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MINIMAX MUTUAL PREDICTION

Abstract. The problems of minimax mutual prediction are considered for
binomial and multinomial random variables and for sums of limited random
variables with unknown distribution. For the loss function being a linear
combination of quadratic losses minimax mutual predictors are determined
where the parameters of predictors are obtained by numerical solution of
some equations.

1. Introduction. Suppose that a number of statisticians are observ-
ing some random variables. Assume that the ith statistician is observing a
random variable Xi. He wants to predict the random variables of his part-
ners. Let dij(Xi) be the predictor he applies to predict Xj . Let the loss
connected with this prediction be Lij(Xj , dij(Xi)). Then the total loss of
all statisticians is

(1) L(X, d) =
l∑

i,j=1
i 6=j

Lij(Xj , dij(Xi))

where X = (X1, . . . , Xl),

d =


− d12 . . . d1l

d21 − . . . d2l

. . . . . . . . . . . . . . . . . .
dl1 dl2 . . . −

 =: [dij ]l1.

Suppose that the random variable X has distribution depending on an un-
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known parameter µ. The risk function is defined as

(2) R(µ, d) = Eµ(L(X, d)) =
l∑

i,j=1
i 6=j

Eµ(Lij(Xj , dij(Xi)))

where Eµ(·) denotes the expected value.
A mutual predictor d0 is minimax if

sup
µ

R(µ, d0) = inf
d

sup
µ

R(µ, d).

In this paper we shall find minimax mutual predictors in some situations.

2. Mutual predictors for binomial random variables. Let the
variables X1, . . . , Xl be independent and have binomial distributions

fi(xi | p) =
(

ni

xi

)
pxi(1− p)ni−xi

where the fi are densities with respect to the counting measure. Let the
losses Lij be quadratic. Then

L(X, d) =
l∑

i,j=1
i 6=j

kij(dij(Xi)−Xj)2

where kij ≥ 0,
∑

i 6=j kij > 0. Hence the risk function R(p, d) can be repre-
sented in the form

R(p, d) =
l∑

i,j=1
i 6=j

kijEp(dij(Xi)−Xj)2(3)

=
l∑

i,j=1
i 6=j

kij [Ep(dij(Xi)− njp)2 + njp(1− p)].

We shall look for minimax mutual predictors. Consider predictors of the
form

(4) dij(Xi) = nj
Xi + α

ni + γ
, α > 0, γ > 0.

In this case

(5) R(p, d) =
l∑

i,j=1
i 6=j

kij

[
n2

jEp

(
Xi + α

ni + γ
− p

)2

+ njp(1− p)
]
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=
l∑

i,j=1
i 6=j

kij

[
n2

j

(ni + γ)2
(nip(1− p) + (α− γp)2) + njp(1− p)

]
.

The risk R(p, d) will be constant if

(6)
l∑

i,j=1
i 6=j

kij

[
n2

j

(ni + γ)2
(−ni + γ2)− nj

]
= 0

and

(7)
l∑

i,j=1
i 6=j

kij

[
n2

j

(ni + γ)2
(ni − 2αγ) + nj

]
= 0.

For γ = 0 the left side of the first equation is negative, and as γ →∞ it
tends to

(8) A =
l∑

i,j=1
i 6=j

kijnj(nj − 1) ≥ 0.

Moreover it is an increasing function of the parameter γ. Therefore if A > 0
there always exists a unique solution of equation (6).

Suppose that there exists a solution γ of (6). In this case there exists a
solution α of (7) and

(9) α = γ/2.

Equation (6) can be solved numerically.
When n1 = . . . = nl =: n > 1, the solution of (6) is

(10) γ =
n

n− 1
(
√

2n− 1 + 1)

and it is independent of kij .
When all kij = 0 except, say k12, equation (6) has a solution

(11) γ =
n1

n2 − 1

(
n2

√
1
n1

+
1
n2
− 1

n1n2
+ 1

)
.

Suppose that there exists a solution γ > 0 of (6). It is easy to prove that
the predictors given by (4) are Bayes with respect to the a priori distribution
of the parameter p given by the density

(12) g(p) =
1

B(α, γ − α)
pα−1(1− p)γ−α−1 for 0 < p < 1.

Thus the mutual predictor d = [dij ]l1 defined by (4), being a constant risk
Bayes predictor, is minimax if α = γ/2, where γ is a solution of (6).
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When A = 0 a minimax mutual predictor is given by

(13) dij(Xi) = nj/2.

It is obtained by letting γ →∞, α = γ/2 in (4).
The problem of minimax prediction when only one kij > 0 was solved

by Hodges and Lehmann in [1].
When A > 0 the minimax risk is

(14) R(p, d0) =
1
4

l∑
i,j=1
i 6=j

kijn
2
j

(ni + γ)2
γ2

where d0 satisfies (4), (6) and (9).
When A = 0 the minimax risk can be obtained by letting γ → ∞ in

formula (14):

(15) R(p, d0) =
1
4

l∑
i,j=1
i 6=j

kijn
2
j

where d0 is given by (13).

3. Minimax mutual predictors for multinomial random vari-
ables. Let now Xi = (Xi1, . . . , Xir), i = 1, . . . , 1, be independent random
variables distributed according to multinomial laws

fi(xi | p) =
ni!

xi1! . . . xir!
pxi1
1 . . . pxir

r ,

where xi = (xi1, . . . , xir) is the value of Xi. Let the loss function be of the
form

(16) L(X, d) =
l∑

i,j=1
i 6=j

r∑
k=1

kij(d
(k)
ij (Xi)−Xjk)2.

Let us consider the predictors

(17) d
(k)
ij (Xi) = nj

Xik + αk

ni + γ
, i, j = 1, . . . , l, i 6= j, k = 1, . . . , r.

