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ON LOCAL EXISTENCE OF SOLUTIONS OF THE FREE
BOUNDARY PROBLEM FOR AN INCOMPRESSIBLE
VISCOUS SELF-GRAVITATING FLUID MOTION

Abstract. The local-in-time existence of solutions of the free boundary
problem for an incompressible viscous self-gravitating fluid motion is proved.
We show the existence of solutions with lowest possible regularity for this
problem such that u € W21(02T) with r > 3. The existence is proved by the
method of successive approximations where the solvability of the Cauchy—
Neumann problem for the Stokes system is applied. We have to underline
that in the L,-approach the Lagrangian coordinates must be used. We are
looking for solutions with lowest possible regularity because this simplifies
the proof and decreases the number of compatibility conditions.

1. Introduction. In this paper we consider the motion of a viscous
incompressible fluid in a bounded domain 2, C R? with a free boundary S,
which is under the self-gravitational force. Let v = v(z,t) be the velocity
of the fluid, p = p(x,t) the pressure, v the constant viscosity coefficient and
po the external pressure. Then the problem is described by the following
system:

vy 4v-Vo—divT(v,p) = VU in 027,

dive =0 in (~2T,

. = — n ~T

(11) T(u,p) n Pbon on S )
v]i=0 = vo in {2,

v-n=—p/|Veg| on §T,
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where 27 = User £2¢ x {t}, ST = Us<r St x {t}, ¢(x,t) = 0 describes S; at
least locally, 7 is the unit outward vector normal to Sy, m = Vo/|Vy|, 2
is the domain at time ¢, S; = 02, t < T. Moreover, the dot - denotes the
scalar product in R3.

By T = T(v,p) we denote the stress tensor of the form

(1.2) T(v,p) = {Tij}ij=123 = {=pdij + Di;j(v) }i j=1,23
where
(1.3) D(v) = {D;;(v)}i =123 = {V(Via; + Vja,) }ij=1,2.3

is the velocity deformation tensor.
Moreover, U(§2;,z,t) is the self-gravitational potential
dy

(1.4) U, a,t) =k | Tl

2
where k is the gravitation constant and some arguments of U are omitted
in evident cases.

In view of the equation (1.1)s and the kinematic condition (1.1)g the
total volume is conserved:
(1.5) 2] =\ dov =\ do =10
2 0
Let 2 be given. Then we introduce the Lagrangian coordinates £ as the
initial data for the following Cauchy problem:

a—f :’U(,I,t), fE|t:0 :ga é-: (51552,53)’

Integrating (1.6), we obtain a transformation which connects the Eulerian
z and the Lagrangian £ coordinates,

(1.6)

t
(1.7) x = x(&,t) Ef—i—xu(f,t')dt’ = x,(&, 1),
0

where u(§,t) = v(x,(&,t),t) and the index w in x,,(§, t) will be omitted when
no confusion can arise.

Then from (1.1)g we have 2, = {z € R : » = z(,t), £ € 2} and
Si={reR3:x=u(t), £€S =285 =002}

Our aim is to prove the local-in-time existence of solutions to problem
(1.1) with lowest possible regularity. Therefore we apply the L,-approach.
The result of the paper is the following theorem.

THEOREM 1.1. Let r > 3, vy € WTQ_Q/T(Q), S e Wf_l/r. Then there
exists Ty > 0 such that for all T < Ty there exists a unique solution (u,p)

of (1.1) such that u € W21(027), p € WH0(2T) N W,«l_l/r’l/Q_l/(%)(gT)
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and the following estimate holds:

(1.8)  Nullyzrgry + lIplhyro@ry + 1Plyr-1rm12-1/e0 Gy

< o)z

To prove Theorem 1.1 we need solvability of the Cauchy—Neumann prob-
lem for the Stokes system from [3]. To recall the result we formulate the
problem

uy — divT(u,p) = F in 27,

divu=G in 2T,
(1.9)

n-T(u,p)=H on ST,

ul=0 = ug in 2,

where 27 = 2 x [0,T] and ST = S x [0, T].
THEOREM 1.2 (see [3]). Let r > 3, F € L.(27), G € W}HO(2T),

Gy—divF=divB+ A, A BelL.(027),
He erfl/r,l/Qfl/(Qr)(ST), ug € WerQ/r(‘Q), = W7a272/r,

and assume the compatibility conditions
(1.10) divug = G(x,0), 7 T(ug,po)|ls = H(x,0),

where pg = pli=o. Then there exists a unique solution (u,p) to problem (1.9)
such that

we W2LHQT),  pe WLo(T)nwi-1/r1/2=1/n)gT)
and the following estimate holds:
(L11)  ullwz gry + Ipllwoor) + Hp”ngl/nl/zfl/(zr)(ST)
< CMFNL, @my +Gllywroory +IBlL,2r) + 1AllL, @r)
I Hlyy-r/m1r2-17@0 (gry + [uollyyz-2rr )],

where C(T') is a constant increasing with T which does not depend on the
solution (u,p).

