
APPLICATIONES MATHEMATICAE

27,4 (2000), pp. 395–402

W. PO LOWCZUK (Wroc law)

NONZERO-SUM SEMI-MARKOV GAMES WITH

COUNTABLE STATE SPACES

Abstract. We consider nonzero-sum semi-Markov games with a countable
state space and compact metric action spaces. We assume that the payoff,
mean holding time and transition probability functions are continuous on
the action spaces. The main results concern the existence of Nash equilibria
for nonzero-sum discounted semi-Markov games and a class of ergodic semi-
Markov games with the expected average payoff criterion.

1. Introduction. Nonzero-sum Markov games with the expected av-
erage payoff criterion and countably many states were first studied by Fed-
ergruen [6] under a uniform ergodicity assumption. His results were gen-
eralized to Markov games with unbounded daily payoff functions satisfying
some weaker ergodicity or recurrence conditions [3, 5, 14, 20]. Lal and
Sinha [11] considered a semi-Markov generalization of Federgruen’s model
[6]. However, they solved two-person zero-sum games only. They proved
the existence of a value and optimal stationary strategies for the players by
the “vanishing discount factor approach”.

In this paper, we generalize the results by Lal and Sinha [11] to n-person
nonzero-sum semi-Markov games with countable state spaces. We adopt the
same uniform geometric ergodicity assumption as in [6] and [11]. Our paper
is also a generalization of Federgruen’s work [6]. We apply a more direct
argument based on the optimality equation for corresponding semi-Markov
control chains. A similar method was used in the proof of the existence of
a stationary Nash equilibrium for Markov games with the expected average
payoff criterion in [14]. For a broad discussion of many results concerning
nonzero-sum stochastic (mainly Markov) games with finite or Borel state
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space the reader is referred to [15]. Some results on correlated equilibria
in nonzero-sum semi-Markov games with general state spaces are stated in
[13]. Semi-Markov decision models and stochastic games have recently been
applied by many authors to studying queueing networks and replacement
problems [1, 2, 3, 10, 16, 19, 20].

An N -person nonzero-sum semi-Markov game is defined by the following
objects:

(i) S is a countable state space for the game.
(ii) Xk(s) is a nonempty compact metric space of actions for player k at

state s ∈ S. We put X(s) = X1(s) × . . . ×XN (s). Let Ak be the union of
the sets Xk(s) over all s ∈ S, and

D := {(s, x) : s ∈ S and x ∈ X(s)}.

(iii) rk : D → R is a bounded payoff function for player k such that rk(s, ·)
is continuous on X(s) for each s ∈ S.

(iv) q is a transition probability from D to S, called the law of motion

among states. If s is a state at some stage of the game and the players select
an x ∈ X, then q(· | s, x) is the probability distribution of the next state of
the game. It is assumed that q(s′ | s, ·) is continuous on X(s) for every s,
s′ ∈ S.

(v) F (t | s, s′, x) is a Borel measurable distribution function of the tran-
sition time from s to s′ when an action vector x ∈ X(s) is selected. For any
s ∈ S and x ∈ X(s), the mean holding time in state s is

τ(s, x) =
∑

s′∈S

∞\
0

t F (dt | s, s′, x)q(s′ | s, x).

In this paper, we make the following assumptions:

C1. For each s ∈ S the function τ(s, ·) is continuous on X(s).
C2. (i) There exist δ > 0 and ε > 0 such that

1−
∑

s′∈S

F (δ | s, s′, x)q(s′ | s, x) ≥ ε for every (s, x) ∈ D.

(ii) There exists M > 0 such that τ(s, x) ≤ M for every (s, x) ∈ D.

C2 is a natural assumption. It assures that there are only finitely many
transitions in any bounded time interval. From C2 it follows that the mean
holding time in state s is bounded:

∃ε > 0 ∃M > 0 ∀(s, x) ∈ D ε ≤ τ(s, π) ≤ M.

The game proceeds over the infinite future with past history as common
knowledge for all the players. If s is a state at some decision epoch in the
game and the players (independently of one another) select (possibly at ran-
dom) some x ∈ X(s), then player k receives a reward rk(s, x) and a new
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state s′ for the game is generated according to the probability distribution
q(s′ | s, x). Conditionally on the next state s′, the time until the transition
from s to s′ actually occurs is a random variable having the distribution func-
tion F (t | s, s′, x). The information available to all the players before their
nth choice of actions is the history vector hn = (s1, x1, . . . , sn−1, xn−1, sn)
where si ∈ S and xi ∈ X(si). We denote the set of such vectors by Hn and
assume that Hn is endowed with the product σ-algebra.

A strategy for player k is a sequence πk = (π1
k, π

2
k, . . .), where every πn

k

is a transition probability from Hn into Ak such that πk(Xk(s
n) |hn) = 1.

