APPLICATIONES MATHEMATICAE
27,3 (2000), pp. 265-285

T. E. DUNCAN (Lawrence, KS)
B. PASIK-DUNCAN (Lawrence, KS)
L. STETTNER (Warszawa)

ADAPTIVE CONTROL OF DISCRETE TIME MARKOV
PROCESSES BY THE LARGE DEVIATIONS METHOD

Abstract. Some discrete time controlled Markov processes in a locally
compact metric space whose transition operators depend on an unknown
parameter are described. The adaptive controls are constructed using the
large deviations of empirical distributions which are uniform in the parame-
ter that takes values in a compact set. The adaptive procedure uses a finite
family of continuous, almost optimal controls. Using the large deviations
property it is shown that an adaptive control which is a fixed almost optimal
control after a finite time is almost optimal with probability nearly 1.

0. Introduction. Consider a controlled Markov process (z,, n € N)
on a probability space (§2, F, P) taking values in a locally compact metric
space (F,pg) with the transition operator Pao’“"(.'l;n,-) at time n. The
quantity o is an unknown parameter that is an element of a compact metric
space (A, g ), and the term v,, that is the control is a o(zy, ..., z,)-adapted
random variable with values in a compact metric space (U, or).

Let ¢: E x U — Ry be a continuous bounded function and let

n—1
0 1
1 J* (v, n € N)) = limsup — c(x;,v;).
0 (o € 10) = limsp &5 o)

The control problem is to minimize J over the admissible strategies
(v, n € N) where v, is a U-valued, o(z,...,z,)-adapted random vari-
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able. If o is known and some ergodic assumptions are satisfied, then the
family of admissible strategies can be restricted to Markovian ones, that
is, v, = u(x,), where v € A = B(F,U), the family of Borel measurable
functions from F to U. Thus J* ((u(zy), n € N)) is minimized over u € A.

If o is unknown then an estimate of a” is made for each n € N using the
state z,, and a control u € A is chosen that is almost optimal for the current
value of the estimate of a’. While such a strategy can be shown to be almost
self-optimizing (cf., e.g., [5, 9]) the procedure requires an estimate for each
n € N and a choice of a control. In the approach in this paper an adaptive
control is fixed after a finite time and it is shown to be almost optimal with
probability nearly 1. This approach uses the results on the large deviations
of empirical distributions which are uniform in the parameter. These large
deviation results are described in Section 2. In Section 3 it is shown that
an adaptive control can be taken to be fixed after a finite time and almost
optimal. In Section 4 two Markov models are given for which the results in
Sections 2 and 3 can be applied.

Throughout the paper we denote by:

e C(E) the space of continuous bounded functions on E,

e P(E) the space of all probability measures on E endowed with the
weak convergence topology and with the set of Borel subsets B(P(F)),

e B(FE) the set of Borel subsets of E.

2. Uniform large deviations of empirical distributions. In this
section we consider an uncontrolled Markov process (z,, n € N) with tran-
sition operators P*(x,,) where @ € A. The following assumptions are
made:

(B1)  For f € C(E) the mapping

AXE > (a,z)— P f(z) = | f(y) P*(z,dy)
E
1s continuous.

For B € B(F) and C € B(P(F)), the empirical measure and its proba-
bility (see [2] and [3]) are defined as follows:

©) 5u(B) = £ 3" Xl

(3) nz(C) = P {Sn € C},

nr

where P2 stands for the conditional probability measure given (z,,n € N)
starts from = and the true parameter is «. Furthermore let

(4) O:={fcC(E):Ja>0Vz € E f(x)>a}
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and for p € P(F), define

e f()
(5) 1 (u)fegél B o (2]

THEOREM 1. If (B1) is satisfied then for compact subsets C and Ay of
P(E) and A, respectively, we have

pu(dz).

(6) limsupn~! sup sup log Q. (C) < — inf inf I*(u)
n—00 a€A, x€EFE a€A, peC

where Q 1is given by (3) and I is given by (5).
Proof. Ford > 1 let
By={f €®:sup f(x) < dinf f(x)}

r€EE rzeFE
and for y € P(E) let

Ig(n) = sup |log /o)

dr).
fedq Paf(x) M( T)

Clearly

0 (S ()
oo}

(
0 oo L Uioe L @)
- P(SE) g { él *Pof(y)

Since by the definition of the family @4, for n = 1,2, ..

. o { S 250 1 <

=0

u(dy)} ° (d).

*

by (7) it follows that

) | exp {n {tog 1wt | Qi) < .

