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THE EFFECT OF ROUNDING ERRORS ON
A CERTAIN CLASS OF ITERATIVE METHODS

Abstract. In this study we are concerned with the problem of approxi-
mating a solution of a nonlinear equation in Banach space using Newton-like
methods. Due to rounding errors the sequence of iterates generated on a
computer differs from the sequence produced in theory. Using Lipschitz-
type hypotheses on the mth Fréchet derivative (m > 2 an integer) instead
of the first one, we provide sufficient convergence conditions for the inexact
Newton-like method that is actually generated on the computer. Moreover,
we show that the ratio of convergence improves under our conditions. Fur-
thermore, we provide a wider choice of initial guesses than before. Finally,
a numerical example is provided to show that our results compare favorably
with earlier ones.

1. Introduction. In this study we are concerned with approximating
a solution of an equation

(1) F(x) =0,

where F' is an m times (m > 2 an integer) continuously differentiable non-
linear operator defined on an open convex subset D of a Banach space Ey
with values in a Banach space Fs.

The Newton method generates a sequence {x,} (n > 0) which in theory
satisfies

(2) Tpt1 = ¢(Tn) (n>0),
where
(3) ¢(x) =z — F'(x)"'F(z) (x€ D).
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Here, F'(x) denotes the first Fréchet derivative of F' evaluated at € D (see
[1], [3], [5]). Sufficient convergence conditions for Newton methods of the
form (2) have been given by several authors. For a survey of such results
we refer the reader to [3], [5] and the references there.

We first calculate F'(x,) and F(x,) (n > 0). Then we need to find a
solution #(x,) (n > 0) of the equation

(4) Fl(z,)(y) = —F(zn) (n>0),
and set
(5) ¢(xn) = xp +0(zn) (n20).

Due to the presence of rounding errors in numerical computations instead
of the sequence {z,} (n > 0) we really generate a sequence {Z, } such that

(6) Tny1 = 0(Tn) (0 20),

(7) $(z) = [I + Eo(2)](z), (z)=z+0(x) (z€D),
where 0(z,,) is the exact solution of the equation

®) Ay + By @))(y) = —[F(@a) + Ba(@)] (0 >0)

for some FEy(z), E1(x), Ex(z) € L(Eh, Es), the space of bounded linear op-
erators from FE; into Es.

In the elegant paper [8] (see also [2], [4], [6], [7]) the convergence of the
inexact sequence {Z,} (n > 0) was analyzed, when F; = Ey = R’ (i € N)
under Lipschitz hypotheses on the first Fréchet derivative. Here we provide
sufficient conditions for the local convergence of the inexact sequence {Z, }
(n > 0) in the more general setting of a Banach space but using Lipschitz
hypotheses on the mth Fréchet derivative. Moreover, we show that the ratio
of convergence improves under our conditions. Furthermore, we can provide
a wider choice of initial guesses than before. Finally, a numerical example
is provided to show that our results compare favorably with earlier ones.

2. Convergence analysis. We need a result whose proof can be found
in [8, p. 111].

THEOREM 1. If both F'(x,) and A, (n > 0) are nonsingular, then ¢(Z)
and ¢(Z,) (n > 0) exist and
(9) 16(@n) — ™| < mull2™[l + (1 + 7o) {wn |0 — 27|
+ (1 +wn)l[o(@n) — 2"},

= - = A 1(} ! )”
10 n = || Eo(Ty wp = [|AZYF (7)) — T +H n__n LA

In [2] we proved the following local convergence result for the exact
Newton method.
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THEOREM 2. Let F' be m times (m > 2 an integer) continuously Fréchet-
differentiable on U(x*,0) = {x € Ey | ||z* —z|| < o} C D for some o > 0.
Suppose F'(x*) is nonsingular, F(z*) =0,

|F" (@)~ [F) (@) — FO) (27)]]

(1) e = sup{

[l — ||
xeU(z*0), v # x*},

and
(12) o > ||F' ()T FO @), i=2,...,m.
If g € U(z*,0) and
(13) oo — 2] < 8°,
where 6° is the positive zero of the equation
(14) %tm+...+a2t—1:0,
then

(15)  llwo — F'(x0) " F(x0) — 2"

Tyt o — 2| e T — 2t Lt G

Am+1
m!

1—0(2”50—(17*”—...— ”fo—l’*Hm
X HTQ — IB*H2
Moreover, if
(16) lzo — 2™ <4,
where & is the positive zero of the equation
30[2

Cmt Damirn  2m = Dam oy 302, g
(m +1)! m! 2

then the exact Newton method converges quadratically to x*.

(17)

This leads to the following interesting result for the inexact Newton
method.

THEOREM 3. Ifng =0, wy < 1, Ty € U(x*,0) with Ty # z*, and
(18) |Zo — || < min{d, do},
where &g is the positive root of the function

(19)  folt) = %(1 — w4 2m)E"™ + %[m S

«
—l——|—2—'2(3—w0)t—|—w0—1,
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then
(20)  [3(z0) — 7
< {wo (14 wo)[Fo — 2

Tl — 2™t + e my — MR L+ R
| — 27|

m:

1-— alHa?o — IE*” — ... = %Hfg — a;*Hm
< ||Zo — x|
Proof. By hypothesis (18) it follows that ||To — z*|| < §. If ¢(Tp) =
To — F'(To) "' F(Tp), then inequality (15) gives
(21)  [lo(@o) — 7|

Ttz —a* |+ MR B — at R g
|Zo — ™|

Am+1

1 —aol|To —2*|| — ... — =2 ||Zg — 2*||™

Hence, the first inequality in (20) follows from (9) by setting n = 0 and
using (21). Moreover, the term in braces in (20) is less than 1 iff (18) holds.
That completes the proof of Theorem 3.