A stationary strategy for player k is a strategy πk = (π1
k, π

2
k, . . .) such that

each πn
k depends on the current state sn only. In other words, a strategy πk

of player k is called stationary if there exists a transition probability fk from
S into Ak such that for every decision epoch n and each history hn ∈ Hn,
we have πn

k (· |h
n) = fk(· | s

n). We let Πk (resp. Fk) denote the set of all
strategies (resp. stationary strategies) for player k.

Let F = F1× . . .×FN be the set of all stationary multi-strategies for the
players. We introduce some helpful notation. For any f = (f1, . . . , fN ) ∈ F

and any bounded function u : D → R, define

u(s, f) =
\

X1(s)

. . .
\

XN (s)

u(s, x1, . . . , xN ) f1(dx1 | s) . . . fN (dxN | s),

and, for any set B ⊂ S, put

q(B | s, f) =
\

X1(s)

. . .
\

XN (s)

q(B | s, x1, . . . , xN ) f1(dx1 | s) . . . fN (dxN | s).

2. Semi-Markov games with limiting average payoffs. Let H =
S ×X × S × . . . be the space of all infinite histories of the game, endowed
with the product σ-algebra. For any multi-strategy π = (π1, . . . , πN ) and
every initial state s1 = s ∈ S, a probability measure Pπ

s and a stochastic
process {σn, αn} are defined on H in a canonical way, where the random
variables σn and αn describe the state and the actions chosen by the players,
respectively, at the nth decision epoch (cf. Chapter 7 of [4]). Thus, for each
multi-strategy π = (π1, . . . , πN ) and every initial state s ∈ S, the expected
average payoff to player k is

Jk(s, π) = lim inf
n→∞

Eπ
s (
∑n

i=1 rk(σi, αi))

Eπ
s (
∑n

i=1 τ(σi, αi))
.

Here Eπ
s stands for the expectation operator with respect to the probability

measure Pπ
s .

For any multi-strategy π and any strategy ϕ ∈ Πk let (π−k, ϕ) be the
multi-strategy π with πk replaced by ϕ.
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Definition 1. A multi-strategy f∗ ∈ F is a stationary Nash equilibrium

for the semi-Markov game with the expected average payoff criterion if for
every player k, πk ∈ Πk and s ∈ S, we have

Jk(s, f
∗) ≥ Jk(s, (f

∗
−k, πk)).

In this section, we make the following uniform geometric ergodicity as-
sumption.

C3. There exist L > 0 and α ∈ (0, 1) such that

sup
B⊂S

|qn(B | s, f)− πf (B) | ≤ Lαn

for any f ∈ F and all s ∈ S, n ≥ 1. Here qn(· | s, f) is the n-step transition
probability of the Markov chain induced by q and f , and πf is the unique
invariant probability distribution for this Markov chain.

Condition C3 is rather difficult to check. It is equivalent to the simulta-
neous Doeblin assumption as formulated by Hordijk [9]. (For a discussion of
C3 in the context of Markov control processes and stochastic games consult
[6, 7, 9]). As noted by Meyn and Tweedie (see Theorems 2.1 and 2.2 in
[12]), C3 is implied by the following two assumptions:

C3(a). There exists δ > 0 and a state z ∈ S such that

q(z | z, x) > δ for all x ∈ X(z).

C3(b). There exists a bounded function w : S → [1,∞) such that for
some λ ∈ (0, 1) and η > 0 we have

∑

s′∈S

w(s′)q(s′ | s, x) ≤ λw(s) + η1{z}(s)

for each (s, x) ∈ D. Here 1{z} is the characteristic function of the set {z}.

We are ready to state our first main result.

Theorem 1. Any nonzero-sum semi-Markov game with the expected av-

erage payoff criterion satisfying conditions (i)–(iv) and C1–C3 has a sta-

tionary Nash equilibrium.

It is well known that the space Fk of all stationary strategies for player
k can be recognized as a compact convex subset of a metrizable topological
vector space [6]. A sequence {fn} converges to some f in Fk if and only
if {fn(· | s)} converges weakly to f(· | s) for each s ∈ S in the space of all
probability measures on Xk(s), denoted by P (Xk(s)).

The following fact follows from page 232 in [18].

Lemma 1. Let {vn} be a sequence of functions such that |vn(s)| ≤ D for

some D > 0 and for all s ∈ S. Assume that {vn} converges pointwise to
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some function v and fn → f in F (endowed with the product topology) as

n → ∞. Then
∑

s′∈S

vn(s′)q(s′ | s, fn) →
∑

s′∈S

v(s′)q(s′ | s, f).

Our proof of Theorem 1 is based on the following result which follows
from Theorem 2.1 of [7] and standard iteration arguments (see Theorem 7.6
in [17]).

