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CHARACTERIZATIONS OF THE INVERSE

WEIBULL DISTRIBUTION AND GENERALIZED

EXTREME VALUE DISTRIBUTIONS BY MOMENTS

OF kTH RECORD VALUES

Abstract. We give characterization conditions for the inverse Weibull
distribution and generalized extreme value distributions by moments of kth
record values.

1. Introduction. We discuss characterization problems for an inverse
Weibull distribution function

(1.1) F (x) = e−(θ/x)α , x > 0, α > 0, θ > 0,

and the standard generalized extreme value distribution function given by

(1.2) F (x) =







e−{1−γx}1/γ

, x < 1/γ when γ > 0,
x > 1/γ when γ < 0,

e−e−x

, x ∈ R when γ = 0.

Note that F (x) given by (1.1) with θ = 1 is a Fréchet distribution function
(cf. [3]).

We present characterization conditions for distribution functions given
by (1.1) and (1.2) by moments of kth lower record values introduced in [3].
The kth upper record values were discussed in [1]. So first we recall the
concept of kth lower record values (cf. [3]).

Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with a cumu-
lative distribution function F (x) and a probability density function f(x).
The jth order statistic of a sample (X1, . . . ,Xn) is denoted by Xj:n. For a
fixed k ≥ 1 we define the sequence {Lk(n), n ≥ 1} of kth lower record times
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of {Xn, n ≥ 1} as follows:

Lk(1) = 1,

Lk(n+ 1) = min{j > Lk(n) : Xk:Lk(n)+k−1 > Xk:j+k−1}.

For k = 1 we put L(n) := L1(n), n ≥ 1, which are lower record times

of {Xn, n ≥ 1}. The sequence {Z
(k)
n , n ≥ 1} with Z

(k)
n = Xk:Lk(n)+k−1,

n=1, 2, . . . , is called the sequence of kth lower record values of {Xn, n≥1}.

For convenience, we also set Z
(k)
0 = 0. Note that for k = 1 we have Z

(1)
n =

XL(n), n ≥ 1, i.e. the record values of {Xn, n ≥ 1}. Moreover, we see that

Z
(k)
1 = max(X1, . . . ,Xk) := Xk:k.

It is known (cf. [3]) that the pdf of Z
(k)
n and the joint pdf of (Z

(k)
m , Z

(k)
n )

are given respectively by

(1.3) f
Z

(k)
n

(x) =
kn

(n− 1)!
[− lnF (x)]n−1[F (x)]k−1f(x), n ≥ 1,

(1.4) f
Z

(k)
m ,Z

(k)
n

(x, y) =
kn

(m− 1)!(n −m− 1)!
[lnF (x)− lnF (y)]n−m−1

× [− lnF (x)]m−1 f(x)

F (x)
[F (y)]k−1f(y),

x > y, 1 ≤ m < n, n ≥ 2.

Results for kth upper record values can be found in [1].
Section 2 contains characterization conditions for an inverse Weibull dis-

tribution and in Section 3 we give recurrence relations for product moments
of kth lower record values of that distribution. Characterization conditions
for the standard generalized extreme distribution (1.2) are presented in Sec-
tion 4.

2. Characterization conditions for an inverse Weibull distri-

bution. The characterizations of distributions presented in this paper are
based on the following result by Lin (cf. [2]).

Proposition. Let n0 be any fixed non-negative integer , −∞ < a < b
< ∞, and g(x) > 0 an absolutely continuous function with g′(x) 6= 0 a.e. on

(a, b). Then the sequence of functions {(g(x))ne−g(x), n ≥ n0} is complete

in L(a, b) iff g(x) is strictly monotone on (a, b).

Let us note that for the inverse Weibull distribution (1.1) we have

(2.1) xf(x) = αF (x)(− lnF (x)).

We start with recurrence relations for moments of the inverse Weibull
distribution. From them we derive a formula for single moments expressed
in terms of moments of Xk:k.
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Theorem 1. Fix a positive integer k ≥ 1. Then for any positive integer

r, we have

(2.2) E(Z(k)
n )r =

(

1−
r

(n− 1)α

)

E(Z
(k)
n−1)

r

whenever (n− 1)α > r, and consequently ,

(2.3) E(Z(k)
n )r =

n−1
∏

i=1

(

1−
r

iα

)

E(Xk:k)
r.

P r o o f. For n ≥ 1 and r = 1, 2, . . . , from (1.3) we have

E(Z(k)
n )r =

αkn

(n− 1)!

\
xr−1[− lnF (x)]n[F (x)]k dx.

Integrating by parts in the above integral written as
T
xr−1d(. . .), we get

E(Z
(k)
n−1)

r =
α(n− 1)

r
[E(Z

(k)
n−1)

r − E(Z(k)
n )r].

This gives (2.2). Using an induction argument leads to (2.3).

Corollary. Under the assumptions of Theorem 1 with α = 1 we obtain

a recurrence relation for single moments of kth lower record values from the

inverse exponential distribution:

E(Z(k)
n )r =

(

1−
r

n− 1

)

E(Z
(k)
n−1)

r.

Now we show that one can have a stronger result.

Theorem 2. Fix a positive integer k ≥ 1 and let r be a positive integer.

A necessary and sufficient condition for a random variable X to be distrib-

uted with pdf given by (1.1) is that

E(Z(k)
n )r =

(

1−
r

(n− 1)α

)

E(Z
(k)
n−1)

r

for all positive integers n such that (n− 1)α > r.

P r o o f. The necessity part follows immediately from Theorem 1.

