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THE TWO-DIMENSIONAL LINEAR RELATION
IN THE ERRORS-IN-VARIABLES MODEL
WITH REPLICATION OF ONE VARIABLE

Abstract. We present a two-dimensional linear regression model where
both variables are subject to error. We discuss a model where one vari-
able of each pair of observables is repeated. We suggest two methods to
construct consistent estimators: the maximum likelihood method and the
method which applies variance components theory. We study asymptotic
properties of these estimators. We prove that the asymptotic variances of
the estimators of regression slopes for both methods are comparable.

1. Introduction. A problem sometimes encountered in data analysis is
to find a relation between two or more variables. In this paper we discuss the
two-dimensional case, where both observables are not measured precisely.
Thus let us consider the model

(1) Xi = si + εi, Yi = asi + b + δi, i = 1, . . . , n,

where the disturbance errors εi and δi are independent random variables,
with mean and variance equal to zero and σ2

ε , σ2
δ , respectively. We assume si

to be an unknown constant. This case is known in the literature as a func-
tional model (Kendall and Stuart 1979). It is well known (Reiersol 1950)
that this model, with errors having normal distributions with unknown vari-
ances, is nonidentifiable. To overcome this difficulty we need an additional
assumption, for example, that the distribution of errors is nonnormal or that
either one error variance is known or the ratio of the variances are known.
Another approach to construct consistent estimators of regression slopes in
model (1) is repeating the random variables Xi, Yi mi times (Cox 1976,
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Dolby 1976, Bunke and Bunke 1989). In this case we have

(2) Xij = si + εij , Yij = asi + b + δij , i = 1, . . . , n, j = 1, . . . ,mi.

In this paper we consider a particular case of the model with replications.
We will prove that repeating only one variable, for example Yi, enables us
to construct consistent estimators of the unknown parameters of the linear
relation.

We discuss the model

(3) Xi = si + εi, Yij = asi + b + δij , i = 1, . . . , n, j = 1, . . . ,m.

The variables Xi, Yij are observables, the variables si are unknown constants
and εi, δij are assumed to have independent normal distribution with mean
zero and unknown variances σ2

ε and σ2
δ :

εi ∼ N(0, σ2
ε), δij ∼ N(0, σ2

δ ).

For constructing consistent estimators of the unknown parameters we
present two methods: the maximum likelihood method and a method (Czap-
kiewicz 1999) based on variance components theory. We compare these two
methods by comparing the mean squared errors.

2. Maximum likelihood method

2.1. Methodology. We can express the observations Xi, Yij in (3) as

zi = [Xi, Yi1, . . . , Yim]′, i = 1, . . . , n.

The independent random vectors zi have means depending on i:

µi = [si, asi + b, . . . , asi + b]′

and a common (m + 1)× (m + 1) covariance matrix:

Σ =


σ2

ε 0 . . . 0
0 σ2

δ . . . 0
...
0 0 . . . σ2

δ

 .

The log-likelihood function has the form

L(θ) = const− n ln σε − nm ln σδ

− 1
2

[ n∑
i=1

(Xi − si)2

σ2
ε

+
n∑

i=1

m∑
j=1

(Yij − asi − b)2

σ2
δ

]
where L(θ) = L(a, s1, . . . , sn, b, σε, σδ). Solving the log-likelihood equations
is not easy. Cox (1976) gives the solutions for model (2) where both Xi and
Yi are repeated m times. When we assume that Xij = Xi for each j in Cox’
model, we can use his solutions for our purposes.
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To write estimators, set

syy =
n∑

i=1

m∑
j=1

(Yij − Y i.)2/(nm), byy =
n∑

i=1

(Y i. − Y )2/n,

bxx =
n∑

i=1

(Xi −X)2/n, bxy =
n∑

i=1

(Xi −X)(Y i. − Y )/n

and
B(a) = byy − 2abxy + a2bxx.

Solving the likelihood equations we get estimators in terms of a:

(4)

b̂ = Y − aX,

σ̂2
ε = syy + (byy − abxy)2/B(a),

σ̂2
δ = sxx + (abxx − bxy)2/B(a),

ŝi =
(
(abxx − bxy)(Y i. − Y + aX) + (byy − abxy)Xi

)
/B(a).

But to get an estimator of a we must solve an equation of the fourth degree
in a:

(5) −syy(abxx − byx)B(a)− (byy − abxy)(abxx − bxy)(byy − a2bxx) = 0.

When m > 2 we solve (5) numerically and then check whether the absolute
maximum has been found.

2.2. Asymptotic behaviour of maximum likelihood estimators. In this
section we look for the asymptotic properties of maximum likelihood esti-
mators in the model discussed in the previous section. The random vectors
zi are independent, with normal but not identical distribution. The expecta-
tions of their distributions depend on i. The number of unknown parameters
which we estimate increases with n.

