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RADIALLY SYMMETRIC SOLUTIONS

OF THE POISSON–BOLTZMANN EQUATION

WITH A GIVEN ENERGY

Abstract. We consider the following problem:

∆Φ = ± MT
Ω
e−Φ/Θ

e−Φ/Θ , E = MΘ ∓ 1

2

\
Ω

|∇Φ|2, Φ|∂Ω = 0,

where Φ : Ω ⊂ R
n → R is an unknown function, Θ is an unknown constant

and M , E are given parameters.

1. Introduction. We are interested in the motion of a system of
Brownian particles confined to a thermally insulated container Ω ⊂ R

n

(n = 2, 3). We assume that the particles move under the influence of mutual
electric or gravitational interactions and are submitted to thermal diffusion
(for physical background see [2], [8]).

Let M , E denote the total charge (total mass) and energy of our sys-
tem, respectively. It is known ([2]; [3], Ch. 10) that in the thermodynamical
equilibrium the electric (gravitational) potential Φ of the system under con-
sideration satisfies the Poisson–Boltzmann equation

(1) ∆Φ = ± MT
Ω
e−Φ/Θ

e−Φ/Θ,

where Θ is the temperature which can be evaluated from the equation of
energy

(2) E = MΘ ∓ 1

2

\
Ω

|∇Φ|2.
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The sign “−” (“+”) in (1) corresponds to the Coulomb (gravitational) inter-
actions. In (2) inversely, “−” corresponds to the gravitational interactions.

Using the notation ϕ = Φ/Θ we transform (1)–(2) into

∆ϕ = ±M

θ

e−ϕT
Ω
e−ϕ

,(3)

E = Mθ ∓ 1

2
θ2
\
Ω

|∇ϕ|2.(4)

We suppose that at the boundary ∂Ω of Ω, the potential ϕ is constant.
This assumption is physically reasonable in the case of Coulomb interactions
(it means that the boundary is grounded) or for arbitrary interactions if
the domain Ω is radially symmetric. The Poisson–Boltzmann equation is
invariant with respect to the transformation ϕ 7→ ϕ+ const, so we may put

(5) ϕ|∂Ω = 0.

Multiplying (3) by ϕ and integrating over Ω we get

‖∇ϕ‖2 = ∓M

θ
· 1T

Ω
e−ϕ

\
Ω

e−ϕϕ.

Hence the energy E may be written in the form

(6) E =
MθT
Ω
e−ϕ

\
Ω

e−ϕ

(

1 +
1

2
ϕ

)

.

Putting the temperature

θ =
E

M

T
Ω
e−ϕT

Ω
e−ϕ

(

1 + 1
2ϕ

)

into (3), we get a nonlocal elliptic equation for the potential ϕ,

(7) ∆ϕ = ±M2

E

T
Ω
e−ϕ

(

1 + 1
2ϕ

)

(
T
Ω
e−ϕ)2

e−ϕ.

For given M and E we are interested in the existence of solutions of (5),
(7). We will call (5), (7) with the sign “−” the electric problem and with
the sign “+” the gravitational problem. Note that in the case of electric
interactions the energy is positive while for gravitational interactions it may
also be negative. The equation (7) with boundary condition (5) is equivalent
to our original problem (3)–(5) whenever Θ > 0. This is actually so in the
case of electric interactions (since E > 0) and for gravitational interactions
in a two-dimensional ball. Note that we cannot expect this equivalence in
higher dimensions for the gravitational case.

2. Two-dimensional radially symmetric case. We assume that
Ω = {x ∈ R

2 : |x| ≤ 1}, the ball of radius one, and we look for radially
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symmetric solutions of (5), (7). In this case our problem reads

1

r
(rϕ′)′(r) = ±M2

E

T1
0
se−ϕ(s)

(

1 + 1
2ϕ(s)

)

ds

2π(
T1
0
se−ϕ(s) ds)2

e−ϕ(r),(8)

ϕ′(0) = 0, ϕ(1) = 0.(9)

Using the integrability of the Poisson–Boltzmann equation in the radially
symmetric two-dimensional case we prove

Theorem 1. The problem (8)–(9) has a unique solution.

P r o o f. We will consider two cases.

(a) Electric problem (the sign “−” in (8)). The Poisson–Boltzmann
equation

1

r
(rϕ′)′(r) = −C

e−ϕ(r)T1
0
se−ϕ(s) ds

, C > 0,(10)

ϕ′(0) = 0, ϕ(1) = 0,(11)

has the explicit solution ([1], [6])

ϕC(r) = 2 log

(

4 + C − Cr2

4

)

.

