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Abstract. A procedure is proposed in order to expand w =
∏N

j=1 Pij (x) =
∑M

k=0 LkPk(x) where Pi(x) belongs to a classical orthogonal polynomial

sequence (Jacobi, Bessel, Laguerre and Hermite) (M =
∑N

j=1 ij). We first

derive a linear differential equation of order 2N satisfied by w, from which
we deduce a recurrence relation in k for the linearization coefficients Lk.
We develop in detail the two cases [Pi(x)]

N , Pi(x)Pj(x)Pk(x) and give the
recurrence relation in some cases (N = 3, 4), when the polynomials Pi(x)
are monic Hermite orthogonal polynomials.

1. Introduction. Let {Pk} be a system of polynomials of degree ex-
actly k. The traditional linearization problem [1, 2, 3, 5] consists in expand-
ing the product PiPj in the {Pk} basis (Pr(x) ≡ Pr):

(1) PiPj =

i+j
∑

k=0

Li,j,kPk.

When {Pk} is an orthogonal family (with respect to some positive meas-
ure dµ(x)), many results concerning the positivity of the coefficients Li,j,k

[1, 6, 7] and the recurrence relation satisfied by Li,j,k [1, 2] are known; in
some cases (classical orthogonal polynomials) the coefficients Li,j,k are given
explicitly, very often in terms of hypergeometric functions.

In a recent paper [17], we proved that for a family of classical orthogonal
polynomials, the coefficients Li,j,k satisfy a linear second-order recurrence
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relation involving only the index k. More recently, Lewanowicz [9], rewriting
the fourth order differential equation for the product PiPj (Pi classical) given
in [17], has obtained the explicit coefficients Ai(k), i = 0, 1, 2, of this second
order recurrence relation:

(2) A0(k)Li,j,k−1 +A1(k)Li,j,k +A2(k)Li,j,k+1 = 0.

A first extension of relation (1) was obtained in [10] for products PiP j

where now P j belongs to a classical orthogonal family different from that
of the Pi.

The aim of this work is to generalize further, considering now the lin-
earization problem for the product w = Pi1 . . . PiN . The algorithm we devel-
oped and applied in [12–14] requires to search first for a differential equation
for the product w. This differential equation of order N +1 is given in Sec-
tion 2 when all indices ij are equal: w = [Pi]

N , and in Section 3 for three
different indices: w = PiPjPk (order 8). The technique used in the case
i 6= j 6= k is easily extended to the general case w = Pi1 . . . PiN in Section
4 (order 2N ). Some of these differential equations enter our algorithm in
Section 5 giving explicitly the recurrence relation satisfed by Lk for [Hn(x)]

3

and Hi(x)Hj(x)Hk(x) where Hn(x) are the monic Hermite orthogonal poly-
nomials.

For completeness, let us mention that for classical discrete orthogonal
polynomials: Hahn, Krawtchouk, Meixner, Charlier, for which a recurrence
relation in k for Lk also exists, the cases of w = PiPj and w = [Pi]

N are
already covered in respectively [14] and [15] from the difference equation
satisfied by these products.

2. Differential equations satisfied by [Pj(x)]
N . In order to ob-

tain the differential equation satisfied by [Pi(x)]
N , where Pi(x) are classical

orthogonal polynomials, we extend the technique already developed in [10]
giving the 4th order differential equation satisfied by the product Pi(x)P j(x)
where Pi and P j are any distinct families among the four classical families
of Jacobi, Bessel, Laguerre, and Hermite.

The following notations will simplify the writing.