Assume that si, i = 1, . . . , n, belong to a bounded set as n tends to
infinity and the following two limits exist:

lim
n→∞

1
n

n∑
i=1

si and lim
n→∞

1
n

n∑
i=1

s2
i .

Then we can prove:

Lemma 1. When n → ∞ and m → ∞, the solutions of the likelihood
equations give strongly consistent estimators of the unknown parameters
a, b, σδ, σε. For sufficiently large n and m, the variance of the vector

(6) [â− a, ŝ1 − s1, . . . , (ŝn − sn)(̂b− b), σ̂ε − σε, σ̂δ − σδ]

can be approximated by

(7)
[
− E

(
∂2

∂ξ∂φ
L(θ)

)]−1

where ξ, φ belong to the set of unknown parameters.
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This lemma may be proved by a method analogous to that described in
Lehmann’s monograph (1983, p. 404, Th. 4.1). We thus have the following
asymptotic variances of unknown regression slopes:

Theorem 1. When n and m are large, the asymptotic variances of â
and b̂, avar(â) and avar(̂b), are

avar(â) =
ma2σ2

ε + σ2
δ

m
∑n

i=1(si − s)2
,(8)

avar(̂b) =
ma2σ2

ε + σ2
δ

mn
·

∑n
i=1 s2

i∑n
i=1(si − s)2

.(9)

P r o o f. To show the formula for avar(â), let us calculate ∂L/∂ξ∂φ where
ξ, φ ∈ {a, s1, . . . , sn, b, σε, σδ}. The matrix (7) has the form

Θ−1
n =



m
σ2

δ

∑
s2

i
ma
σ2

δ
s′ m

σ2
δ

∑
si 0 0

ma
σ2

δ
s

ma2σ2
ε+σ2

δ

σ2
εσ2

δ
In

am
σ2

δ
1n 0 0

m
σ2

δ

∑
si

am
σ2

δ
1′n

mn
σ2

δ
0 0

0 . . . 0 2n
σ2

ε
0

0 . . . 0 0 2nm
σ2

δ



−1

where s = (s1, . . . , sn)′ and 1n is the n-dimensional vector of ones.
Let us partition Θn as

Θn =
[ m

σ2
δ

∑
s2

i w′

w M

]
.

The element in Θ−1
n which is the required asymptotic variance of â can be

obtained by a standard result on the inverse of a partition matrix:

avar(â) =
(

m

σ2
δ

∑
s2

i − w′M−1w

)−1

.

But
M−1 =

[
Q−1 0

0 T−1

]
where

Q−1 =

[ ma2σ2
ε+σ2

δ

σ2
εσ2

δ
In

am
σ2

δ
1n

am
σ2

δ
1′n

mn
σ2

δ

]−1

and T−1 =

[ 2n
σ2

ε
0

0 2nm
σ2

δ

]−1

so

(10) avar(â) =
(

m
∑

s2
i

σδ
− q′Q−1q − t′T−1t

)−1

where q′ =
[

ma
σ2

δ
s′, m

σ2
δ

∑
si

]
and t′ = [0, 0].
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Taking into account that t′T−1t = 0 and inserting the calculated value
of q′Q−1q into expression (10) we obtain the asymptotic variance of the
estimator â.

To obtain the asymptotic variance of the estimator b̂, avar(̂b), we repeat
the previous argument for the matrix of ∂L/∂ξ∂φ where ξ, φ are taken in
the order {b, s1, . . . , sn, a, σε, σδ}.

3. Variance components estimation method. In this section we
present another method of estimating unknown parameters in model (3).
This method (Czapkiewicz 1999) is based on some properties of a linear
model with two variance components. We discuss the model

Xi = si + εi, Yij = asi + b + δij , i = 1, . . . , n, j = 1, . . . ,m.

If we substitute si in the last formula we obtain

(11) Yij = aXi + b + δij − aεi.

Replacement of the distribution of (Xi, Yij) by the conditional distribution
of Yij with respect to Xi enables us to use a different model (treating Xi

as a constant) to estimate the same parameters a, b, σδ, σε as in model (3).
The technique of variance components can be applied for this purpose.

We obtain a model

Y = Xβ + U1Φ1 + U2Φ2,

where β is a vector of unknown parameters a and b,

Y = [y1, . . . , yn]′, yi = [Yi1, . . . , Yim],

X =

 X11m 1m
...

...
Xn1m 1m

 ,

the matrix U1 is
U1 = In ⊗ 1m,

whereas U2 is the nm× nm unit matrix. The vectors Φ1, Φ2 are

Φ1 = [γ1, . . . , γn]′, Φ2 = [δ11, . . . , δ1m, . . . , δn1, . . . , δnm]′

where γi = −aεi. The variance components are

(12) σ2
1 = a2σ2

ε , σ2
2 = σ2

δ .