After simple calculations we obtain

(

1\
0

se−ϕC(s) ds
)−1

=
4 + C

2
,(12)

1\
0

se−ϕC(s)ϕC(s) ds =
4

4 + C

(

1− 4

C
log

(

1 +
C

4

))

.(13)

Define

V (C) :=

T1
0
se−ϕC(s)

(

1 + 1
2ϕC(s)

)

ds

2π
T1
0
se−ϕC(s) ds

.

Note that if C satisfies M2/E = C/V (C) =: g(C) then ϕC is a solution of
(8)–(9).

Using (12), (13) we get

2πC

2− 4
C
log

(

1 + C
4

) = g(C).

Obviously, g(C) is a continuous, increasing function and limC→∞ g(C) = ∞,
limC→0+ g(C) = 0. Hence for each M ≥ 0, E > 0 (as mentioned above, in
the electric case E > 0) the equation M2/E = g(C) has a unique solution.
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(b) Gravitational problem (the sign “+” in (8)). It is easy to check that

ϕC(r) = 2 log

(

4− C + Cr2

4

)

, C ∈ (0, 4),

is a unique solution of the problem ([1], [6])

1

r
(rϕ′)′(r) = C

e−ϕ(r)T1
0
se−ϕ(s) ds

,(14)

ϕ′(0) = 0, ϕ(1) = 0.(15)

After easy calculations we get

(

1\
0

se−ϕC(s) ds
)−1

=
4− C

2
,

1\
0

se−ϕC(s)ϕC(s) ds =
4

4− C

(

1 +
4

C
log

(

1− C

4

))

.

In this case the function V defined above has the form

V (C) =
1

π

(

1 +
2

C
log

(

1− C

4

))

.

A function ϕC is a solution of the gravitational problem (8)–(9) if and
only if

(16)
M2

E
=

C

V (C)
=

2πC

2 + 4
C
log

(

1− C
4

) =: f(C).

It is easy to see that there exists C1 ∈ (0, 4) such that f is increasing on
(0, C1)∪(C1, 4) and limC→0+ f(C) = 0, limC→C−

1
f(C) = ∞, limC→C+

1
f(C)

= −∞ and limC→4− f(C) = 0. The graph of f is shown in Figure 1.

-

6

4C1

f(C)

Fig. 1. The graph of the function f(C) (eq. (16)) for C ∈ (0, 4)
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From Fig. 1 we see that the equation M2/E = f(C) has a unique
solution for all M > 0, E 6= 0.

Remark. Similarly we may prove the existence of solutions of (8) in a
ball of radius R. The auxiliary functions have the form

ϕC,R(r) = 2 log

(

(4 + C)R2 − Cr2

4R2

)

, C > 0,

in the case of electric interactions and

ϕC,R(r) = 2 log

(

(4− C)R2 + Cr2

4R2

)

, C ∈ (0, 4),

in the gravitational case.

3. Radially symmetric problem (5), (7) in R
n. We will consider

the radially symmetric electric problem in a ball of radius one in R
n.

Our problem reads

1

rn−1
(rn−1ϕ′)′(r) = −M2

E

T1
0
sn−1e−ϕ(s)

(

1 + 1
2ϕ(s)

)

ds

σn(
T1
0
sn−1e−ϕ(s) ds)2

e−ϕ(r),(17)

ϕ′(0) = 0, ϕ(1) = 0,(18)

where σn is the area of the unit sphere in R
n.

In the previous section we used the explicit form of solutions of the
Poisson–Boltzmann equation in the two-dimensional case. Such formulas
are not known in higher dimensions. To prove the existence for (17)–(18)
we use the technique of sub- and supersolutions ([7]).

We start our considerations with the general electric problem (5), (7).
Let ϕC be the unique solution ([4]) of the elliptic problem

∆ϕC = −Ce−ϕC , C > 0,(19)

ϕC |∂Ω = 0.(20)

To prove the existence of solutions of (5), (7) we show that there exists
a constant C such that

(21) C =
M2

E

T
Ω
e−ϕC

(

1 + 1
2ϕC

)

(
T
Ω
e−ϕC )2

.

Integrating (19) over Ω we get

(22)
\

∂Ω

∂ϕC

∂ν
= −C

\
Ω

e−ϕC .

Using (22) we may write (21) in the form

(23)
M2

E
=

2(
T
∂Ω

∂ϕC/∂ν)
2

C
T
Ω
ϕCe−ϕC − 2

T
∂Ω

∂ϕC/∂ν
=: F (C).



470 T. Nadzieja and A. Raczyński

Hence the problem of the existence of solutions of (5), (7) for M,E > 0
is equivalent to showing that F ((0,∞)) = (0,∞). We are able to prove it
knowing the particular form of sub- and supersolutions of (19)–(20).