Lemma 2. Suppose that our assumptions (i)–(iv) and C1–C3 are satis-

fied. Let s∗ ∈ S be a fixed state. Then for every player k and any stationary

multi-strategy f−k of the other players, there exist a unique bounded function

vf−k
: S → R and a constant gf−k

such that vf−k
(s∗) = 0 and

(1) vf−k
(s) = max

µ∈P (Xk(s))

{

rk(s, (f−k, µ))− gf−k
τ(s, (f−k, µ))

+
∑

s′∈S

vf−k
(s′)q(s′ | s, (f−k, µ))

}

.

Moreover , if f0
k ∈ Fk is a stationary strategy for player k which realizes the

maximum on the right side of (1), then

gf−k
= Jk(s, (f−k, f

0
k )) = sup

πk∈Πk

Jk(s, (f−k, πk)),

i.e., f0
k is average payoff optimal for player k.

Proof of Theorem 1. For any f ∈ F and every player k, define

gf−k
= sup

πk∈Πk

Jk((f−k, πk)).

Let s∗ be a fixed state in S. By Lemma 2, there exist unique functions
vf−k

such that vf−k
(s∗) = 0 (k = 1, . . . , N) and vf−k

is the solution of the
optimality equation (1) for all s ∈ S.

For each s ∈ S, define Yf−k
(s) as the set of all x ∈ Xk(s) for which the

maximum in the optimality equation (1) is attained.

Our continuity assumption implies that Yf−k
(s) are nonempty and com-

pact. Define Φk(f−k) as the set of all ϕk ∈ Fk such that ϕk(s)(Yf−k
(s)) = 1

for each s ∈ S. Clearly, Φk(f−k) is a compact convex subset of Fk (k =
1, . . . , N).

For any f ∈ F , put

Φ(f) = Φ1(f−1)× Φ2(f−2)× . . .× ΦN(f−N ).

We will show that Φ has a closed graph. Let fn → f0 in F . Assume that
ϕn = (ϕn

1 , . . . , ϕ
n
N ) ∈ Φ(fn) for each n and ϕn → ϕ0 in F as n → ∞. We

have to show that ϕ0 ∈ Φ(f0). From our ergodicity assumption C3, (iii)
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and C2, it follows that there exist constants c1 and c2 such that

|vfn

−k
(s)| ≤ c1, |gfn

−k
| ≤ c2 for all s ∈ S, n ≥ 1.

For the details see [7]. Therefore we can construct a subsequence {n′} of
positive integers such that all the sequences {vfn′

−k

} are pointwise convergent

to some bounded functions vk. Moreover, gfn′

−k

→ gk for some real numbers

gk. To simplify notation, we assume that vfn

−k
→ vk pointwise and gfn

−k
→

gk (k = 1, . . . , N) as n → ∞. The inclusions ϕn ∈ Φ(fn) for every n imply
that in the limiting case we have

vk(s) = max
µ∈P (Xk(s))

{

rk(s, (f
0
−k, µ))− gkτ(s, (f

0
−k, µ))(2)

+
∑

s′∈S

vk(s
′)q(s′ | s, (f0

−k, µ))
}

= rk(s, (f
0
−k, ϕ

0
k))− gkτ(s, (f

0
−k, ϕ

0
k))

+
∑

s′∈S

vk(s
′)q(s′ | s, (f0

−k, ϕ
0
k))

for all s ∈ S. Moreover, vk(s
∗) = 0 (k = 1, . . . , N). By (2) and the

uniqueness part of Lemma 2, we have gk = gf0

−k
and vk(s) = vf0

−k
(s).

This implies that ϕ0 ∈ Φ(f0). By Glicksberg’s theorem [8], there exists
f∗ ∈ Φ(f∗). This fact and Lemma 2 imply that f∗ is a Nash equilibrium
for the semi-Markov game in the class of all strategies.

3. Semi-Markov games with the discounted payoff criterion. In
this model payoffs are continuously discounted, that is, a payoff r at time
t is equivalent to a payoff re−αt at time 0, where α ∈ (0, 1) is a discount
factor. We define β(s, s′, x) to be the one-step discount function

β(s, s′, x) =

∞\
0

e−αt F (dt | s, s′, x).

For every (s, x) ∈ D and s′ ∈ S, let

η(s, s′, x) = β(s, s′, x)q(s′ | s, x).

The following fact follows from Lemma 3.4 of [11].

Lemma 3. Assume (i)–(iv) and C1–C2. Then there exists δ > 0 such

that for every (s, x) ∈ D,

∑

s′∈S

η(s, s′, x) =
∑

s′∈S

∞\
0

e−αt F (dt | s, s′, x)q(s′ | s, x) ≤ 1− δ < 1.