P(E) E

Consequently, for any Borel subset I" of P(E) and « € A,

o : f(y)
10 s @n(r) < dewp(n ot Sox Gl uia) ).

Now let

.. = inf inf I%(u).
ta = inf inf a (1)
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Since each f € @ belongs to @4 with d sufficiently large, for f € @ the
mapping

P(E) x A>3 (p,a) — ,u(log / ) = Slog /) 1 (dy)

pef P f(y)

is continuous. Therefore, for £ > 0 the set

{(,u,a) € P(E) xA:u(log P'£f> > Hd—g}

is open and

Cx A C U {(,u,oz):u(logpvif> >Hld6}.

fED,

Since C' x A; is a compact subset of P(F) x A, there is a finite subset
{fis---, fr} of @4 such that

k
Cx A C U {(u,a) !,u<10g P{gf) > nd—e}.
J

J=1

Consequently, for every a € Ay,

cc {ueP(E) :,u(logp{;f> >nda}.

f€Py

Now if we replace I' in (10) by the sets

K = {,u € P(E) :,u(log P{ij-) > n‘d—a} nc
j

it follows that

(11) sup Q. (K;') < de " (ra=e),
r€EFE

Hence

k
(12) sup sup @, (C) < sup sup [ZQ%(K;‘)} < kde "ra—¢)
z€E a€A, z€E a€A; =
and

limsup sup sup n” *log Q% (C) < —kq + €.
n—oo rEE a€EA;

Since € > 0 can be chosen arbitrarily small, it follows that

(13) limsup sup sup 7~ *log Q2 (C) < —kq.

n—oc z€EFE a€Aq

To complete the proof it remains to show that

14 lim kg = inf inf I”(u).
) 5= e T
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Note that for € > 0,
. f PUR,
CxAlchEJ@{(u,a).,u<logPaf >a1€n£1;ggI () — ¢

and by the compactness of C x A; there is a finite set {fi,..., fxr} C @ such
that

k
Cx A C U{(u,a):u(logpv?f') > ienj jgfcja(u)—g}.
1i acA

7j=1
By the definitions of @ and @, there is d > 0 such that {f1,..., fx} C @q4.
Therefore, for each @ € Ay and u € C,

sup Yo o7 40 > e, loe P g )
> inf inf I%(u) — ¢

a€A, pnecC

and

limsupky > inf inf I® — €.
d_)oop d= M. re (1)

Since the last inequality holds for any ¢ > 0, and

kg < inf inf I®
d_(XGA1 LEC (u)a

the equality (14) follows, which completes the proof. m

In the proof of Theorem 1 the compactness of the set C C P(E) is
important. To relax this requirement an extra assumption on the transition
operator P%(z,-) is made:

(B2)  There is a continuous function 9 : Ax E — R such that ¢ (a,z) > 1
for € A, z € E, the mapping

(15) E >z sup S P(a,y) PY(z,dy)
aEAE

is bounded on compact subsets of £ and for each m > 0 the set

(16) K, = {'r € E: inf Pla, z) < 'm}
acA SE TP(OG U) P(X(’I,"d’l/)
is compact.
Let
(17) o := inf inf Pl 2)

v€E a€h | o 1p(o, y) P (z, dy)

If (B2) is satisfied then ¢ > 0. The following two lemmas are easy adapta-
tions of Lemmas 4.1 and 4.3 of [3].
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LEMMA 1. If (B2) is satisfied then for each e > 0,
(18)  Qn.({n € P(E) : p(Ky,) > e})
< Y(a,x) exp{—nlog 0 — nelog @}_
o

LEMMA 2. If (B2) is satisfied then for any real number a and any compact
set W C E there exists a compact subset C(a) C P(F) such that

(19) limsupn ™! sup sup QZI(C((L)(C)) < —a.
n—00 a€EAzTeWw

Using Lemma 2, one can generalize Theorem 1 in the same way as in
Theorem 4.4 of [3].

THEOREM 2. If (B1) and (B2) are satisfied, then for any closed subsets
C and Ay of P(E) and A, respectively, and compact subsets W of E,

(20) limsupn ' sup sup logQ%, (C) < — inf inf I*(u).
n—00 Q€A TEW a€A; pelC

Subsequently, the following lemma is used.
LEMMA 3. If (B1) and (B2) are satisfied then for each m > 0 the set
(21) Cm ={pn € P(B) : inf I*(u) < m}

is compact in P(E).