On the other hand if the recurrence relation (2.2) is satisfied, then\
xr−1[− lnF (x)]n−1[F (x)]k−1{xf(x)− α(− lnF (x))F (x)} dx = 0.

It now follows from the Proposition that

xf(x) = α(− lnF (x))F (x),

which proves by (2.1) that f(x) has the form (1.1).
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Corollary. Let α = 1 in Theorem 2. A necessary and sufficient con-

dition for a random variable X to have the inverse exponential distribution

is that

E(Z(k)
n )r =

(

1−
r

n− 1

)

E(Z
(k)
n−1)

r

for all positive integers n such that n− 1 > r.

Corollary. Under the assumptions of Theorem 2 with r = 1 the equa-

tions

EZ(k)
n =

(

1−
1

(n− 1)α

)

EZ
(k)
n−1, (n− 1)α > 1,

characterize an inverse Weibull distribution.

Example. Let
∏0

j=1(1 − 1/(jα)) := 1 and assume that α > 1. Then
the equations

EZ(k)
n =

θ

kα
Γ

(

1−
1

α

) n−1
∏

j=1

(

1−
1

jα

)

for n = 1, 2, . . .

all hold iff

F (x) = e−(θ/x)α , x > 0, α > 1.

Remark. If we let additionally k = 1 then

EXL(n) = θΓ

(

1−
1

α

) n−1
∏

j=1

(

1−
1

iα

)

for n = 1, 2, . . .

iff F (x) is given by (1.1) with α > 1.

Note that the assumption α > 1 is needed for the existence of EX.

3. Product moments of kth lower record values from an in-

verse Weibull distribution. We complete our considerations by giving
recurrence relations for product moments of kth lower record values from
an inverse Weibull distribution.

Theorem 3. Fix a positive integer k ≥ 1 and let r be a non-negative

integer such that r < mα. Then for m ≥ 1, s = 1, 2, . . . ,

(3.1) E(Z
(k)
m+1)

r+s =

(

1−
r

mα

)

E[(Z(k)
m )r(Z

(k)
m+1)

s]

and for 1 ≤ m ≤ n− 2,

(3.2) E[(Z
(k)
m+1)

r(Z(k)
n )s] =

(

1−
r

mα

)

E[(Z(k)
m )r(Z(k)

n )s].



Characterizations of inverse Weibull distribution 201

P r o o f. From (1.1) for 1 ≤ m ≤ n− 1 and r, s = 1, 2, . . . ,

E[(Z(k)
m )r(Z(k)

n )s] =
\\

xrysfm,n(x, y) dx dy(3.3)

=
kn

(m− 1)!(n −m− 1)!

\
ys[F (y)]k−1f(y)I(y) dy,

where

I(y) =
\
xr[− lnF (x)]m−1 f(x)

F (x)
[lnF (x)− lnF (y)]n−m−1 dx

= α
\
xr−1[− lnF (x)]m[lnF (x)− lnF (y)]n−m−1 dx.

But

I(y) =
αm

r

[\
xr[− lnF (x)]m−1[lnF (x)− lnF (y)]n−m−1 f(x)

F (x)
dx

]

−
α(n−m− 1)

r

[\
xr[− lnF (x)]m[lnF (x)− lnF (y)]n−m−2 f(x)

F (x)
dx

]

.

Upon substituting the above equation in (3.3) and simplifying, we obtain

E[(Z(k)
m )r(Z(k)

n )s] =
αm

r
[E[(Z(k)

m )r(Z(k)
n )s]− E[(Z

(k)
m+1)

r(Z(k)
n )s]]

Hence we have (3.2). When n = m+ 1 we obtain (3.1).

4. Characterization conditions for the generalized extreme

value distribution. Recurrence relations for moments of kth lower record
values from a generalized extreme value distribution were presented in [3].
We now only give characterization conditions for the standard generalized
extreme value distribution (1.2) based on those relations.

To characterize the df F given by (1.2) we use an equivalent representa-
tion of (1.2), namely

(4.1) (1− γx)f(x) = F (x)(− lnF (x)) for γ 6= 0,

and f(x) = F (x)(− lnF (x)) for γ = 0.
The main result of this section is as follows.

Theorem 4. A necessary and sufficient condition for a random variable

X to be distributed according to (2.1) is that

(4.2) E(Z(k)
n )r =

(

1 + γ
r

n− 1

)

E(Z
(k)
n−1)

r −
r

n− 1
(EZ

(k)
n−1)

r−1

for n = 2, 3, . . .

P r o o f. The necessity part was proved in [3]. Assume now that (4.2) is
satisfied. Then\

[− lnF (x)]n−1[F (x)]k−1xr[−(− lnF (x))F (x) − γxf(x) + f(x)] dx = 0.
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It now follows from the above Proposition that

(1− γx)f(x) = (− lnF (x))F (x),

which proves that

f(x) = e(1−γx)1/γ (1− γx)1/γ−1.

Example. Let
∏n−1

j=n(1 + γ/j) := 1. Then for γ > 0,

EZ(k)
n =

1

γ

(

1−
1

kγ
Γ (γ + 1)

) n−1
∏

j=1

(

1 +
γ

j

)

−

n−1
∑

i=1

1

i

n−1
∏

j=i+1

(

1 +
γ

j

)

for n = 2, 3, . . .

iff F (x) is given by (1.2).

Remark. If we let additionally k = 1, then

XL(n) =
1

γ
(1− Γ (γ + 1))

n−1
∏

j=1

(

1 +
γ

j

)

−

n−1
∑

i=1

1

i

n−1
∏

j=i+1

(

1 +
γ

j

)

for n = 2, 3, . . .

iff F (x) is given by (1.2).
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