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GLOBAL EXISTENCE AND BLOW-UP
FOR A COMPLETELY COUPLED FUJITA TYPE SYSTEM

Abstract. The Fujita type global existence and blow-up theorems are
proved for a reaction-diffusion system of m equations (m > 1) in the form

uy = Aug +uli,, i=1,...,m—1,

Umt = Ay, +uy™, zeRN t>0,

with nonnegative, bounded, continuous initial values and positive num-
bers p;. The dependence on p; of the length of existence time (its finiteness
or infinitude) is established.

1. Introduction. The main concern of this paper is to examine the
following system of reaction-diffusion equations:

_ . Pi L
{uit—Aui—uiil, i=1,...,m—1,

Pm

1.1
( ) Umt — Aum = Uy,

forx € RNV, ¢t >0, p; > 0; and
u;(0,z) = ugs(z), i=1,...,m, zeRY,

where ug; are nonnegative, continuous, bounded functions.

We consider the behaviour of classical nonnegative solutions for (1.1)
as regards their maximal existence time. We describe the cases of global
existence and finite blow-up time for every solution of (1.1) (in the second
situation, a nontrivial solution) in terms of p; and N.

This work generalizes results of Fujita [F1], [F2] (for the scalar Cauchy
problem), Escobedo and Herrero [EH] (for the system (1.1) with m = 2)
and the author [R] (for the system (1.1) with m = 3). We want to mention
that the method used here is strictly connected with the special form of the
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204 J. Renclawowicz

system (1.1). In the case of weakly coupled systems proofs are much more
complicated (we refer to [EL] for the case of two equations).

We introduce some notations to formulate the main theorems. Let A,,
be a matrix of the form

0 -
0 p2
0
(1.2) A, =
0 Pm—1
L Pm 0
We denote by a = (aq,...,q,,) the unique solution of
(1.3) (A — Do’ =(1,...,1)"
Let
(1.4) 6 =det(A, —I) = (—=1)™*! < [I» - 1).
j=1
Whenever § #£ 0, we have
1+pi+pip2+...+ H;;lpj
(15) a1 = ™ s
[Zipi—1
al:1+Pi+pipi+1+---+l_[#i_1pj _y .
(3 H:;TLZI pj _ 1 bl ) )

THEOREM 1.1. Suppose det(A,, —I) = 0. Then every solution of (1.1)
1s global.

THEOREM 1.2. Suppose det(A,, —I) # 0 and max;—;
all the solutions of (1.1) are global.

ma; < 0. Then

.....

THEOREM 1.3. Suppose det(A,, — I) # 0 and max;—y ., o; > N/2.
Then every nontrivial solution of (1.1) blows up in a finite time.

The plan of this paper is the following: we prove some auxiliary lemmas
in Section 2, global existence theorems is the content of the last section,
whereas the global nonexistence theorem is proved in Section 3.

2. Preliminaries. Let S(¢) be the semigroup operator for the heat
equation, i.e.

stea(o) = § (am) e (= 2 Ve
RN
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A classical solution of (1.1) satisfies the following variation of constants

formulas:
t

u;(t) = S(t)ug; + SS(t — st (s)ds, i=1,...,m—1,

(2.1) %
U (t) = S(t)uom + SS(t —s)ul™(s)ds
It follows that ’
wi (1) = S(7 = t;)ui(t;) + T_Sti S(r—t; — s)uﬁl(s) ds
> S(r — t)ui(ts), 29: 1,...,m—1,
U (T) = S(T =t )t (tm) + T_Stm S(1 —tm — s)ul™(s) ds
0

> S(T — tm)um(tm).
We remark that if (z;,t;) are such that u;(x;,¢;) > 0,7=1,...,m, then by
positivity of S(t), u;(7) > 0 for 7 > t;. Taking ty = max;—1 ., t; we have
ui(z,7) >0forz e RN, 7 > tg,i=1,...,m.