Proof. Since for each fixed p € C,, the mapping o — I*(u) is lower
semicontinuous, there is an a(y) € A such that I*(p) < m. By (B2) for
r > ( the set

. C laa)
K= {"”EE‘ T d(ary) P (s, dy) <T} Ko

is compact in E where K, is defined in (16). Adapting the method of Lemma
4.2 of [3] it can be shown that for r > p,

u(rr)) < B <
Therefore, for € > 0 there is r > 0 such that for any p € C,,,
p((K)%) < p((Kp0)e) <.
Consequently, the family C,,, of measures is tight. Since the mapping
(22) AxP(E) 3 (a,p) = I1(p)
is lower semicontinuous, the set C,,, is compact. m

In the next proposition the rate functional I*(u) is shown to be positive.

PROPOSITION 1. Assume (B1), (B2) and that for each o € A there is a
unique invariant measure o of the transition operator P*(x,-). Let Ay and
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C' be closed subsets of A and P(FE) such that wo, & C for a € Ay. Then

23 inf inf 1° > 0.
(23) 24, e W)

Proof. Note first that the mapping (15) is lower semicontinuous and
therefore it attains its minimum on compact sets. Moreover I*(u) > 0 for
p € P(E) and a € A and, by Lemma 2.5 of [3], I*(u) = 0 if and only if
= T

By the compactness of the set C,,, defined in (21), for each m > 0 it
follows that

inf inf T¢ 0.
Jnf  nf %) >

Since by the definition (21),

inf inf I¢ >m >0,
a€h pecCs, (“) o

(23) is verified. m
An additional assumption is made.

(B3)  For each « there is a unique invariant measure m, for the transition
operator P*(z,-) and for ¢ € C(F) the mapping A 3 a — m,(c) is
continuous.

Using the assumptions (B1) (B3) we give a uniform estimate of the
deviations of the running costs from the limit.

THEOREM 3. If (B1) (B3) are satisfied, then for ¢ > 0, ¢ € C(F) and
any compact set W C E there are a p > 0 and a positive integer N such
that forn > N,

n—1
(24) sup sup Pf{‘n_l Z c(zj) — Wa(c)‘ > E} <e "P,
a€AzeW =0

Proof. By (B3) for ¢ > 0 and a € A there exists d, > 0 such that if
o € B(a,0y) :={a € A:pa(a,a) <y}, then |m,(c) — myr ()| < €. Since
A is compact there is a finite set a1, ..., ax such that A C Ule B(w, da,)-
Fori =1,...,k let C.(a;) := {p € P(E) : |u(c) — ma,(c)| > 2e}. Clearly
C.(w;) is a closed subset of P(F) and if o € B(w;,dq,) then m, & C.(a;).
Therefore, by Proposition 1 and Theorem 2 there are p > 0 and N > 0 such
that forn > N andi=1,...k,

sup  sup Qo (C-(a;)) < e "P.
a€B(ai,bq,) TEW
Equivalently this means that
n—1

sup sup Pf{‘n_l Z c(zj) — Wai(c)‘ > 26} <e™ P

a€B(a;,da,) TEW =0
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for i =1,..., k. By the definition of B(«;,d,,) it follows that

sup sup P {‘ Z — 7a(c

a€B(ai,0a,;) TEW

> g} <e P

for i =1,...,k and consequently (24) is obtained. m

The remaining part of this section is devoted to the study of the large de-
viations for empirical distributions of pairs of consecutive states. By analogy
to (2) and (3), for By, By € B(E) let

n—1

(25) Su(By x Bo) = - 3 xm, (#i)xm, (5i41)
i=0
and for C € B(P(E x E)) let
(26) Qn.(C) = P{S, € C}.
By analogy to (4) and (5) define
(27) :={feC(ExE):3a>0Vz,y€FE f(z,y) >a}
and for p € P(E x E),
(28) 1 () = sup §10g 220 (., ay)

fGEE Paf( )
with P f(y) =\ f(y,2) P*(y, dz).

THEOREM 4. If (B1) holds then for any compact subsets C C P(E X E)
and A1 C A,

(29) limsupn ™" sup suplog Q7 (C) < — inf inf I*(p).
n—00 a€A, z€EE a€A uelC

Proof. Note first that if f € @;, where

&y:={f €C(ExE): sup f(, y)<d 1nf flz,y)},
z,yeE

il (S i <

If I' e B(P(E x E)) and a € A then

then

No f( )
jlelg ’I’)’I’(F) < dexp( n/irelf él g#()

ulde, dy))

and the proof of Theorem 1 can be easily modified. m
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REMARK 1. If T® is defined as

f(z,y)
1
rew ,SE %8 Pat(w)

then following Section 1.3 of [7] an analogue of Theorem 4 can be obtained
with a simpler proof because

o ., flEnze)
mx{or { v R ) -

However to adapt Theorem 4 to the case of a noncompact closed set C' the
rate functional I of the form defined in (28) is required.

p(dz, dy)

An additional assumption is made now.