It is easy to show that for the loss function given by (16) with some kij > 0
these Bayes predictors satisfy the equations

(18)
r∑

k=1

d
(k)
ij (Xi) = nj , j = 1, . . . , l.

All these equations will surely be satisfied by d
(k)
ij given in (17) when

(19) αk = γ/r, k = 1, . . . , r.
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For predictors satisfying (17) and (19) the risk function will take the form

(20) R(p, d) =
l∑

i,j=1
i 6=j

r∑
k=1

kij

[
n2

j

(ni + γ)2
(nipk(1− pk) + (αk − γpk)2)

+njpk(1− pk)
]
.

Notice that in (20) the coefficients of p2
k for k = 1, . . . , r are the same.

They are zero when γ satisfies (6).
Let αk satisfy (19). In this case for γ given by (6) the expresion (20)

will take the form

R(p, d) =
l∑

i,j=1
i 6=j

kij

[
n2

j

(ni + γ)2

(
ni −

γ2

r

)
+ nj

]
(21)

(6)
=

l∑
i,j=1
i 6=j

kij

[
n2

j

(ni + γ)2

(
ni −

γ2

r

)

+ nj +
n2

j

(ni + γ)2
(−ni + γ2)− nj

]
=

r − 1
r

l∑
i,j=1
i 6=j

kij

n2
j

(ni + γ)2
γ2.

From the above it follows that d = [(d(1)
ij , . . . , d

(r)
ij )]l1, where d

(k)
ij are

given by (17), (19) and (6), is a constant risk mutual predictor. Let p =
(p1, . . . , pr) be a random variable. The expression

(22) E(Ep(d
(k)
ij (Xi)−Xjk)2) = E(Ep(d

(k)
ij (Xi)− njpk)2 + njpk(1− pk))

attains its minimum when

(23) d
(k)
ij (Xi) = njE(pk |Xi) = njE(pk | (Xi1, . . . , Xir)).

Here E(pk |Xi) denotes the conditional expectation of the random variable
pk under the condition that Xi is given. For the a priori distribution given
by the density

(24) g(p1, . . . , pk) =
Γ (γ)

[Γ (γ/r)]r
(p1 . . . pr)γ/r−1

we find that

(25) d
(k)
ij (Xi) = njE(pk |Xi) = nj

Xik + γ/r

ni + γ

is a Bayes predictor.
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We have shown that the mutual predictor d given by (17) and (19) is a
Bayes predictor. Thus for γ satisfying (6) it is a minimax predictor for the
loss function (16).

Equation (6) has a solution γ when A > 0 (see (8)). When A = 0 it
is easy to show that a minimax mutual predictor is independent of X =
(X1, . . . , Xl) and is given by

(26) d
(k)
ij (Xi) = nj/r, i, j = 1, . . . , l, i 6= j, k = 1, . . . , r,

and

(27) R(p, d) =
r − 1

r

l∑
i,j=1
i 6=j

kijn
2
j .

If only one kij 6= 0, the results of this section follow from the paper of
Wilczyński [4].

4. Minimax predictors of limited random variables. Suppose
that the ith statistician is observing ni random variables Xi1, . . . , Xini

with
values in the interval [0, 1] and let Xi =

∑ni

k=1 Xik, X = (X1, . . . , Xl), where
the Xik are independent. The statistician wants to predict the random
variables Xj , j = 1, . . . , l, j 6= i. Let the total loss function of all statisticians
be of the form

(28) L(X, d) =
l∑

i,j=1
i 6=j

kij(dij(Xi)−Xj)2.

Let the random variables Xik, i = 1, . . . , l, k = 1, . . . , ni, have the same
distribution function F and let µ = EF (Xik). The risk function is

R(µ, d) =
l∑

i,j=1
i 6=j

kijEF (dij(Xi)−Xj)2(29)

=
l∑

i,j=1
i 6=j

kij [EF (dij(Xi)− njµ)2 + EF (Xj − njµ)2].

We look for minimax predictors.
Let us try predictors of the form

(30) dij = nj
Xi + α

ni + γ
.
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Then

R(µ, d) =
l∑

i,j=1
i 6=j

kij

n2
j

(ni + γ)2
[EF (Xi − niµ)2(31)

+ (α− γµ)2 + EF (Xj − njµ)2]

≤
l∑

i,j=1
i 6=j

kij

[
n2

j

(ni + γ)2
(niµ(1− µ)

+ (α− γµ)2) + njµ(1− µ)
]
.

Let equations (6) and (7) be satisfied. Then α = γ/2 and

(32) R(µ, d) =
1
4

l∑
i,j=1
i 6=j

kij

n2
j

(ni + γ)2
γ2 =: c

and for any random variable X = (X1, . . . , Xl) satisfying the conditions
given at the beginning of this section,

(33) R(µ, d) ≤ c.

Let Xik have two-point distribution

(34) P (Xik = 0) = 1− p, P (Xik = 1) = p.

Then µ = p and equality holds in (31). From formulae (31)–(34) and the
results of Section 2 it follows that for γ satisfying (6) and α = γ/2, the
predictor d = [dij ]l1 given by (30) is a minimax mutual predictor. This
holds when A > 0, where A is defined in (8).

For A = 0 a minimax mutual predictor is given by the formula

(35) dij(Xi) = nj/2.

When only one kij 6= 0 the problem considered in this section was solved
by Hodges and Lehmann in [1].

Analogous results can also be obtained for mutual prediction of sample
cumulative distribution functions for a properly chosen loss function. For
minimax estimation of cumulative distribution functions, see Phadia [2].

For minimax estimators and predictors of many parameters and random
variables, see [3], [4].
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