-----

LEMMA 2.1. Let u = (ug,...,Up) with ug = (Uo1,-..,Uom) Z 0 be

a solution of (1.1). Then we can choose T = T(uo1,...,uom) and some
constants ¢ > 0, a > 0 such that min;(u;(7)) > ce—alzl®,

Proof. We can assume that for instance ug; # 0. Then there exists
R > 0 satisfying

v = inf{upy (z) : |z| < R} > 0.
By formula (2.1) we have

uy (t) > S(t)ugr > vy (4mt) "N/ exp <%§2) | exp (ﬂ) dy.

4t
ly|<R
We put
uy(t) =uy(t+719)  for some 19 > 0,
1 _ 2
a1 =-—, ¢ = V1(47T’7'0)_N/2 S exp vl dy.
47’0 4’7’0
ly|[<R
Hence

U1 (0) = uy(10) > c1 exp(—ay|x|?).

To obtain the assertion we use an inductive argument. By (2.1),

70

ui(ro) > | S(r0 — 8)(S(s)ug(is1))" ds.
0
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If p; > 1 then
ui(T) > S (S(T = 8)S(s)un@i+1))" ds = 7(S(T)uo(i+1))”"
0

Otherwise,
-

wi(r) = [ S(r = )S(8) (oqisny )P ds = 7Sy, .
0
It is clear that if we assume that ug(;11) satisfies ug(41) > cexp(—alz|?) for
some constants ¢ and a, then an analogous estimate holds true for u;(7).
Replacing ug(;4+1) by uit1(70) for some 7 if necessary, we get the conclu-
sion. m

To fix ideas, we assume henceforth that
m
mzaxai =qp if Hpj > 1.
j=1

LEMMA 2.2. Let (uy(t),...,un(t)) be a bounded solution of (1.1) in
some strip [0,T) x RN, 0 < T < oo. Assume that H;’L:l pj > 1. Let n be
an integer such that

(2.2) pi>1 for1<i<n, p;,<1l forn<i<m.
Then there exists a positive constant C, depending on p; only, such that
HLwarson | S(uli= %) < 0 ifn < m,

t* St uor|loo < C  ifn=m, t€[0,T).

Proof. Using (2.1) for i = 1 in (2.1) for i = m we get
t
U () > | S(t = )(S()uo1)P™ ds.
0

Consider first n = m. Then by the Jensen inequality for p,, > 1 we have
¢

(2.4) U (t) > | (S(t)uor)P ds = t(S(t)uo1 )P

0
Using (2.4) in (2.1) for i = m — 1 and the Jensen inequality for p,,pm—1 > 1
we get

(2.3)

U1 (t) 2 | S(E = 8)(s(S()ugr )P )P ds

Y

O ey o+ O e

sPm=1(S(t)ugy )PmPm=1 ds

1

> S(H)u pmpmfltpmfl‘i‘l‘
> e (S(tun)
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We now reason by induction. Assume that

(25) um,j (t) Z Cj (S(t)um)”j trj,
where
Tj = Pm—;Tj—1, o = Pm,
(26) Tj = pmfjrjfl + 17 TO = 17
= T Pmed =1.
Cj v ;7 Co

Substituting (2.5) in (2.1) for ¢ = m — j — 1, by the Jensen inequality we
obtain
t

tm—(j+1) (1) 2 SS(t —5)[c;(S(s)upr)™ s"7]Pm=G+D ds
0
t

> Ci-)m*(jﬂ) Ssrjpm*j*1(S(t)um)pm*j’”rj ds

0
Cp‘mfjfl
> J (S(t)u01)pmfjflﬂjtrjpmfj—l‘i‘lj
TiPm—j—1+1

whence, by (2.6),

Um—j—1(t) = €1 (S()uor) ™+ ¢+
and for j =m — 1, (2.5) gives
(2.7) ur(t) > em—1(S(t)upy )™ ™1t 1,

where

m

Tm—1 = Hp]7
j=1

T'm—1 = ( i (((pm—l + 1)pm—2 + 1)pm—3 + 1) .. ')pl +1
= Qg ( Hpj - 1)7
j=1
1

cmfl = (pmfl + 1)p1---p7n—2(p771172(pm71 + 1) + 1)p1'--p7n73 L.
co G (P Dpm—2 + 1) )py + 1]