(B4)  There is a continuous function % : Ax ExE — R such that
P(a,z,y) > 1 for a € A and z,y € E, the mapping

E >z~ sup S P(o, z,y) P (z, dy)
aGA\E

is bounded on compact sets and for each m > 0 the set

K, = {(m,y)EExE: inf —— Pl ) <m}
ach {pp(a, z,y) P (y, dz)

is compact in E x F.

Let

(30) 5= inf inf —— P(®®0) .
vy€Each § o o(a, 7,y) P*(y, dz)

Adapting Lemmas 1 3 and Theorem 2 to the case of consecutive pairs easily
yields the following results.

LEMMA 4. If (B4) is satisfied, then for each & > 0,
(31)  Qn.({n e P(E x E): u(Ky,) > e})
< (o, z,y) exp{—nlog@ — nelog @}
0
LEMMA 5. If (B4) is satisfied, then for any real number a and any com-
pact set W C E there exists a compact subset C(a) C P(E x E) such that

(32) limsupn ™! sup sup Q% (C(a)?) < —a.
n—00 a€ArxeWwW
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THEOREM 5. If (B1) and (B4) are satisfied, then for any closed subsets
C of P(E x E) and Ay of A, and any compact subset W of E,

(33) limsupn ' sup sup Q% (C) < — inf inf I*(u).
n—00 €A, T€W a€A, nelC
LEMMA 6. If (B1) and (B4) are satisfied, then for each m > 0,
(34) Cm={n€PEXE): inf I*(u) < m}
ae

is a compact subset of P(E x E).
To prove an analogue of Proposition 1 the following lemma is used.

LEMMA 7. Assume (B1) and (B4) and that for each « € A there is a
unique invariant measure w, of the transition operator P*(x,dy). Then for
w € P(E x E) the following equivalence is satisfied:

(35) I%(p) = 0 & p(dx, dy) = P*(z, dy)m, (dz).
To verify this lemma the methods of the proof of Lemma 2.5 of [3] can
be used. The details are left to the reader.

Using Lemma 7 we can state an analogue of Proposition 1 combined
with Theorem 5.

THEOREM 6. If (B1), (B3) and (B4) are satisfied, then for any com-
pact sets W C E, Ay C A and closed set C C P(E x E) such that
P*(xz,dy)no(dx) ¢ C for a € Ay there are p > 0 and a positive integer
N such that forn > N,

n—1
(36) sup sup P{n 13 xo 0, () €CH < e
€A, xeW i=0
REMARK 2. If E is compact then the assumptions (B2) and (B4) are
clearly satisfied. An analysis of the proofs of Theorems 3 and 6 shows that
the constants p can be given in terms of the infima of the rate functions I
and I, respectively.

3. Adaptive control with observation of cost. Consigier now a
controlled Markov process (z,, n € N) with transition operator P* " (x,,, -).
The following assumptions are made.

(A1) For f € C(E) the mapping
AxUxE>3 (a,v,z) = PY" f(x)
is continuous.

(A2)  There is a continuous function ¢ : Ax E — R such that 9 (a, z) > 1
for « € A, x € E, the mapping

E 3 ¢+ supsup S P(a,y) P (x, dy)
aEAUEUE
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is bounded on compact subsets of E and for each m > 0 the set

K,, =<z € FE: inf inf <m
{ achvel §o1p(a,y) P (z, dy)

is compact.

(A3)  For u € A. := AN C(E,U) there is a unique invariant measure
i for P“"(z,-), and for ¢ € C(F) the mapping A 3 o — 7¥(c) is
continuous.

(A4)  For a € A the optimal value of the cost functional J defined in (1)
coincides almost surely with that of

n—1

(37) J*((vn, n € N)) = limsupnilEg‘{ Z c(xi,vz-)}.
Moreover, for any € > 0 there is a finite class U(e) = {uy,...,u,} C

A, of e-optimal control functions for J, that is, for any o € A
there is a u; € U(e) such that

T2 () < inf T*((00) + e

Furthermore, there is a compact set W C F that is positive recur-
rent for the Markov process (x,, n € N) controlled with any control
function of the class U(e).

An analogue of Theorem 3 is given now.