Problem (1.1) without the self-gravitation force is considered in [4].
Moreover we recall that the local existence of solutions to problem (1.1)
with surface tension is shown in [5].

2. Notation. We need the anisotropic Sobolev spaces W™ (Qr) where
m,n € Ry U{0}, r > 1 and Qr = @ x (0,T), with the norm
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2.1)  ullfyrn g

T
= S S |u(z, t)|" dx dt
0Q

T
+ > éémm w(x, t)|” du dt

0<|m/|<[Im]]
g {1 P2 ule,h) = Dy ua, )
) /
+ >, farl] x_x/‘swm\ Ty 9T 42
lm|=[m|] 0 QQ

T
+ ) § CS) |D u(z, t)|" da dt

o< |n/|<[|n]

TT\ n] [n] nr
‘Dt u(xvt)_Dt (wvt)‘ /
+ S dx S S ’t _ tl‘l—&—r(n—[n]) dtdt’,
Q 00

where s = dim@, [o] is the integral part of o, D) = 0% ... 9 where
l=(ly,...,ls) is a multiindex.
In the proof we will use the following results.

PROPOSITION 2.1 (see [1]). Let u € W™"(27), m,n € Ry. If ¢ > r
and
3
1 1\1 1 1\1
(e
rooq)m roq)n

1D} DSullr, (or) < &' [lullwmr (g + ce " ull L, (20
for all € € (0,1).
PROPOSITION 2.2 (see [1, 2]). Let u € W2™™(Qr), m € Ry. If 2m —

1/r > 0 then = ulg, is well defined as a function in W™~ 1/mim= 1/(2T)(ST)
and

then

HHHWEmA/T,mfl/(zm(ST) < CHuHme’m(QT)'

PROPOSITION 2.3 (see [1, 2|). Let u € me_l/r’m_l/(zr)(ST), m e Ry.
If 2m — 1/r > 0 then there emists a function u € W2™™(02r) such that
u|s; = u and the following estimate holds:

Hﬂ”wgm,m(QT) < C”uHmefl/'r,mfl/(Z'r)(ST).

In our considerations we will use well known imbedding theorems for
Sobolev spaces. All constants are denoted by the same letter c.
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3. Proof of Theorem 1.1. To prove local existence of solutions to
problem (1.1) we write it in the Lagrangian coordinates:

uy — divy Ty (u,q) = VU, in 27,

divyu =0 in 27,
(3.1) .

My - Tu(ua Q) = _pOﬁu on § 5

u’tzo = Vo on Q,

where u(§7t) = ’U(.%'(é.,t),t), q(§7t) = p(£(§7t)7t)7 vu = Si,xvgﬂ Tu(ua q) =
Dy (u) — qf, Dy (u) = v{€k,z, 56, + Eka;Uiey Fij=1,2,3,

_ kdyee b d€’
Ua(6,t) = !82 (&) — (€. D

where Jy¢ 1) is the Jacobian of the transformation » = z(¢,t), div,u =
Ehowi Wiy, (&, 1) = M(x(§,1),t), I is the unit matrix and the summation
convention over repeated indices is used.

To prove the existence of solutions to (3.1) we use the following method
of successive approximations:

. : T
Um+1,t — dlvum Tum (um+17 Qerl) = Vum Uum in 2 s

(3.2) divy,,, Um4+1 =0 in 27,

Mty * Ty (Uit 15 Gmt1) = —PoTu,, on ST,

Um1lt=0 = Vo on {2,
where m = 0,1,2,... and u,, is treated as a given function. Assume ug =0
and go = 0.

To apply Theorem 1.2 we write (3.2) in the form
U1t — AV T(Upt1, Gmt1)
=divy,, Tu,, (Um+t1,@m+1)
— div T(tm+1, @m+1) + Va,, Ua,, in 7,
(3.3 div up,41 = div g1 — divy,, Um1 in _QT,
¥ o - T(Um+1, Gmt1)
= 1o T(Um+1, Gm+1)
— 7w, - T, (Ums1, @ma1) — Poftw,, on ST,
U1 |t=0 = Vo on {2,

where the operators without index contain derivatives with respect to £ and
To is the unit outward vector normal to S.
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First we obtain a uniform bound for the sequence {u,}5°_, determined
by (3.3).

