2. Under the assumptions of Lemma 5.1, for each x ∈ S,

V ∗
λ (Xn)

Pf [· |X0=x]−−−−−−→ C,

i.e., for each ε > 0, Pf [|V ∗
λ (Xn)− C| > ε |X0 = x] → 0 as n →∞.

P r o o f. First, it will be verified that

(5.6) 1 = lim
n→∞

Ef [e|λ(Vλ(Xn)−C)|].

To prove this convergence, notice that by Lemma 5.1,

Uλ(C) = lim
n→∞

Uλ(Ln(x)) = lim
n→∞

Ef [Uλ(V ∗
λ (Xn))],

which, by the definition of Uλ(·) in (2.1), is equivalent to

1 = lim
n→∞

Ef [eλ(V ∗
λ (Xn)−C)].

Since V ∗
λ (·) − C ≥ 0, by Lemma 5.1, this relation yields (5.6) when λ >

0. Suppose now λ is negative, and observe that in this case the above
convergence can be written as 1 = limn→∞ Ef [1/e|λ|(V

∗
λ (Xn)−C)], which is

equivalent to

(5.7) 0 = lim
n→∞

Ef

[
e|λ|(V

∗
λ (Xn)−C) − 1

e|λ|(V
∗

λ (Xn)−C)

]
.

Setting M = maxx∈S{V ∗
λ (x)− C}, and recalling that V ∗

λ (·)− C is nonneg-
ative, we obtain

e|λ|(V
∗

λ (Xn)−C) − 1
e|λ|(V

∗
λ (Xn)−C)

≥ e|λ|(V
∗

λ (Xn)−C) − 1
e|λ|M

=
e|λ(V ∗

λ (Xn)−C)| − 1
e|λ|M

≥ 0,

so that (5.7) implies that (5.6) is also valid for λ < 0. To conclude, take
logarithms on both sides of (5.6) to obtain

0 = log( lim
n→∞

Ef [e|λ(V ∗
λ (Xn)−C)|]) = lim

n→∞
log(Ef [e|λ(V ∗

λ (Xn)−C)|]);

since the logarithmic function is strictly concave, Jensen’s inequality yields

log(Ef [e|λ(V ∗
λ (Xn)−C)|]) ≥ Ef [|λ(V ∗

λ (Xn)− C)|]

and the above convergence implies that 0 = limn→∞ Ef [|λ(V ∗
λ (Xn) − C)|];

since λ 6= 0, the conclusion now follows from Markov’s inequality.

6. Proof of the main result. After the preliminaries in the previous
section, Theorem 5.1 can be established as follows.
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Proof of Theorem 5.1. Let f be a stationary policy satisfying (4.1) and
assume that f has a unique positive recurrent class. To begin with, it will
be shown that the nonnegative constant C in Lemmas 5.1 and 5.2 is zero:

(6.1) C = 0.

To establish this equality, notice that (2.2) implies that

Uλ(V ∗
λ (x)− C) = e−λCUλ(V ∗

λ (x))

= e−λC sup
a∈A(x)

[
eλR(x,a)

∑
y

pxy(a)Uλ(V ∗
λ (y))

]
= sup

a∈A(x)

[
eλR(x,a)

∑
y

pxy(a)e−λCUλ(V ∗
λ (y))

]
= sup

a∈A(x)

[
eλR(x,a)

∑
y

pxy(a)Uλ(V ∗
λ (y)− C)

]
so that V ∗

λ (·) − C satisfies the λ-OE. Since V ∗
λ (·) − C ≥ 0 by Lemma 5.1,

it follows from Lemma 4.1 that V ∗
λ (·)− C ≥ V ∗

λ (·), and thus C ≤ 0; conse-
quently, (6.1) holds, since C is nonnegative. Next, observe that an induction
argument using the Markov property yields that for every x ∈ S and n ∈ N,

(6.2) Uλ(V ∗
λ (x)) = Ef [eλ

∑n
t=0 R(Xt,At)Uλ(V ∗

λ (Xn+1)) |X0 = x].

Observe now the following facts (a)–(c):

(a) Since R ≥ 0, eλ
∑n

t=0 R(Xt,At) lies between min{1, eλR(X0,A0)} and
max{1, eλ

∑∞
t=0 R(Xt,At)}.

(b) eλ
∑n

t=0 R(Xt,At) converges to eλ
∑∞

t=0 R(Xt,At) everywhere.
(c) With respect to Pf [· |X0 = x], Uλ(V ∗

λ (Xn)) converges to Uλ(0) in
probability; this property follows from the continuity of Uλ(·) together with
Lemma 5.2 and (6.1).

From (b) and (c), it follows that, for arbitrary x ∈ S, the following
convergence holds in Pf [· |X0 = x]-measure:

eλ
∑n

t=0 R(Xt,At)Uλ(V ∗
λ (Xn+1)) → eλ

∑∞
t=0 R(Xt,At)Uλ(0).

Since Ef [eλ
∑∞

t=0 R(Xt,At)] = sign(λ)Uλ(Vλ(f, x)) < ∞, by Assumption 2.2,
and |Uλ(V ∗

λ (Xn+1))| ≤ e|λ|M , where M = maxx∈S{|V ∗
λ (x)|}, the above

convergence and (a) together imply, via the dominated convergence theorem,
that

lim
n→∞

Ef [eλ
∑n

t=0 R(Xt,At)Uλ(V ∗
λ (Xn+1)) |X0 = x]

= Ef [eλ
∑∞

t=0 R(Xt,At)Uλ(0) |X0 = x].
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Combining this convergence with (6.2) shows that

Uλ(V ∗
λ (x)) = Ef [eλ

∑∞
t=0 R(Xt,At)Uλ(0)) |X0 = x]

= Ef [Uλ(eλ
∑∞

t=0 R(Xt,At)) |X0 = x],

where the second equality follows from (2.2). Then (2.6) yields Uλ(V ∗
λ (x)) =

Uλ(Vλ(f, x)), and since Uλ(·) is increasing, it follows that V ∗
λ (x) = Vλ(f, x),

establishing the λ-optimality of the policy f , since x ∈ S was arbitrary.

7. Conclusion. This work considered finite-state MDP’s endowed with
the risk-sensitive expected total-reward criterion given in (2.5)–(2.7). The λ-
optimality of a stationary policy f achieving the maximum in the λ-OE was
established whenever f has the unichain property, and examples were given
to show that, regardless of the sign of the risk-sensitivity coefficient, when
the unichain property fails the existence of an optimal stationary policy
cannot be generally ensured; as already mentioned, these results provide
an answer to a question in Puterman (1994) when it is interpreted in the
risk-sensitive context. The arguments in the paper are concentrated on
stationary policies, but at this point it is convenient to mention that, in
Examples 4.1 and 4.2, it is not difficult to verify that a λ-optimal policy
does not exist even within the class P of all policies.
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E-mail: rcavazos@narro.uaaan.mx
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