THEOREM 7. Assume that (Al) (A4) are satisfied and fix € > 0. Then
there are p > 0 and a positive integer N such that for n > N,

n—1
(38) sup sup sup Pﬁ“k{‘nfl Z c(zj,ug(z;))
k=1,...,r €A xeW =0

- Vely un(y) mi (dy)| > e} < e,
E
Moreover, the following adaptive strategy (v;) is e-optimal with probability
(1 —e=")": choose n. > N, use the control function uy for i < Ty :=
T(T(0)+n), then us for Ty <i < Ty :=T(T1+n),..., andu; forT,_1 <i <
T, :=T(T,—1 +n), where T(7) denotes the first hitting time to the positive

recurrent compact set W after the random time 7, determine k € {1,...,7}
such that
T, _14+n—1 Tyg-1+n—1
(39) D clwimile)) = min Y ez ug(es)
§=Ty 1 T =T

and after T, use the control function ug.
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Proof. Note that (38) follows from (24). Then for z € W and n > N,
Tq71+’nfl

inf Pr{ln=t Y ey gfe) — §elevg(2) e (22

J=Tq-1

< ¢ forgqg= 1,...,r} > (1—e "),
Consequently, by (39) for z € W,

inﬁ\ P;’{ S c(z,ug (2))mik (dz) > rrllin S c(z,uq(z))mye(dz) + 26}
[e1S q=1,...,r
E E

> (1 e,

Since by (A4), J*' ((3,)) = §  c(2, uq(2)) me (dz), P* -a.e., it follows that

E

T ((B,)) < 3e + inf T ((1:))

with probability (1 — e "P)". =

4. Examples. Two models are described to demonstrate the applica-
bility of the previous results that used large deviations.

Model I. E is a compact metric space. There is a probability measure 7
such that

(40) PY(z, B) = \ p(z,y, o, v) n(dy)

B
for B € B(E), the mapping £ x E x A x U 3 (z,y,a,v) — p(z,y,a,v)
is continuous and p(z,y,a,v) > 0 for z,y € E, a« € A, v € U. Clearly
(A1) (A3) are satisfied for this model. Furthermore, there is a finite family
of almost optimal controls.

THEOREM 8. For each € > 0 there is a finite class U(e) C A. of e-op-
timal control functions for Model I with cost functionals J*, a € A.

Proof. The proof consists of three steps:

of piecewise constant s-optimal control functions such that the set of their
discontinuity points is of n-measure zero.

Let {ET,Ey,...,E} }, n = 1,2,..., be a sequence of partitions of F
and {el, el .. .,egn}, n = 1,2,..., be a sequence of their representative
elements such that

dTl,
E=|JE', E'NE;=0 fori#j,
i=1
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(8E“) 0, the diameter of E! is not greater than 1/n, e} € E! for

i = ,d, {E”"’1 E""'1 } is a subpartition of {ET,..., Ej } and
{ef,...,eq } C {e?“, ... ’63;31 1.

Moreover, let pp (e, ) = P4 (e}, e?).

Consider now a controlled Markov process on {e?,...,ej } with tran-
sition operator p;¥(ef,e?). By Lemma 3 of [1] for given ¢ > 0 there is a
finite set {@7,...,u, } of control functions such that

dn

(41) sgglfug) 1<su<[)d Wy (ef) — Ay — ng(eln)pz@ (] )(e?, )
« StSTp 1S)San .

where A} and wy, are the optimal value and the Bellman function of the
corresponding cost functional J®, respectively.

Let uf(z) = uj(ef'), wy(z) = wy(ef), and Pp?(x,-) = P (ef,") for
ze B 1=1,. d It follows that

(42) sup min sup{w”(z) — A" — P,"" @) gyn ") + en(z,ul(z)} <e/2
aeh 1<i<rn zcE
with ¢, (z,v) = c(e',v) for x € EJ' and v € U. Note, moreover, that A”
is also the optimal value of the cost functional J¢ corresponding to the
controlled Markov process on E with transition operator P (z, -).
By Lemma 3.3.3 of [6] for u € A, n = 1,2,..., there exist probability
measures 7/, and 7" such that for z € F and B € B(E),

(43) (P"*)*(z,B) —wi(B)| < (1 —d)**
and
(43) [(P)* (2, B) — m™(B)| < (1~ d)*
with

d = inf inf inf
oIt 1 Jnf ey 0).

An analysis of the proof of Proposition 1 of [9] shows that there exists a
constant K > 0 that is independent of u € A4, @ € A and n € N, for which

(44) Ima — 76" lvar < sup KI[|P2 (2, ) — P (2, -)|lvar
rEE
where || - ||yar denotes the variation norm.