LEMMA 3.1. Assume that S € Wi '/" vy € W,?*Q/T(Q). Then

B4)  Mumllwzr(op) + lamllwzo@ry + lgmllya-1/mrz-1/en gy
< (00l 2 gy 1Sl ya—2r0)
if T is small enough.
Proof. Applying Theorem 1.2 to problem (3.3) yields
(3.5) ”uerluwf’l(QT) + HQmHHW}O(QT) + HQm+1\\Wg—l/r,l/z—l/(2r>(ST)
< df|div T(um1, gm+1) — diva,, Tu,, (Wnt1, @ms1) | z,.2m)

+ C”Vum Uum ”LT(QT) + CHdiV Um+1 — diVum uerl”er’o(QT)

+¢c|o - T(Um+15 Gm+1)

— N, Ty, (Ut Qm+1)||WT1—1/7~,1/2—1/(27~>(ST)
+ C”ﬁum ngfl/’l‘,l/Qfl/<27‘> (ST) + CHUO |’W372/T(Q)

+ll((f = A" (um))ums1)ill L, (2r),

where (I — A* () )tm1)¢ is treated as B from Theorem 1.2 (A = 0) and

Ajj(um) = 6;5 + Sf) Umi,g; AT, Al (Um) = Al_k1 (). Here we note that

. 1 1 .
diva,, tmy1 = Ay Og i,y = dive (A1),

which follows from 22:1 %Alk(um)(f, t) = 0. All the above relations hold
under the assumption that div,, _, u,, = 0.

To continue the induction we need to have div,,  w,,+1 = 0, but this is
given by (3.3)s.

Now we estimate the particular terms from the r.h.s. of (3.5). Define

—1)/r t
= T=1/ Hum”wfvl(QTy a (t) = {oj(um)} = {Sg Umi,g; dr}.
For 7 > 3 we have |l |L_(2) < cam.
To estimate the first term on the r.h.s. of (3.5) we calculate
divum Tum (um+la Qm—‘rl) —div T(Um+1, Qm+1)
= {V(Slmjgkazjxsxsgl 501‘ + Slmjgkazimsxsﬁl 50j)um+10,£k
+ V(&1 Eha; — Ojkdji)Um1ige, + V(&iw; Eke — 010ki)Umt1),6.¢4
- (glxj - 5qum+1,§l)}’

where the matrix £ , depends on u,,.
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Since e, = 6;; + Sg uig, (T) dT = 35 + a5 and §j,, is the inverse matrix
to wie;, we have

jas = 0ij + ¢ij(@),
where ¢;; is a polynomial matrix-valued function which contains terms of «
and o® (a = {a;;}). Then & pizy = Pijiar.rsc,Eoxy,, Where ase, =
t
SO uvasfo (7—) dT‘
Then we write the first term of the r.h.s. of (3.5) in the form
|11 (v ) (I — A(um))(uerng + Gm1,e) + ¢2(O‘m)A(um)7£um+L£”LT(QT)

< QS(am)am(Hum—i-luwfvl(QT) + HQm—i-lHWTlvO(QT))’

where 1); are some functions with ;(0) # 0 and ¢ always denotes an in-
creasing positive function.

We estimate the third term by the same quantity.

The fourth term can be expressed in the form
“w3(am)amum+1,£ + 1/}4(04m)OCQO+1erlfl/ﬂlﬂ*l/(??“) (ST)
< Hw3(am)amum+1,£HW701*1/T,1/271/(2T)(ST)
+ ”w4(am)aQO+1|’W7}71/T,1/2*1/(2T>(ST) =1 + J7

where

T , 1/r
1< (JIs(am)amtimirelivs o d7)
0

1/r
+ ( S Hw3(am)a7num+1,£H7‘;VT1/2(07T)) =L+ K.
2

Next we have

T 1/r
L< < S HT/}3(O‘m)O‘mum+LEHZT(Q) dT)
0

;‘(Q) dt) "

+
/N

Hlf)s,am (am) S U, g AT O Um41,¢
0

r 1/r
dt)
L (£2)

+(

t
HwS(am) S Um, e¢ dr Um+1,¢
0

Cter ™y Ot N Ot

1/r
lés(m)tmtmn 1 ellz, @ dr) = Ly + Lo + Lo + L.