Let us denote Pi(x) by i, [Pi(x)]
′ by i′, [Pi(x)]

′′ by i′′, and the number λi

by ı; σ ≡ σ(x), τ ≡ τ(x). The basic differential equation for i now reads [16]

(3) (σD2 + τD + ıId)[i] = 0,

where σ = σ(x) is a polynomial of degree smaller than or equal to 2, τ = τ(x)
is a polynomial of degree 1 and λi = ı = − 1

2 i[(i − 1)σ′′ + 2τ ′]. This allows
us to eliminate i′′ and all other higher derivatives of i (by iteration) from

(4) σi′′ = −τi′ − ıi.
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The first step is to compute (iN )′′ and after multiplication by σ we obtain
the first operator R0:

R0[iN ] ≡ (σD2 + τD + ıNId)[i
N ] = σN(N − 1)(i′)2iN−2(5)

= A0
2(i

′)2iN−2.

The second step is again peculiar because the right hand side contains again
the σ terms and the derivative of relation (5) can be written easily in the
following form:

(6) R1[iN ] ≡ (DR0 + 2(N − 1)ıD)[iN ] = A1
2(i

′)2iN−2 +A1
3(i

′)3iN−3

where

(7)

{

A1
2 ≡ A1

2(x,N) = N(N − 1)(σ′ − 2τ),

A1
3 ≡ A1

3(x,N) = N(N − 1)(N − 2)σ.

Now the derivatives of (i′)2iN−2 generate a linear combination (after
elimination of i′′) of terms (i′)kiN−k, 2 ≤ k ≤ N .

So let us build recursively differential operators Rj , 1 < j ≤ N − 1,
acting on iN , which will allow writing the (N + 1)th differential equation
using an N by N determinant containing differential operators up to RN−1

of order N + 1.

In order to do that let us start with

(8) Rj [iN ] =

j+2
∑

k=2

A
j
k(i

′)kiN−k,

and generate a relation between the Aj
k from the link between Rj+1 and Rj :

(9) Rj+1[iN ] ≡
(

σDRj + 2
ı

N
A

j
2D

)

[iN ] (j ≥ 1).

The following two relations come from identification of the highest terms
in k:

(10)

{

A
j+1
j+3 = (N − 2− j)σAj

j+2,

A
j+1
j+2 = (N − 1− j)σAj

j+1 + σ(Aj
j+2)

′ − (j + 2)τAj
j+2.

The coefficients Aj+1
k for 2 ≤ k ≤ j + 1, j ≥ 1, are now controlled by

(11) A
j+1
k = (N + 1− k)σAj

k−1 + σ(Aj
k)

′ − kτA
j
k − (k + 1)ıAj

k+1.

It should be emphasized that Aj
k being a function of x andN , Aj

j+2(x,N)=0

when j = N − 1 (see A1
3 for instance).
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These three relations allow us to write the required determinant gener-
alizing the situation examined in [21]:

(12)

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R0[iN ] A0
2 0 0 . . . 0

R1[iN ] A1
2 A1

3 0 . . . 0
R2[iN ] A2

2 A2
3 A2

4 . . . 0
...

...
...

... . . .
...

Rj [iN ] A
j
2 A

j
3 A

j
4 . . . 0

...
...

...
... . . .

...
RN−1[iN ] AN−1

2 AN−1
3 AN−1

4 . . . AN−1
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∣
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∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

In the cases j = 2, j = 3 (for j = 0 and j = 1 see equations (5) and (6))
elementary computation gives, from the previous recurrences in j,

j = 2 :







A2
2 = σ(A1

2)
′ − 2τA1

2 − 3ıA1
3,

A2
3 = (N − 2)σA1

2 + σ(A1
3)

′ − 3τA1
3,

A2
4 = (N − 3)σA1

3,

(13)

j = 3 :















A3
2 = σ(A2

2)
′ − 2τA2

2 − 3ıA2
3,

A3
3 = (N − 2)σA2

2 + σ(A2
3)

′ − 3τA2
3 − 4ıA2

4,

A3
4 = (N − 3)σA2

3 + σ(A2
4)

′ − 4τA2
4,

A3
5 = (N − 4)σA2

4.