Since by the continuity of the transition density p(z,y, «,v),

(45) lim sup sup sup K||P(z,-) — P““(xz,")|var = 0,
n=00 uc A a€hz€EE
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for A\ = inf,c 4 { c(z, u(x)) 74 (dz) it follows that
sup P‘a - AZ‘ < sup ||7TZ - 71-Z’n”Var + sup |C(LE,’U) - Cn(xalv)| — 0
a€A a€A z€E,veU

as n — oo. Therefore, for sufficiently large n from (42), (44), and (45) we

obtain

(46) sup min sup{w”(z) — Ao — P @ (z) + ¢, (2, ul (2))} < e,

acA 1SS zeE ‘

which means (cf. the proof of Theorem 3.2.2 of [6]) that U(e) = {u?,...
ul'} is a set of e-optimal control functions for the original Markov pro-

cess. It follows from the construction that the set of discontinuity points of

the above control functions is of n-measure 0.

STEP II. It is clear that for i = 1,...,r there is a sequence u;(n) € A,
n =1,2,..., such that
(47) i g({z € B :uiz) # ug(n)(2)}) = 0.
We claim that for any bounded Borel function f: £ — R such that the
set of discontinuity points of f is of n-measure 0, and for 1 =1,...,r,
(48) lim sup |4 (f) — w4’ ™ (f)] = 0.
n— oo a€EA

Assume that contrary to (48) there is a sequence (a,, n € N) from A such
that o, — @ € A and for some 7 € {1,...,r},

(49) et () — mii™) ( NI>3d>0

for sufficiently large n.

By the tightness of a suitably chosen subsequence n; it follows that
ri(me) — 7

Oy,

where 7 is a probability measure on E. We now show that 7 is invariant for
the transition operator P®"i(z,-). In fact, for g € C(E) it follows that

7(g) — n(P*%g)| < |n(g) — ni(m)(g)]

Ay,
+ |7T“'i(n"")( ) o Wq’;(:L)(P“”k’“Z("’*)g”
u1n) ang o ui(ng) o\ _ —ui(ng) ( pa,ui(ng)
s ) (P loe) g st (peas(na) g
+ |7r:;;:k><P“’"f<"k>g) —m (Pt g)|

+ ) (Peg) - n(Pg)
= Iy + Iop + I3 + 1y + Isg.
Clearly I — 0 as k — oo, and I, = 0. Moreover,

I3, < |g| sup sup [p(z,y, an,,v) — p(z,y,a,v)| =0
z,yeE veU
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as k — oo. Define

(50) M = sup supsup p(z,y, a,v).
z,yeE acAvelU

Since WZ;(:L) is an invariant measure it follows that Wq'z(:‘)() < Mrn(-).
Therefore, m(-) < Mn(-). Consequently, by (47), I4x — 0 as k — oo, and
since the set of discontinuity points of P*%i¢ is of n-measure 0, Is; — 0 as
k — oo.

By the uniqueness of the invariant measure it follows that 7 = 7. Since
7 does not depend on a particular subsequence it follows that
(51) W“’(") = 7,
as n — oo. Using similar arguments it also follows that

Tyt = Ty

as n — oo, which together with (51) contradicts (49). Thus, (48) is satisfied.

STEP III. The following inequality is elementary:

sup | § el us(@)) 2 (dw) = | e, s (n) (@) mr ) (d)
a€A E E

< sup [| § el ual) i () — § e, () e ()
a€A E E

| Ve, ui(n) (@) - el ui(@)) 7 (do) |

= Iln + IQn-
y (48) clearly Iy, — 0 as n — oc. Since by (47) also
Ion < lc|Mn({z € E : ui(n)(z) # ui(z)}) =0

as n — oo with M defined in (50), for sufficiently large n, for @« € A and
1=1,...,r it follows that
(52) Ig (ui(n)) < I (ui) + & < Ag + 2.
Thus, the set {ui(n),...,u,(n)} contains 2e-optimal control functions for
the cost functional J* with o € A. =

Therefore, (A4) is also satisfied.

Model II. Let E = R?. Assume (z,,, n € N) satisfies the following recur-
sive formula:
(53) Tpn41 = f('rna G‘Uavn) + g(mn)wn

where f: R x A x U — R? and ¢ : R? — R? x R? are continuous bounded
functions, there is a continuous bounded inverse matrix ¢!, and w, is a
sequence of independent, identically distributed standard Gaussian random
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variables. By the continuity of f, g, and g~ it follows that (A1) and (A3)
(cf. [9]) are satisfied. In (A2) let 9(o,x) = 2? + 1 so that

P(a, ) 22+ 1

(o () Pov(z,dy)  [2(z, o, 0) + ¢2(x)

and K, is compact if

sup sup[f2(z, a,v) + g*(z)] = o(z?)
a€AveU

as 12 — oo, and, in particular, if f and ¢ are bounded.
Hence (A2) is satisfied. Just as for Model I there is the following result.