Iterating this scheme and setting p = m,,_1, r = r,,_1, we obtain an estimate
for uy (t) from below:

(2.8)

(2.9) up(t) > H Af(S(t)um)p’“ tr(1+p+p2+...+pk*1)’
=1

where

(2.10) VA =" e+ )P0 4o+ )P

LT PR p )],
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1/AE = (pr + 1P /P [pr(p+ 1) + 17 /om
X [P (p? +p+ 1) + 17" /o
o PFTE PP p 1) 4 1P
1/AE | = (py + 1P/ Prmapmd (o pe e py g 4 1P/ mapm)
(2.10) X [Pm—1Pmr(p+ 1) + py + 1]/ Prmipe)
o o P (0 AP D) Py + 1P PP,
/A,y = Pl (Pt + 1) . PP/ Ormiepm)
X [Pm—i(Pm—it1(. .. (Pmr + 1)
o+ 1) 1) 1P emeipm)
X Prnei(e o (Pmr(p+1)+1) 4. . A1) 1] Pmicpm)
o PmiC (PP 1) 1)
o 1) 1P/ Pripm),
We can rewrite 1/A% in (2.10) as

k—j—1

k=1 j+1 P
(2.11) 1/AF = @ =1/ (lu)
=1\ P 1

By assumption and p > 1, we have max o; = a1, so the following inequalities
remain true for j > 0:

r(l+p+...+p)=a1(p—1D) A +p+...+p") > 1,

r(1+p+...+pj)>1—i—pm_1,

r(L+p+...+9) > 1+ Dm_oPm1+Pm2,s ---,

r(A4+p+...40) > 1+ pmi Dot 4 Pmi Pz + oo+ Dnis
fori=1,...,m—2.

Using this in (2.10) for Ak to Afn we obtain
(212) 1/AL, < [r(pm + D P [r(p + D (pm + DI/

L@ TR PR+ 1) (P + )PP

v, TR=2 /0041 PP 1/ pm
~rear0n I(5) |

s Pl

1/A’lr€n—1 S [T(pm_lpm + 1)]pk71/(pm71p7n)
X [F(p+ 1) (P 1pm + VP Pmmtpm)
X (Prm—1Pm + 1)|P/ ®m=1m) 2"/ (Prrpm)
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1 k_

= P 1P [ (o py 4 1)]Frarm P

k72 p]+1 _ 1 pkijil 1/(pm71pm)
T ( _—
S\ p—1

J
(2.13)  (Ak )~ i—opm—

k—1

S0 ) g A | A

. |:r(pk—2 +. P+ U(li[mej n 1)}7’7%

k:—2

p 7;7 k—2 i1 pk—j—l
(I ) TG
=1
fori=1,...,m—2.
Substituting (2.11), (2.12) and (2.13) for i = 1,...,m — 2 into (2.9) we
infer

k
k_ P7f1[1+L+ D 4+ mip ]
(214) (S(t)uol)pk trpp711 S r p—1 Pm  Pm—1Pm H]':02 Pm—j

k_ . B
ppilp (H;':() pm—j) !