(14)

The third order differential equation satisfied by i2 = [Pi(x)]
2 is now

(15) [σ2D3 + 3στD2 + (4σı + στ ′ − σ′τ + 2τ2)D

+ 2ı(2τ − σ′)Id][Pi(x)]
2 = 0,

which coincides with the equation given in [17].
When N = 3, the fourth order differential equation reduces to

(16)

∣

∣

∣

∣

∣

∣

∣

∣

R0 σ 0

DR0 + 4ıD σ′ − 2τ 1

σD[DR0 + 4ıD]
+4ı(σ′ − 2τ)D

σ(σ′′ − 2τ ′ − 3ı)
−2τ(σ′ − 2τ)

2σ′ − 5τ

∣

∣

∣

∣

∣

∣

∣

∣

= 0

with

R0[ω(x)] = (σD2 + τD + 3ıId)ω(x) (ı = λi).

The third power of the Hermite polynomial Hi(x) = i is a solution of
the scalar equation (σ = 1, τ = −2x, ı = 2i, R0 = D2 − 2xD + 2i)

(17) (D4 − 12xD3 + 4(11x2 + 5i− 2)D2

− 4x(12x2 + 30i − 7)D + 12i(12x2 + 3i− 2)Id)[i
3] = 0.

Of course for N larger than 3, a computer algebra package like Mathematica
or Mapple must be used in order to compute the determinant and to simplify
the differential equation.
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3. Differential equation satisfied by Pi(x)Pj(x)Pk(x). The same
technique can be applied in order to find the differential equation satisfied by
the product of three classical orthogonal polynomials denoted in the spirit
of Section 2 by w = ijk for w = Pi(x)Pj(x)Pk(x).

The second derivative of w gives, after elimination of i′′, j′′ and k′′ from
the three differential equations (3) respectively for i, j and k,

(18) S0[w] ≡ σw′′ + τw′ + (ı+ + k)w = 2σ(i′j′k + i′jk′ + ij′k′),

which obviously generalizes the R0[i3] relation given in (5). When i 6=j 6=k,
the relevant differential equation is of order 8 and could be given by a de-
terminant 7 by 7 containing an operator of order 8. But working that way
we are losing the symmetry in the i, j, k variables as shown easily from the
next step computing the derivative of S0[w].

Three one term derivatives: i′jk, ij′k and ijk′ appear after elimination
of i′′, j′′ and k′′ but they are functionally dependent. For instance, we could
eliminate ijk′ using

(19) ijk′ = w′ − i′jk − ij′k.

The strategy is therefore to keep the symmetry, adding this equation in
symmetric form.

We therefore consider the seven quantities to be eliminated:

(20) i′jk, ij′k, ijk′, i′j′k, i′jk′, ij′k′, i′j′k′.

The coefficients generated after s derivations of relation (18) will be denoted
respectively:

(21) Bs
i , Bs

j , Bs
k, Bs

ij , Bs
jk, Bs

ijk.

For s = 1, we obtain

S1[w] = B1
i i

′jk +B1
j ij

′k +B1
kijk

′(22)

+B1
iji

′j′k +B1
iki

′jk′ +B1
jkij

′k′ +B1
ijki

′j′k′

where all B1 depend on x in general and are explicitly given by

(23)

{

B1
i = −2(+ k), B1

j = −2(ı+ k), B1
k = −2(ı+ ),

B1
ij = B1

jk = B1
ik = 2(σ′ − 2τ), B1

ijk = 6σ.

The successive differential operators are now built in the following way:

(24) Ss+1[w] = (σDSs + ıBs
i + Bs

j + kBs
k)[w], 1 ≤ s ≤ 5.