THEOREM 9. For given € > 0 there is a finite family U(e) of e-optimal
control functions for Model II with cost functionals J, o € A.

Proof. By Lemma 1 of [9] there are a finite measure 7 that is absolutely
continuous with respect to Lebesgue measure in R? and a constant M such
that forz € R*, o« € A and v € U,

n(-) < P*"(z,-) < Mn().

Consider now a sequence of partitions {E7,..., Ey }, n=1,2,..., of R4
and representative elements {e,. .. ,e’(}n}, n=1,2,..., such that

dTl,
R? = UE“ E}NE} =0 fori#j,
=1

n(OE?) =0, el € E fori =1,...,d,, the diameter of E! is not greater
than 1/n fori=1,...,d, 1, ¢} C{z€R:|z| >n}, {E}, ... E; 1}
is a subpartition of {ET,..., E} } and

{ef,...,eq } C {e?“,...,e’;::l}.

Now the methods of the proof of Theorem 7 can be used. Note only that
the value of d in (43) is now replaced by n(R%). m

Thus, (A1) (A4) are satisfied. Moreover, for any u € A and transition
operator Pou(®)(g,.), the assumption (B4) is satisfied with the function
Pla,z,y) =2° +y* + 1.

5. Adaptive control with estimation. Consider first the case of
Model 1. For u € A, and o, € A let

(54)  K"(a,a') = | { p(z,y, 0 u(@)) log p(z,y, o', u(x)) u(dy) = (d).

Fix € > 0. By the proofs of Propositions 7 and 4 in [5] there is § > 0 such
that for o, € A and u € U(e), if K*(, ) — K" (v, ') < 6 then
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(55) I — e < e.

By the continuity of K*(«, «') and the compactness of A there are a finite
sequence a, ..., and n > 0 such that for @ € A there is «; such that
a€ By(a;) ={aecA:ps(@ a;) <n} and for u € U(e),

Ku(aa O/) - K“(()’.,(}{j) < 5/2a

(56) sup |K"(a;, @) — K"(a,@)| < 0/16.
a€eA

For u € U(e) let

n—1
(57) @ ={ag: [] ploimisru(m), )
1=0

n—1
= max Hp(miami+1a71‘(mi)aaq)
q=1,....k -
i=1
n—1
> max [ plos wir,ule:). aq) }-
a<j—1 %

THEOREM 10. For Model I there exist a p > 0 and a positive integer
n > N such that for u € U(e),

58 inf inf {2 — mau[lvar < €} > 1 — ke P,
(58) inf inf PP{|Ime — oy llvar < €} 21~ ke

where at is given by (57).
Proof. Let
(59)  C"(au, ;) = {z € P(E x E) :

‘ S logp(x,y,u(:c),aj)l(dgc,dy)—K"‘(ai,aj)‘25/8}.
EXE

If a € By («a;) then P*"(z,dy)rl(dy) ¢ C"(«;, ;) because

| Togpla,y. u(@), a5) P (, dy) i (dw) = K" (ct, )
EXE
and by (57), |K"(«, o) — K (v, oj)| < §/16. Therefore, by Theorem 6 there

are a p > 0 and a positive integer N such that for n > N, 4,7 =1,...,k
and u € U(e),

sup sup P2 {01 > 108 plwm, w1, (). )

aGBn(a,)weE m=0

- K“’(ai,aj)‘ > 5/8} <e "P,
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Then from (57) forn > N and i,j =1,...,k,

60)  sup sup Pef|n S logp(am, mnen, (), o)
aEBn(a,)weE m=0

- K”(a,aj)‘ > 5/4} <e .

Since
n—1 n—1

w7t Y 108 p (@i, Tngrs (), @) > 07 Y 108 P (@ T g1 0T ), )
m=0 m=0

for j =1,...,k, using (60) it follows that
K"(, @) +8/4 > K"(,05) — 6/4
for j = 1,...,k with probability 1 — ke™"?, for a € A and u € U(e).
Consequently, using (56) for u € U(e) we get

: : au Y a) — Ul Q%) < > 1 — kel
inf inf PP {K"(0; 0) — K"(, 0) < 6} 2 1 — ke

and by (55) it follows that (58) is satisfied. m

Now consider the following adaptive strategy: Choose n > N where N
is as in Theorem 10 and test each control function of the family U(e) for n

units of time. Then for ¢ = 1,...,7 determine
ng—1
61) a={a: D ple e uglw), o)
i=n(g—1)
ng—1
- Y e (e).0)
i=n(g—1)
ng—1
> SRax, Z p(mi,mi+1,7tq(mi)a(1_7')}
i=n(g—1)

and find p € {1,...,r} such that
min | ey, u, (y) 757 (dy)-

(62) | ey up(y)) w5 (dy) = min
i q=1,..., B
By Theorem 10 the following corollary easily follows:

COROLLARY 1. The control strategy v; = uy,(x;) for j > nr is 2¢||c||-
optimal with probability (1 — ke "P)".