X "i_—f {(1 + ﬁpmj) u(t)

—j—1

KLt p* L b (150" Pry)
X _
[ ( p—1 ) }

j=1

Using (1.5) and (2.2) we observe that

p p
I+ —+...+———=14+p1+pip2+...+p1...Dm—1 =1,
m Pm ---DP2
1 1 r—1
1+ —+...+——— =1+ ,
Pm Pm ---P2 p
m—1
Hpm ]_Hpm]—p forall i =0,1,...,m — 2,
j=0 j=0

whence by (2.14) we obtain

k

(2.15)  (S(t)uo)?" ¢ .
<5 4 p) [kHl <]&>MT+ 0

j=1 p—1
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Now, we have to estimate

k—1 i1 k—j—1 i k—j
pJ+ -1 pl —1
B = _— =
§ H( p—1 ) H<p—1

j=1 =1

Thus

(2.16) InBy = Zpk In(p? —1) = In(p — 1)]

where b = p?/(P=D /(p — 1) > 0.
Employing this in (2. 15) we finally have

@k-—1)r pF—p r—1

S(t)umt pk<p 5 <reFe-n(1+4p)r D T

O
Using ||u(t)||s < oo and letting k — oo, we get
(2.17) "/ P18 (#)ugy || o < € < 00,

where ¢ = ¢(p,r,b) =c(p;),i=1,...,m
Noting r = a;(p — 1) we get the assertion.
Now we assume that n < m, i.e. p; <1 for n < ¢ < m. Then instead of
(2.4) we get, using the Jensen inequality for p,, < 1,
¢
U (t) > SS( Jupt ds = tS(t)upy
0
and, analogously, for p,,,_; < 1 (i.e. for m—j > n) we can prove inductively,
exactly as (2.5),

(2.18) Up—;(t) > ¢;S(t)ugit’,
where ¢;, m;, r; are given by (2.6).

Using (2.18) for j = m—n—11in (2.1) for i = n, and the Jensen inequality
for p, > 1, we get

Un(t) > C_n(S(t)ugy " H)Prt"m"  where mp_p_1 = H Dj-
Jj=n+1

Again, arguing by induction as in the proof of formula (2.5), we conclude

5 (8) 2 5 (S(Eugy T
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for j > m —n, and
(2.19) up (t) > Cpo1(S(E)ugy "t )PrePrgimt

= Cm—1 (S(t)ugininil )7rm*1/7rmfn71t7‘m,1 ’

where T _p_1 = H?;n+1pi by (2.6) and 7,1, Tm—1, Cm—1 are given by

(2.8).

Let us remark that m,_1/mpm—n—1 = [[}—; pi > 1 and since mp,_1 > 1,
also Hézl p; > Tm—1 > 1 for any n <1 < m. It follows that we apply hence-
forth the Jensen inequality with an exponent greater than 1. Therefore,
repeating the above considerations, we get instead of (2.9),

pk

(220) Uy (t) > HA?(S(t)uginfn—l)pk/ﬂmfnfltr p:ll,
i=1

where the A¥ are defined by (2.10). To estimate [];~, A¥, we proceed in

7
the same way as before (because we have not used n there), whence

1S ()ugy" ™ oo™ 71 < e < 00

after letting & — oo. Thus the proof is complete. m

LEMMA 2.3. Let the assumptions of Lemma 2.2 be satisfied. Then we
can find a constant ¢ > 0, ¢ = ¢(p;), i = 1,...,m, such that fort >0,
(2.21) 1SE)ui™ ™ oo™ "1 < ¢ < 0.

Proof. For 7,t > 0 we have, by (2.1) for i =1,

t+71
ur(t+7) =St + 7)upr + S S(t+7—s)ub'(s)ds

0
t

= S(t)ur () + | S(t — 5)(ua(r + 5))P" ds.
0

It now follows that we can replace ug; by ui(7) in (2.3), whence we have
the conclusion by Lemma 2.1 and setting t =7. m

3. Proof of Theorem 1.3. We prove Theorem 1.3 by contradiction.
Assuming that (2.2) holds and max a;; > N/2 we see by (1.5) that a3 > N/2
and p = H;’L:l p; > 1. We shall derive a lower bound for a solution which
contradicts the bounds obtained in Lemmas 2.2 and 2.3.