The new relation reads

Ss+1[w] = Bs
i i

′jk +Bs
j ij

′k +Bs
kijk

′(25)

+Bs
iji

′j′k +Bs
iki

′jk′ +Bs
jkij

′k′ +Bs
ijki

′j′k′.
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The seven relations generated by S0, . . . , S6 with the addition of the
obvious one, already indicated,

(26) w′ = i′jk + ij′k + ijk′,

give therefore an 8 by 8 determinant for the eighth order differential equation
satisfied by Pi(x)Pj(x)Pk(x). Of course, if any 2 indices are equal, the
equation is still valid but can be reduced to a sixth order one, and if the three
indices are equal, the solution is given in Section 2. Again computer algebra
cannot be avoided but yields easily the required differential equation. This
kind of elimination technique can be applied in several other situations and
that is why there is no special interest to write out the larger determinant
corresponding to this particular simple case.

Let us mention some other linearization problems tackled in the same
way:

1) Pi(x)P
∗

j (x)P
∗∗

k (x), when P ∗

j (x) (and P ∗∗

k (x)) belong to a family dif-
ferent from Pi(x) [10], which means that P ∗

j for instance is a solution, like
Pi in equation (3), of

(σ∗D2 + τ∗D + j∗Id)[P
∗

j ] = 0.

2) Pi(aix + bi)Pj(ajx + bj)Pk(akx + bk), where the 3 families are now
identical (the same σ and τ) but with different arguments which define new
coefficients (σi, τi, ıi) for P i coming from the differential equation satisfied
by P i ≡ Pi(aix+ bi):

σ(aix+ bi)a
2
iP

′′

i + τ(aix+ bi)aiP
′

i + ıiPi = 0.

3) xiPj(x)Pk(x), where the monomial family xi is a solution of x(xi)′ −
ixi = 0 (σ = 0, τ = x, λi = −i).

4. Differential equation satisfied by Pi1(x) . . . PiN (x). This dif-
ferential equation of order 2N if all ij are distinct will again be obtained
from a determinant now of size 2N by 2N by eliminating 2N − 1 quantities
generalizing the seven ones appearing in equation (20).

It is easy to realize that after the elimination of second and higher deriva-
tives from equation (4) in all derivatives of the product

(27) i1 . . . iN

there are
(

N

1

)

terms containing one first derivative,
(

N

2

)

terms containing
two first derivatives, etc.

The number of distinct terms to be eliminated is therefore

(28)
N
∑

j=1

(

N

j

)

= 2N − 1
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and the procedure explained in Section 3 can be extended in a straightfor-
ward way.

This combinatorial argument is another way to recover the maximal
order (2N ) of the differential equation satisfied by the general arbitrary
products considered, and elimination by hand without a computer becomes
very quickly impractical.

But products of 4 terms occur anyway in the literature. The following
integral is explicitly given in [4]:

(29)

∞\
−∞

e−x2

[Hm(x)]2[Hn(x)]
2 dx

= m!n!
√
π

n
∑

r=1

(

m

r

)(

n

r

)(

2r

r

)

, m ≥ n,

where Hm,Hn are monic Hermite polynomials.
This result comes directly from the product of the separate linearization

of [Hm(x)]2 and [Hn(x)]
2 as given also in [4].

The full linearization expansion of [Hm(x)]2[Hn(x)]
2=

∑2(m+n)
k=0 LkHk(x)

gives of course more information than the previous integral which involves
only L0, Lk, being connected with 5 products in the integral

(30)

∞\
−∞

e−x2

[Hm(x)]2[Hn(x)]
2Hk(x) dx.

The differential equation satisfied by [HnHm]2 is still tractable by computer
but the previous integral is already solved by the linearization coefficients
Lk (k = n) in the linearization problem

[Hm(x)]2[Hn(x)]
2 =

2(m+n)
∑

k=0

LkHk(x).

5. Generalized linearization problems. The algorithm developed
and applied to many situations in [9, 17, 21] allows us to expand any poly-
nomial w(x) of degree M which is a solution of a differential equation or
difference equation [12–15] in the form

(31) w(x) =
∑

k

LkPk(x)

where Pk(x) belongs to a family of classical, continuous or discrete, orthog-
onal polynomials.