+
/N
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Continuing, we have

Ly < ¢(am(T))am (T)|[tim+1lyyz1 o1,

r 1/r
)
Lo(92)

Lo+ Ly < qﬁ(am(T))am(T)<§ H §um,55 AT U s1 ¢
0 O

< $(am(T))am (T)an, (T)lum+1llyz o),
Ly < ¢(am(T))am(T)||um+1wa*l(QT)'

Next we examine

T i W7 r r\ /7
K< ( S déx dtS dt’ |¢3(Oém(t)) — ¢3(0‘m(7§ ))| |am(t)| |um+17§(t)| >

|7f _tl|1+r/2

02 0 0

T T r r\ 1/
y 193 (am (#)["|am (£) = com ()] um11.6()]
(jie oty
T T r r T
(1o afa ot 13 @nO) @O ftm41.6(0) =16 (#)]7Y
) | _t/|1+7‘/2
EK1+K2+K3.

Using the formula

(3.6)  P3(am(t)) — 3(am(am(t’))

= (am(t) —an(t 81/13 am () (0 (t") + s(am (t) — am(t')) ds
0

we obtain
K+ Ky
T T t r r\ 1/r
’ S U, g AT]" [ p1,6(1)]
< (b(am(T))( S dg S dt S di’ = It — t/‘1+r/2
Q 0 0
T T t y
< 9an (1) ( § e § at § a1t = 177272 § | dr g1, (1))
Q 0 0 t/

T T 1/r
< 9 (1) i 2 cory ( § € § i § b |t =22 e7) = Ko
(] 0 0

Integrating with respect to ¢ we get (r/2 > 1)

Ky < ¢(am(T))Tr/271 Humuwf*l(QT) [[tm+1 wa*l(QT)'
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Finally
K3 < ¢(am(T))am (T)|[wm1llyz1 o)
Summarizing the above considerations we obtain
I < ¢(am(T))am (T)||wmt |ly21 ory
+ ¢(QM(T))TT/2_1HumHWf’l(QT)Hum+1||W3’l(QT)’
Similarly, we obtain
J < 0@ (D)D)l e,

+ Qb(am(T))Tr/gil||UM‘|W3*1(QT)Hq~m+1||W171/2(QT)a

where §p,41 is an extension of g1 € Wi~ 1/r.1/2— 1/(2T)(ST)
The fifth term on the r.h.s. of (3.5) is estimated by

T 1/r
”¢5(a7n)HWTl*l/Tvl/Qfl/(W)(ST) < (S ”¢5(am(t))”Wﬂ71/T(S) dt)
0

1/r
(s @m0y )
S

= My + Ma,

T

)" < Glan (TN 0 (D),

¢
My < ¢(anm,(T) ( dt H Sumé dr W)
O i

(gdggdt

S

T
()
0
§ o 5@ () = s (an DI
; | tl|1+r(1/2 1/(2r)) ’

using (3.6) we have

T T
¢(anL(T))<S dSS dtx dt It t/’1+7"(1/2 1/(2r))
S 0 0

/ ’St/umﬁ &7 dT‘T )
T
0

- <§d§§’u""5(§’ )‘rdT) (S dat \ [t —¢/|7/2~ 3/2dt> 1/r

< Gam ()T u |21 gy
The seventh term of the r.h.s. of (3.5) will be considered in the from

(1 = A" (um))ums1)ell 2, 2ry < |6 (m)mUmr il L, (or)
+ HdJ?(am)um,ﬁuerl”LT(.QT) = Nl + N2
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and we have

Ny < ¢(aﬁL(T))’aﬁL‘ ”uerluwf’l(QT)?
(3.7)

t
Ny < ¢(anL(T))“(um,£ — Vot UO,&) <UO - Sum+1’t dt) ‘ L,.(07T)
0 s

< 0lan (TNT 0 v
+ ¢(am(T)um w2 (or)am+1
+ 0am(T)eollya-srr ) T
% (ltmllz ory + Neoll - )

In the last term of the r.h.s. of (3.7)2 we have applied the imbedding
7n1’1/2(QT) C CP(0,T;L,(£2)) with 0 < B < 1/2 — 1/r. This enables
us to get

[tm,e = vo.ellz, < T7(lumllypz ory + llvollyz-2/r(g))-

Finally we consider the second term of the r.h.s. of (3.5). We have

Ju (&,t) /
V., €0 e
§2 |xu7n (é’t) - xum (gl’t)|

_ _S vumxum (éat) ) (xum (f,t) - Zu,, (élat)) J
S T G —m @b

et (60 (€ 5’)(1+Séd88835um(£’+8(£—5’),7)617)
P - EPIL fyds S Ouun (€ + s(§ — &), 1) dr P
X unm (&' ,) df .