For Model II define, for u € A,
(63)  K"(a,0) =\ | Iy - flz, o u(x)g™" (z)]* P (z, dy) 7} (dz)

RdRd
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and
(64) K ()
= | Vi = fla o' u@)g™ (2) > Am) PO (2, dy) wt (da).

R R4
By Proposition 1 of [9], K"(«, @) and K («, ') are continuous functions in
their two variables. Moreover, the following continuity property is satisfied.

LEMMA 8. If u € A, then

sup |K"(a, ') — K} (a,a)] = 0
a,a’ EA

as m — OQ.

Proof. Suppose that for a,,, = @ and o), — o' there is § > 0 such that

K" (apm,al,) — K} (am, al)| > 4.

Since

(65) K"(a,a') = | E{I(f (2 cvsu(@))— (2.0 u(@))g " (@) +€]°} w2 (da)
Rd

and

(66)  Kp (o) = | E{min{||(f(z, o, u(z))

= fla, o u(@))g " (@) + €II%, m}} mg(do),

where £ is an N(0, 1) random variable and E is expectation, and by Propo-
sition 1 of [9], [|7y — 74 [lvar — 0, it follows that Ky (c,, ay,) — K"(a,a’)
and K“(aym, al,) = K"(a,a') as m — oco. This is a contradiction. m

LEMMA 9. For e > 0 and u € A, there is a 6 > 0 such that if K"(«a,a')
< § then |7 — 7% ||var < €.

Proof. If the lemma does not hold then K“(ayn,al) — 0, o, — a,
o, = o and |75 — @G [lvar > € for n = 1,2,... and an £ > 0. From
Lemma 8 it follows that K(a, ') = 0. By (65) and the proof of Theorem
9 it follows that f(z,c,u(z)) = f(z,a,u(z)) for almost all z € R? with
respect to d-dimensional Lebesgue measure. Since f and u are continuous
functions, f(z,a,u(z)) = f(z,o,u(z)) for all z € R?, and consequently

o = Tas, a contradiction. m

Combining Lemmas 9 and 8 gives the following corollary.

COROLLARY 2. For ¢ > 0 there are m > 0 and § > 0 such that for
uwelU(e), if K (o, ) <0 then |12 — 7% [|var < €.
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Fix ¢ > 0 and take m as in Corollary 2. There are a finite set ay,...,af €
A and 7 > 0 such that for a € B, (v;) and u € U(e),

(67) K2 (o, ) < 6/2
and

(68) sup | K, (o, @) — K,y (o, @)| < 6/16.
acA

Let

69) @ = {oy s Dl — flan g u(e)g @)

= rnln ZH Tip1 — f(zi, o, u ($z)))g_1($z)||2

n—1
< min 2_:0 (i1 — f 2, aq,u(xi)))gfl(xi)H?}.

Using Theorem 6, Corollary 2 and (67) (69) as in the case of Model I yields
the following theorem.

THEOREM 11. Given Model II for a given compact set W C R? there are
p > 0 and a positive integer N such that for n > N and u € U(e),

(}/Ielgalélf PX{||ms — var <€} > 1 — ke P,

(1“

Let W C R? be a compact set that is positive recurrent for each u € U(g).
Choose n > N and use control uq for i < T7, us for T < i < Ts,..., and
u, for T,_1 < ¢ < T, where T; is defined as in Theorem 7.

Forg=1,...,r let

Tq,1+n
g ={oy: S Nisn — Flasapu()g (@)
i=Ty_1
Tq,1+n
= min 3" (i — flan ey u()g (@)
P i=Ty 1
T,171+’n,
< min 37 (ien — S g ule)g T (@)%}
i<t
L

Find p € {1,...,r} such that

S c(u, upy(y)) W%Z(dy) = q:{n2in ) S c(y, ug(y)) 71'%:((]’[/)
E IR RREE]

Just as for Model I, the following corollary is obtained.
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COROLLARY 3. The control v; = u,(x;) for j > T, is 2¢||c||-optimal with

probability (1 — ke "P)".
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