When Pk(x) is the monic Hermite family, the recurrence relation for Lk

is particularly easy to derive from the differential equation for w of order K
written LK [w] = 0.

In the relation

(32) LK [w] =
∑

k

LkLK [Hk(x)] = 0
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we replace DHk by kHk−1, xHk by Hk+1 +
k
2Hk−1 and we iterate as many

times as we need until we reach DKHk and xrHk where r is the highest
power in the polynomial coefficient of the differential equation LK [w] = 0.
Equation (30) is now transformed into a linear constant coefficient combina-
tion of Hermite polynomials, and by collecting the coefficients Lj of Hk, we
obtain immediately the required recurrence relation for Lk and the initial
conditions starting with LN if N is the degree of w. The length of this
recurrence is obviously finite and depends only on both K and the degree
of the polynomials involved in LK .

This process gives a recurrence relation for Lk which is not in general the
“minimal” one but works in all cases. Several strategies described in [9, 17]
allow finding the minimal relation but these strategies are not universal (see
examples).

Example 1. From the differential equation (15) applied to Hermite
polynomials w = (Hi(x))

2,

(33)

2i
∑

k=0

Lk[D
3 − 6xD2 + 2(4i− 1 + 4x2)D − 16ixId]Hk = 0,

we generate from the algorithm [5, 12, 16, 21] a recurrence relation for Lk

of order 2 already obtained in [8, 9]:

(34) 4(k − 2i− 1)Lk−1 + (k + 1)2Lk+1 = 0 (Lk = Li,i,k).

The Feldheim result [4] in monic form

[Hi(x)]
2 =

i!

2i

i
∑

r=0

(

i

r

)

2rH2r

r!
=

i
∑

r=0

L2rH2r

gives 2(n− r + 1)L2r−2 = r2L2r equivalent to (32) with 2r = k + 1.

Example 2. With w = [Hi(x)]
3 =

∑3i
k=0 LkHk(x), we get from equation

(17) the recurrence relation

(35) (k + 1)(k + 2)(k + i+ 2)Lk+2 + (7k2 + 4k + 6ki− 9i2 − 12i)Lk

− 12(3i + 2− k)Lk−2 = 0.

The integrals of Nth powers of classical orthogonal polynomials Pn(x) mul-
tiplied by the orthogonality weight have an important combinatorial inter-
pretation as indicated for instance by Askey [1].

6. Final remarks. The knowledge of the linearization coefficient Lk

gives by orthogonality the integrals of a product of N + 1 Pi(x)’s:

J(i1, . . . , iN , k) =

b\
a

Pi1(x) . . . PiN (x)Pk(x)̺(x) dx = Lk(i1 . . . iN )d2k
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where ̺(x) is the orthogonality weight of the Pi(x) on the interval (a, b) and

d2k =

b\
a

[Pk(x)]
2̺(x) dx.

For k = M − 1, M − 2, . . . the coefficients Lk are easy to compute from the
initial condition LM = 1.

This means that the corresponding integrals J(i1, . . . , iN ,M − 1),

J(i1, . . . , iN ,M − 2), . . . are relatively easy to compute (M =
∑N

j=1 ij) from
the first terms of the recurrence.

Integrals containing products of three classical orthogonal polynomials
appear frequently in many domains of physics [11, 18, 19] but are trivially
controlled by relation (2). Integrals containing products of four polynomials
or more can be computed from the approach developed in Sections 2–4
and using the full algorithm mentioned before [9, 17]. Integrals involving
products of N identical polynomials also appear in statistical mechanics.

As last comment, let us mention that a new mathematical question arises
from the generalized linearization problem. When N = 2, there exist criteria
ensuring positivity of the linearization coefficients [1, 6, 7, 20], and when
they are positive for N = 2, they also are for arbitrary N (by iteration).
But the converse may not be true. Positive Lk for some N > 2 could be
not necessarily positive for N = 2. Criteria and possible counterexamples
would be interesting.
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