The following result provides sufficient conditions for the local conver-
gence of the inexact Newton method.

THEOREM 4. If n, = 0, wp, < w < 1 for alln > 0 and Ty € U(z*,0)
satisfies

(22) 170 — 2™ < 0(w),
where §(w) is the positive oot of the function (19) with wy being w,

(23) ()= %(1 —w+ 2m)t" + S 2m — (14w

—|—...+%(3—w)t+w—1,

then the inexact Newton method (6)—(8) generates a sequence {T,} (n > 0)
which converges to x*.

Proof. The result follows from Theorem 3 by induction on n > 0.

REMARK 1. The conditions used in this study are different from the
corresponding ones in [6]—[8] unless o = 0, and F; = Fy = R* (i € N).

REMARK 2. Theorem 4 provides sufficient conditions for local conver-
gence. However, as noted in [8, p. 113], 7, # 0 in general, which may lead to
wp > 1, so that convergence breaks down. Therefore, though the theory can
predict monotonic decrease of the sequence {|x,, —z*||} (n > 0), in practice
the conditions of the theory fail to hold in some neighborhood of x*, and
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within this neighborhood the behavior of {Z,} (n > 0) is unpredictable. We
examine the extent of this neighborhood by introducing the notation

(24) op=wn+ (1 +wy)

Mo |7 — 2 N, gty
1Z7 — 2™ ||

AUm 41
m!

for n > 0. Using (9), (15) and (24) we can easily see that ||¢(Z,) — 2*| <
|Zn — *|| if

1—ag||@y —a*|| —... — T — x*||™

||$n _* €z ” > n ,

[|z*]] 1= (1 +n.)on
Thus, the crucial condition is o, < 1, and by (24) this condition implies
(26) wp <1, ||z, —2"|| <min{d,é,} (n>0)

where §,, is the positive root of the function

27)  falt) = %(1 — Wy + 2m)E™ + %[Qm — (1 4wyt

+...+%(3—wn)t+wn—l (n>0).

(25) (14 nn)on < 1.

Hence, as in condition (3.7) of [8, p. 113], we conclude that the crucial
condition is

||A;1(Fn — Fn)
[ F (@)~ P |

(28) A F (Z,) — I|| + I < 1.

3. Concluding comments—applications. The results obtained here
have theoretical and practical value. As an example we consider an operator
F that satisfies an autonomous differential equation of the form (see [3], [5])
(29) Fl(z) =T(F(z)), =z€U(",0),
where T': F5 — FEj is a known Fréchet-differentiable operator. Using (29)
we get F/(z*) = T(F(z*)) = T(0), and F"(z*) = F'(z*)Q'(F(z*)) =
Q(0)Q'(F(0)). That is, without knowing the solution z* we can use the
results obtained here. Below, we consider such an example for m = 2.

EXAMPLE. Let E; = Ey = R. Define functions F, T on U(0,1) by
(30) Fz)=e"—-1 (xz€U(0,1)),
(31) T(x)=z+1 (x € U(0,1)).
It follows from (30) and (31) that equation (29) is satisfied.
Using (11), (12), (17), (18), (19) and (30) we find for wy = 1/2 that:

a=e f=1,0=.411254048 and min{s,do} = 6o = .27587332. That is,
conditions (16) and (18) are satisfied provided

(32) lzo — 2*|| < 411254048
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and
(33) lZo — ™| < .27587332,

respectively.
In order to compare our results with the ones in [7], [8], let us first

introduce
(30)  p=sup { ”F/(x*>_‘|f_/(§ﬁ “FWL e Ut o), o # y}

Then the conditions in [7], [8] corresponding to (16) and (18) are

2

35 -z < —
(35) 2o~ < o
and

o 2(1—&]0)
36 To—x'|| < ————=,
( ) || 0 H (3—(,()0)/,6
respectively.

It can be easily seen from (30) and (34) that 1 = e. Hence, conditions
(35) and (36) are satisfied provided that

(37) 2o — 2*|| < 245253,
(38) |1Zo — 2*|| < .1471518,

respectively. That is, (32) and (35) provide a wider choice for =y and Zj
than conditions (37) and (38) respectively. It turns out that the ratios
of convergence are smaller in our case also. Indeed, (15) and (20) give
respectively for ||xg — x*|| < .2 and ||Tp — z*|| < .1 that

(39) 2o — F'(x0) "' F(z0) — 2*|| < .913609703||z¢ — z*||?
< 182721941 |z — ¥
and
(40) |6(Zo) — 2*|| < .599944213||To — .
The corresponding results in [7], [8] are
ullzo — o2
(1 = pllzo — 2*|)

(41) o — F'(z0) " Fz0) — 2| < 5

and
- (I +wo)plTo — x| | .

42 o(Tg) — x* S{wo—i— — To — x|,
(42) ¢ (Zo) [ 2(1 — pllzo — =*|)) I I
respectively. If we use the above values, (41) and (42) give
(43) |lzo — F'(x0) ' F(20) — || < .913609703| |29 — z* ||

< 182721941 |z — 27|
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and
(44) 16(To) — a*|| < 599944213|[T0 — 2*]),

respectively. That is, our ratios of convergence (39) and (40) are smaller
than (43) and (44) given in [7], [8]. These observations are important in
numerical computations.

Our results can be compared favorably with all the examples given in
[8]. However, we leave the details to the motivated reader.
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