By Lemma 2.1 we have, for nontrivial initial data of (1.1),

uoy () > el

for some constants ¢, > 0, a > 0. Employing this in (2.1) for ¢ = 1, since

2
S(t —alz|? — (1 + 4at —N/2 —a\x!
(0T = (1 + tat) 2 exp (T2,
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we get

—alz|?
B )2 SO = e(1+4a) P exp (250,

Using this bound in (2.1) for ¢ = m, we have

(3.2) um(t) > | S(t—s)(ui(s))P ds
0

2
> P (St — 8)(1 + das)~NPm/? —apmlz7Y
> b (t —s)(1+ 4as) exp | g s

_apm‘x’Q
ds.
" exp (1 + 4das + 4dap., (t — 5)) §

Recall the definition of the number n in Lemma 2.2. By induction, we
prove that the following estimate holds for m —j > n and some constant C':

i 2
(33)  wns() > o1 + dat)~N2(dat — ;) exp | 2T,
’ B ! 1 + 4a7rjt

where g; = 0¥ T forj>0,00=0,0>1,

m
Tj = Pm—jTj-1 = H Dj,  To = Pm,;
(3.4) k=m~—j

N
Bj = Pm—jBj—1+ 5(1 —Pm—j)+1, p_1=0,

and t > p;/(4a).

Let n < m. Then p,, < 1, ppr1 < 1 and p, > 1 by definition, and for
the function f,,(s) = 1+4as+4ap,,(t —s), we have f'(s) = 4a(1 —p,,) > 0.
Thus f,,(0) < fin(s) < fim(t) for s € [0,¢]. Using this, we estimate (3.2) as
follows:

_ 2\ ¢
U (£) > & (1 + dat) /2 exp (%) [ (1 + das)=Nem=/2 g
m
0

—N/2 1—N(pm—1)/2 —apy,|z|?
2 C(l + 4at) (4at) m exp m s
m

so we have (3.3) for j = 0.
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Substituting (3.3) in (2.1) for i = m — j — 1, we have

Um—(j+1)(?)
t
> | St =) (um—y(s))P o ds
05/ (4a)
t
zc S S(t — 8)(1 + 4as)~NPm-i-1/2(4a5 — g;)Pm-i-1Fi
0;/(4a)

X exp —apm—jamle?y
1+ 4am;s

t
— S (14 das)~Npm-i-1/2(1 4 4a7rjs)N/2
0;/(4a)
x (1+ dam;s + 4a7ijmfj71(t - S))iN/Q
—apm—jmjlzl® 5163
4 _ \Pm—35—1P5 d .
X exp (1 + 4G7Tj3 + 4a7'rjpm_j_1(7f — 5) ( as Q]) S

Consider fy,—j-1(s) = 1+4amjs+damj11(t—s). From f;,_. (s) = dam;(1-
Pm—j—1) > 0, we can conclude

Uy~ (j+1) (1)

2
> CPWL7j71 1 4 t —N/2 —a,7T]+1|l'|
=6 (1+ am; ) eXp 1+ damjit
t
X S (1 + das)~NPm-i-1/2(4q5 — g;)Pm=i-1Pi (1 + dar;s)N/? ds.
0j/(4a)

To estimate the integral, notice that
(35)  (1+damit)N/? > xV2(1 4 4at)M/?  since m; < 1,
(3.6) (1+4am;t) N2 > (14 damp_1t) N2 > x N2(1 + dat)~N/?
and

1
(3.7)  4dat —0; > co(1+4at) for t > o7 /(4a) with ¢y = Q]ﬁ;—H,
95

Thus, integrating we get
—ams 2
Um—j—1(t) > c(1 + dat)~N/2 exp <M)