The stochastic process {σn, αn} and the probability measure Pπ
s were

defined at the beginning of the previous section. For each multi-strategy
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π ∈ Π and every initial state s ∈ S, the expected discounted payoff to
player k is

J
β
k (s, π) = Eπ

s

{

rk(σ1, α1)

+
∞
∑

n=2

rk(σn, αn)β(σ1, σ2, α1) . . . β(σn−1, σn, αn−1)
}

.

From Lemma 3, it follows that Jβ
k (s, π) is uniformly bounded in s ∈ S and

π ∈ Π.

Definition 2. A multi-strategy f∗ ∈ F is a stationary Nash equilibrium

for the discounted semi-Markov game if for every player k, πk ∈ Πk and
s ∈ S, we have

J
β
k (s, f

∗) ≥ J
β
k (s, (f

∗
−k, πk)).

Theorem 2. Any nonzero-sum semi-Markov game with the expected dis-

counted payoff criterion satisfying conditions (i)–(iv) and C1–C2 has a

stationary Nash equilibrium.

P r o o f. The proof follows the lines of that of Theorem 1. We just replace
(1) in the definition of Φ by the following discounted optimality equation:

Vf−k
(s) = max

µ∈P (Xk(s))

{

rk(s, (f−k, µ)) +
∑

s′∈S

η(s, s′, (f−k, µ))Vf−k
(s′)

}

.

Using similar arguments, we prove that there exists f∗ ∈ Φ(f∗), and to
conclude that f∗ is a Nash equilibrium in the class of all strategies we refer
to the dynamic programming paper by Federgruen and Tijms [7].

Acknowledgements. We are grateful to Prof. Andrzej S. Nowak for
many discussions on the subject of stochastic games and also for his helpful
comments.

References

[1] E. Altman, Non zero-sum stochastic games in admission, service and routing con-
trol in queueing systems, Queueing Systems Theory Appl. 23 (1996), 259–279.

[2] E. Altman and A. Hord i jk, Zero-sum Markov games and worst-case optimal
control of queueing systems, ibid. 21 (1995), 415–447.

[3] E. Altman, A. Hord i jk and F. M. Spieksma, Contraction conditions for average
and α-discount optimality in countable state Markov games with unbounded rewards,
Math. Oper. Res. 22 (1997), 588–618.

[4] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control : The Discrete
Time Case, Academic Press, New York, 1979.

[5] V. S. Borkar and M. K. Ghosh, Denumerable state stochastic games with limiting
average payoff , J. Optim. Theory Appl. 76 (1993), 539–560.



402 W. Po lowczuk

[6] A. Federgruen, On n-person stochastic games with denumerable state space, Adv.
Appl. Probab. 10 (1978), 452–471.

[7] A. Federgruen and H. C. Ti jms, The optimality equation in average cost denu-
merable state semi-Markov decision problems, recurrency conditions and algorithms,
J. Appl. Probab. 15 (1978), 356–373.

[8] I. L. Gl icksberg, A further generalization of the Kakutani fixed point theorem with
application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170–174.

[9] A. Hord i jk, Dynamic Programming and Markov Potential Theory , Math. Cen-
trum, Amsterdam, 1977.

[10] M. Kurano, Semi-Markov decision processes and their applications in replacement
models, J. Oper. Res. Soc. Japan 28 (1985), 18–30.

[11] A. K. Lal and S. S inha, Zero-sum two-person semi-Markov games, J. Appl. Probab.
29 (1992), 56–72.

[12] S. P. Meyn and R. L. Tweed ie, Computable bounds for geometric convergence
rates of Markov chains, Ann. Appl. Probab. 4 (1994), 981–1011.

[13] A. S. Nowak, Some remarks on equilibria in semi-Markov games, this issue, 385–
394.

[14] —, Sensitive equilibria for ergodic stochastic games with countable state spaces,
Math. Methods Oper. Res. 50 (1999), 65–76.

[15] A. S. Nowak and K. Szajowsk i, Nonzero-sum stochastic games, Ann. Internat.
Soc. Dynamic Games 4 (1999), 297–342.

[16] O. Passch ier, The Theory of Markov Games and Queueing Control , Ph.D. thesis,
Dept. Math. and Computer Sci., Leiden Univ., 1996.

[17] S. M. Ross, Applied Probability Models with Optimization Applications, Holden
Day, San Francisco, 1970.

[18] H. Royden, Real Analysis, MacMillan, New York, 1968.
[19] L. I. Sennott, Average cost semi-Markov decision processes and the control of

queueing systems, Probab. Engnrg. Inform. Sci. 3 (1989), 247–272.
[20] —, Nonzero-sum stochastic games with unbounded costs: discounted and average

cost cases, Z. Oper. Res. 40 (1994), 145–162.

Wojciech Po lowczuk
Institute of Mathematics
Wroc law University of Technology
Wybrzeże Wyspiańskiego 27
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