Vau,, U

Um ~ Um

o (€1, A€

Assuming that
¢

S HuTILE(.7T)”L<>O(Q) dr <1,
0

we obtain

g’
S

, < ¢(am(T))TH".
Vie—ep

L (£2)

||VUWL UWLHL (QT) < ¢(a’m( ))Tl/r

For simplicity we introduce

X, = ”ukuwf’l(QT) + qu”er’O(QT) + HQm”Wg—l/r,l/Z—l/(Qr)(ST).
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Summing up the estimates for all terms of the r.h.s. of (3.5) we get
X1 < am®(@m) Xoms1 + 3(am) T > X0 X1
+ @(am)am T + ¢(am)T* T2 X, + $(am) Ximam+1(T)
+ (T + TP)d(am) + ¢(am(T)) TP X,

Putting
. r—1r—-—211 n r 3
a = min - =+ =
r 2 'r2 2
we have
(38) Xerl S Ta(ﬁ(am)Xme+1 + Ta(ﬁ(am)Xm

+ ()T X Xina1 + T0(ar,).

By induction we prove that X3 <1 (Xo = 0). Taking 7 such that 7' < 1
and T%¢(1) < 1/4, inserting X,, < 1 in (3.8), we obtain

1 1 1
X1 < 5 X1+ 5+~

1
Xm R
=4 1 g tmr g

which gives X,,+1 < 1.
The proof of the lemma is complete.

LEMMA 3.2. Assume that S € Wf_l/r, vy € WE_Q/T(Q). Then there
exist u € WAH0T) and p € WHO(02T) N erfl/r’l/gfl/(Qr)(ST) such that
U — T in W2HRT) and g, — P in WHO(2T) N Wf_l/r’l/Q_l/(%)(ST)
as m — oo for T small enough.

Proof. We show that {(um,qm)}5>, is convergent. For this purpose
we consider v, = Uma1 — Um, T'm = ¢m+1 — ¢m Which satisfy the system

Um,t — diVT(U'nu rnz) = divum Tum (um+17 Qm+1)

- divum,l Tum,l (unu Qm) —div T(U'nu Qm)

+Vu, Uu,, = Vau, U, =1 in 7,
(3.9) div vy, = divey, — divy,, U1 +dive,, , Um = J in 2T,
70 - T(Vim, 7m) = 70T (Vm, "m) — T, T (Wint15 @mt1)
ATty (Uiny @) — PO, + PoTw,, , = K on ST,
Um|t=0 = 0 on 2.

By Theorem 1.2 we obtain an estimate on solutions of (3.9):
(3.10) vaHWf’l(.QT) + ||Tm||W7},0(QT) + ||Tm||WT171/7‘71/271/(27‘)(ST)

< ez amy + Il grmy + 1K s -marossom o, + 1Bl o)),
where B is defined by the relation J; = div B.
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First we estimate the terms of the r.h.s. of (3.9); in L,.(£27). Let I =
I + I5. We examine

I, = divum Tum (um+17 Qm+1) - divum,l Tum,l (um7 Qm) - diVT(U'nu Qm)
= (divy,, Ty, — divT) (v, rm)
+ (divum Tum - divum,1 Tumfl)(uma Qm) = -[11 + -[12-

I is estimated in the same way as the first term of the r.h.s. of (3.5):

1111l (0r) < Slam)am (V]2 or) + Irmllwroor))-
For the second term we have
[12lz,.(0r) = (dive,, (Tu,, = Tu,,_,)
+ (divy,, = dive,, )T, ) (Um, @)l L, (or)
< G(am) T o [l oy
Next we consider
I, =V, Uy, —Vuy, Uy, ,
=V Uy, = Uuppy) + (Vup, = Vi )Uu,,_y = Io1 + Ioa.