1+ 4a7rj+1t
X (4at — Q?)1+N(17pm*j*1)/2+pm—j—lﬁj
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for ¢ > ¢3/(4a). This, in view of (3.4), gives (3.3) with j replaced by
J+1
Analogously, for m — j < n we have the following estimate for any
t> 0,/(4a)
_ . —am;|z|?
with g;, B;, m; defined in (3.4).
We proceed in a similar way. Assuming (3.8) for some j > m — n and
using (2.1) for i = m — (j + 1) we obtain
t
Um—j—1(t) > ¢ S (1 + 4as)~NPm-i-1/2(4q5 — Qj)pm*jflﬁj
0j/(4a)
x (1+ 4a7rm_n_1s)N/2

X (14 4amy—pn_18+ 4a7ijm—j—1(t - 5))_N/2

2

—apm—j—17; 7|

X e ds.
*P (1 +4damy—p—15 +4amipm—_j_1(t — 5)>

Therefore, we have g,,—;—1(s) =1+ 4a(Tpm—n—15 + TjPm—;—1(t — s)) so

9;71—]'—1(5) =4damp_—n-1 <1 - l) =4am,y,_—n_1 <1 — H pk>

T —n—
m-—n—1 k=m—j—1

and since p, > 1 for k < n we get g;, ;_4(s) <0. Thus

_ el
Um—j—1(t) = e(1 + damjert) N2 exp <1 + 4a;+1| | 1t>

t

X S (14 4as)~Npm-i-1/2(4a5 — g;)Prm=i-1Pi (1 4 dam,,_p_18)N/? ds.

05/ (4a)

Using (3.5) with 7; replaced by m,,—,—1 < 1, (3.6) with m;4, and integrating
we obtain (3.8) with j replaced by j+ 1 and t > p;41/(4a).

We need a lower bound for u;(¢). By assumption H;ﬂzl p;j > 1, whence
by (2.2), p1 > 1, but we can have ps < 1 or po > 1. In the former case we
have m — j = 2 > n = 1, therefore (3.3) gives

_ — QT —o|x|?
(3.9)  ws(t) > (1 + 4at) N2 (dat — 0y_2)P"2 exp (%)

Otherwise, from m — j =2 < n and (3.8) we get

2
3.10 1) > e(1 + 4at) N2 (4at — g,,_o)Pm-> —ampn—zlz[* \
(8:10) ua(t) 2 el + dat) ™" (dat = o)™ exp { 7707y
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Defining M = 7, p,—1 (with m,,_o = M for n = 1), we conclude

— — Ty —ol|x|?
(3.11)  wa(t) > (1 + 4at)~/2(dat — 0pr_2)P"~2 exp ( o 4a§\|éft| >

Using (2.1) for i = 1 we obtain, as p; > 1,
t
(312)  wt) > | SEt—s)(us(s)) ds

om—2/(4a)
t

>c X (1 +4as) " NP/2(1 4 4aM s)N/?
om—2/(4a)

x (1 +4aMs + damy, 1 (t — s))~N/?

—amp,_1|7]? P
4 — Om— P1Pm—2 d
XeXp<1+4aM5—|—4a7Tm_1(t—s)>( a5 = 0m-2) ’

2

> (1 44 )~ N/2 —CWTm—1|$|

= el +damnt) " Fexp ( 2
t

X S (4as — Qm_g)plﬁ”L*Q(l +4aMs)N/2(1 +4as)_Np1/2 ds
om—2/(4a)

—amy,_1|x]?

> ¢(1 4 4at) N2 exp ( T dalt

t
) S (1 + 4as)Pm-171ds.
om-1/(4a)

By recursive definition (3.4) and a routine inductive calculation we get
/Bj =1 + Pm—j + Pm—jPm—j—1+ ...
N
s +pmfj - DPm—1+ 5(1 —Pm—j - -pm)a
therefore, using the definition of p, r, a; (see (1.5), (2.8)), we obtain

N
Bm-1=14+p1 +p1pz+...+p1---pm_1+5(1—p1---pm)