First we recall the following result:

Theorem 2. The uniformly best , invariant unbiased estimators of σ1

and σ2 are

(13) σ̃1 =
nm− 2

m2(n− 2)(m− 1)n
Y ′MV MY − 1

mn(m− 1)
Y ′MY,
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(14) σ̃2 =
1

n(m− 1)
Y ′MY − 1

mn(m− 1)
Y ′MV MY.

The estimator of β̃ = [ã, b̃]′ has the form

(15) β̃ = (X ′Z̃−1X)−1X ′Z̃−1Y

where Z̃ = σ̃1V + σ̃2Imn.

The proof of this theorem is given in Czapkiewicz (1999). Now, we prove
the following theorem:

Theorem 3. The estimators of unknown parameters, based on variance
components theory , have the following properties:

(i) The estimator defined in (15) does not depend on the values of σ̃1

and σ̃2.
(ii) The estimator β̃ has a normal distribution with expectation β and

covariance matrix

(16) (mσ2
1 + σ2

2)(X ′X)−1 = (ma2σ2
ε + σ2

δ )(X ′X)−1.

(iii) The estimator β̃ is unbiased with minimal covariance matrix in the
class of linear unbiased estimators, the estimator σ̃δ is the uniformly best
unbiased estimator of σδ, and the estimator

σ̃ε =
√

σ̃2
2/ã2

is weakly consistent.

P r o o f. A simple calculation shows that for every p and q we have

(17) X ′(pV + qImn) = (mp + q)X ′.

(i) From (17) we have

X ′Z̃ = X ′(σ̃2
1V + σ̃2

2Imn) = (mσ̃2
1 + σ̃2

2)X ′,

so
X ′ = (mσ̃2

1 + σ̃2
2)X ′(Z̃)−1

and

β̃ = (mσ̃2
1 + σ̃2

2)(X ′X)−1 1
mσ̃2

1 + σ̃2
2

X ′Y = (X ′X)−1X ′Y.

(ii) If we assume that Y has a normal distribution, then the estimator
β̃, which is a linear function of Y , also has a normal distribution. The
expectation of β̃ is

E((X ′X)−1X ′Y ) = (X ′X)−1X ′E(Y ) = (X ′X)−1X ′Xβ = β.
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The covariance matrix of β̃, Var(β̃), is

Var(β̃) = E((X ′X)−1X ′Y Y ′X(X ′X)−1)− ββ′

= (X ′X)−1X ′E(Y Y ′)X(X ′X)−1 − ββ′.

Because
E(Y Y ′) = σ2

1V + σ2
2I + (Xβ)(Xβ)′,

from (17) we obtain

Var(β̃) = (mσ2
1 + σ2

2)(X ′X)−1.

(iii) Let us consider another linear unbiased estimator L′Y of β. We wll
prove that its covariance matrix is not smaller than the covariance matrix
of (X ′X)−1X ′Y (i.e. the difference between these matrices is non-negative
definite). Set

A′ = L′ − (X ′X)−1X ′.

Notice that E(A′Y ) = 0 and A′X = 0. From this and from (17) we have

E(A′Y ((X ′X)−1X ′Y )′) = A′E(Y Y ′)X(X ′X)−1(18)
= A′(σ2

1V + σ2
2Imn)X(X ′X)−1

= (mσ2
1 + σ2

2)A′X(X ′X)−1 = 0.

Now we write Var(L′Y ) as

Var(L′Y ) = Var(L′Y − (X ′X)−1X ′Y + (X ′X)−1X ′Y ).

By (18),

Var(L′Y ) = Var(L′Y − (X ′X)−1X ′Y ) + Var((X ′X)−1X ′Y ).

The first component is a non-negative definite matrix, so we have

Var(L′Y ) ≥ Var((X ′X)−1X ′Y ).

The properties of σ̃δ follow from Theorem 2 whereas the properties of σ̃ε

follow from S lucki’s Theorem (see e.g. Bartoszewicz 1989, p. 53, Th. 5.3).

Remark. The variances of the estimators ã and b̃ are

var(ã) =
ma2σ2

ε + σ2
δ

m
∑n

i=1(Xi −X)2
,

(19)

avar(̃b) =
ma2σ2

ε + σ2
δ

mn
·

∑n
i=1 X2

i∑n
i=1(Xi −X)2

.(20)

Conclusion. The variances of the estimators of a and b obtained using
the maximum likelihood method and the theory of variance components are
comparable. The differences between formulas (8), (19) and (9), (20) result
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from differences in the definitions of the models from which we estimated
the same parameter a or b.
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