The first term is

e ([0 (€
= = o) § (2

_ xmfl(& t) - ym—1(517 t) > /
T 1(6,0) — g _a(€, D @0 ) &

N zm(§t) —ym(E' 1)

=~ Al e D i O e ~ I

Tm (5’ t) —Ym (5,5 t)
~Alum) | Gamo:
_ xmfl(&t) - ym71(§'7t) > /

T 1(6,0) = ym_a(€, D )P0 &

= Ip11 + 212,

where zp(&,t) = €+ S(t) up (&) dt’ and yi (€' t) = & + S(t) u (&, t) dt’. Since

mo1(ert)) A€

[Tym(ert) = Tymster )| < Cllum — tumllyza ory,
we have
1211 lL, (0r) < ¢(am)Tl/THUm—1wa*l(QT)-

The same holds for I519. Since



Free boundary problem 331

xm(§7 t) B ym(87 t) _ xmfl(g7 t) B ymfl(éﬁ? t) dé-/

[Zm (&) — ym (&5 1) [Zm—1(&,t) = Ym—1(§,1)[3

< CHum - um—l”wfvl(_QT)a

we obtain
[ 1212]|L, (0r) < ¢(am)T1/r‘|vm—1wa*l(QT)-

We estimate J in W.1-0(02T) by the same quantity.
Let K = K1 + K5, where

Kl - ﬁOT(U'nu rnz) - ﬁumT(uerla Qerl) + ﬁum,l (uma Qm)
= (0T (v, rm) — M, T(Vms 7))
+ (ﬁum']r'uwn - ﬁuWLflTUWL—l)(um? qm) = Kll + K12
and
K2 = _po(ﬁ'uwn - ﬁum—l)’
The term K7, is estimated just as the fourth term of the r.h.s. of (3.5):
HK11|’WT}71/7~71/271/(27*)(ST) S (ﬁ(am(T))am(T)|]vaW3,1(QT)
+ & (am (T)T > M|l w2 (or) lomlly2.1 gy -
The second term is
K2 = (M, (Tu,, = Tup )+ Pupy = Py —1) Ty ) (Uims Gm) = Ki21 + Ki22.
For K121 we have
||K121||WT1*1/7‘71/2*1/(27‘)(ST) S gb(am(T))T(r_l)/TH’Um_l||WT2,1(QT).
Since
7w, — ﬁum71|’W7}71/7‘,1/271/(27‘)(5T) < ¢(am(T))T(T71)/T”Umfluwfwl(QT),

we conclude that

HK122|’W7}71/r,1/271/(2r)(sT) + ”KQ”ngl/r,l/Zfl/(Qr)(SrT)

< QS(am(T))T(r*l)/rH’Um—lwavl(_QT)'
Finally we have to examine B which is defined by J; = div B. We have
J = divoy, —divy,, Um—1 +divy,, , Um
= (div vy, —divy,, vp) + (dive,, ; Uy, — divy,, Un) = J1 + Jo.

To examine J; we proceed as in the case of the seventh term of the r.h.s.
of (3.5). By the same argument as in Lemma 3.1 we have

Jy = (divy,, , —divy, Yy, = div-((AS, 1 — AF )um).

Hence we put By = ((AF,_; — A, )um): and we get, just as for Ny in the
proof of Lemma 3.1, the following estimate:
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B2l (or)y < $lam (NI +T%) vl or),
where 0 < f < 1/2 —1/r.
Define
Yo = lomllwz1ory + lrmllwzoory + Irmllyga-1/mz-1seo gy
Summing up the estimates for all terms of the r.h.s. of (3.10) we obtain
Yin < ¢(am (T)) (T D"+ T7 271 TP)Y 4 (am (T)) (T D"+ TP) Y 1.
Taking T so small that ¢(a,,(T))(TTV/" + T7/271 + TF) < 1/2 we get
Yin < ¢(am(T) (T D/ +TP)Y,, .

Thus if ¢(a,(T))(TT~D/" + T8) < 1 we have a contraction, hence Y;,, — 0
as m — oo. This yields the existence of w € W21(2T) and p € WHO(2T)Nn
Wf_l/r’l/Q_l/(%)(ST) such that

Up — T in WHHRT),
Gm — P n WTI’O(QT) N er—l/r,l/2—1/(2r)(ST).

The proof of the lemma is complete.

By Lemma 3.2 we see that system (3.1) has a unique solution (u,q) in
W2HT) x whonT)n Wf_l/r’l/Q_l/(%)(ST). By Lemma 3.1 we get the
estimate

G110  lullwzrory + llallyroory + lallyr-1rmar2-1/@n gr

< C(HUOHV[/E*?/T(QV ||S||WT272/7~).

Since for u € W21(02T) the transformation (1.7) is invertible, from (3.11)
we obtain estimate (1.8). Theorem 1.1 is proved.
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