N

Since ay > N/2, p > 1 and r = a3(p — 1) we see that §,,—1 > 0, so
(3.12) gives

—aplz|? 1+ 4at
uy (t) > (14 4at)~ N2 exp <L‘x’> log <$>

1+ 4aMt 14+ 01
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for t > p,,—1/(4a). It follows that

1+4at \1"
= C(l + 4at)_NM/2 |:10g <1—|—_{_Ta>:|
m—1

_ 2
x (14 4aM(p + 1)t)~N/2(1 + 4aMt)N/? exp ( apMiz| >

1+4aM(p+ 1)t

1+ dadt V2 —apM |z|?
20(1+4at)NM/2[ +2a )] exp( apMie| )

(1+4aMt)(p+1 1+4aM(p+ 1)t

[ ( 1+ dat >] M
x | log | ——— .
1+ Om—1
Putting x = 0 in the last estimate, we have

144 M
(14 4at)VM/28(8) (uy (t,0)M > c[log (L‘”ﬂ .
1+ Om—1
Therefore, for t > max{1, ¢,,—1/(4a)} we obtain, using oy > N/2 and M =

Tm—n—1,

1+4at ™ !
(3.13) ™19 §(E) (ug (8, 0)) Tt > c[log <i> } :
1 + Om—1

It is clear that for ¢ large enough (3.13) is incompatible with the bound
(2.21). This implies that uq(¢) blows up in a finite time, which concludes
the proof of the theorem in this case.

If n=m,ie p;>1,i=1,...,m, then instead of (3.8) we obtain

B , —amj|x|?
(3.14) Um—j(t) > (1 + 4at) N/2(4at - Qj)B] exp <T]Zlal>

for t > 0;/(4a) and with p;, 5, 7; defined as above. Then we can repeat
our considerations concerning the lower bound for u(t) in the case n < m,
simply using (3.14) instead of (3.3) and (3.8) and, starting from (3.11),
replacing everywhere M = m,,_,_1 by 1. Finally, we conclude that for
t > max{1, 0,,—1/(4a)}

(3.15) £ S (t)uy (£,0) > clog <1+74“t>

1 + Om—1

This contradicts (2.21) in the case n = m and the proof is complete. m



Coupled Fujita type system 217

4. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. By assumption, H;nzl p; = 1. We are looking for
a global supersolution to (1.1) of the form

Hl Aleelt
(4.1) .
Um, A, efmt

We choose A;, i = 1,...,m, so large that ||ug;||r~ < A;. Then (4.1) is
a supersolution to (1.1) if for all ¢ > 0,

(42) Uy — Au; > Uty i=1,...,m—1,
Ut — Ay, > U™

This is equivalent to

0; > AZ_IA;;)_Z,'_I exp((piHiJrl — Hi)t), 1=1,....m—1,

(4.3) )
O > A PAT™ exp((pmb1 — Om)t).

If we take 0,41 = 0;/p;, i = 1,...,m — 1, then from H;nzlpj =1 we get

0 = 61/1—[;';1 Pj = 61Pm, so (4.3) holds for #; large enough. Thus, the
solution of (1.1) is global. m

Proof of Theorem 1.2. In this case, from p; > 0, (1.4), (1.5), we have
H;nzl pj < 1. We assert that (@;);~; of the form

Uy At +to)"
(4.4) ) = s
U A (t 4 t0)?m
is a global supersolution to (1.1) for some positive constants A;, 6;. We
have to choose tg such that u;(z,0) > ug; for x € RY. The inequalities (4.2)
imply that
0; —pibi1>1, i=1,...,m—1,
O — Pmb1 > 1.
Noting that (4.5) has the form (A — I)(—60) > 1 where 6 = (61,...,6.),

1=(1,...,1), Ais given by (1.2), we assume 0; = —ay, so 0; > 0 as
max a; < 0. Then (4.4) satisfies (4.2) provided that

4.6 L
( ) Amem Z All)nly

(4.5)

and tg is large enough. Thus, the proof is complete. m
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