Lemma 1. For α < 1/2 and sufficiently large C > 0 the function ϕC(r) =

2 log(1 + Cα(1− r2)/(2n)) is a subsolution of (19)–(20).

P r o o f. After simple calculations we have

∆ϕC = − 2Cα 1 + Cα(1− r2)/(2n)

(1 + Cα(1− r2)/(2n))2
(24)

− 2
C2α

n2

r2

(1 + Cα(1− r2)/(2n))2
.

We have to show that −∆ϕC ≤ Ce−ϕC . This is equivalent to the in-
equality

(25) 2Cα

(

1 + Cα 1− r2

2n

)

+ 2
C2α

n2
r2 ≤ C,

which is obviously satisfied for α < 1/2 and sufficiently large C.

In a similar way we prove

Lemma 2. The function

ϕC = 2 log(1 + C(1− r2)/(2n))

is a supersolution of (19)–(20) for all C > 0.

P r o o f. We have

−∆ϕC = 2C
1 + C(1− r2)/(2n)

(1 + C(1− r2)/(2n))2
(26)

+ 2
C2

n2

r2

(1 + C(1− r2)/(2n))2
.

Putting (26) and ϕC = 2 log(1 + C(1 − r2)/(2n)) into the desired in-
equality −∆ϕC ≥ Ce−ϕC we get

2 + C
1− r2

n
+ 2

C

n2
r2 ≥ 1,

which implies that ϕC is a supersolution of (19)–(20) for all C > 0.

From Lemmas 1 and 2 we have

ϕC(r) ≤ ϕC(r) ≤ ϕC(r).

Hence

(27) |ϕ′
C(1)| = 2

Cα

n
≤ |ϕ′(1)| ≤ 2

C

n
= |ϕ′

C(1)|.
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Thus

F (C) ≤
\

∂Ω

∣

∣

∣

∣

∂ϕC

∂ν

∣

∣

∣

∣

≤ 2C

n
,

which implies that limC→0+ F (C) = 0.

Using (27) we may estimate F (C) from below

F (C) =

T
∂Ω

|∂ϕC/∂ν|
1 + 1

2C
T
Ω

ϕCe−ϕCT
∂Ω

|∂ϕC/∂ν|

(28)

≥ 2Cα/n

1 + C1−α(n/4)
T
Ω
e−ϕCϕC

=
2

n(C−α + (n/4)C1−2α
T
Ω
e−ϕCϕC)

.

Asymptotically as C → ∞,\
Ω

e−ϕCϕC =

1\
0

2 log

(

1 + C
1− r2

2n

)

1

(1 + Cα(1− r2)/(2n))2
dr ≈ Cγ

for some γ < 0. Therefore F (C) → ∞ as C → ∞.

To show that F ((0,∞)) = (0,∞) we prove

Lemma 3. The solution ϕC of (19)–(20) depends continuously on C in

the supremum norm.

P r o o f. For C > C0 the function ϕ = (C/C0)ϕC0
is a supersolution of

(19)–(20). In fact,

−∆
C

C0
ϕC0

= Ce−ϕC0 ≥ Ce−(C/C0)ϕC0 .

Similarly, the function ϕ = (C/C0)ϕC0
for C < C0 is a subsolution of

(19)–(20).

Moreover, for C > C0 the function ϕC0
is a subsolution of (19)–(20) and

for C < C0 the function ϕC0
is a supersolution of (19)–(20).

Hence for C1 < C0 < C2 we have

C1

C0
ϕC0

≤ ϕC1
≤ ϕC0

≤ ϕC2
≤ C2

C0
ϕC0

,

which implies continuous dependence ϕC on the parameter C.

We have shown

Theorem 2. The problem (17)–(18) has a solution for all M,E > 0.

Using the Schauder fixed point theorem and the estimates for the Green
function and its derivatives we can prove
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Theorem 3. If Ω is a bounded domain in R
n (n ≥ 3) with smooth

boundary then the problem (5), (7) has a solution for sufficiently small values

of M2/|E|.
P r o o f. We define the operator A : C0(Ω) → C0(Ω) by the formula

Aϕ(x) = ±M2

E

T
Ω
e−ϕ

(

1 + 1
2
ϕ
)

(
T
Ω
e−ϕ)2

\
Ω

G(x, y)e−ϕ(y) dy,

where G(x, y) is the Green function for the Laplace operator. The estimates
(cf. [5])

|G(x, y)| ≤ C(Ω)|x− y|−(n−2),(29)

|∇xG(x, y)| ≤ C ′(Ω)|x− y|−(n−1)(30)

show that A is a continuous and compact operator. To use the Schauder
theorem we should show that A transforms some ball BR(0) ⊂ C0(Ω) into
itself.

In fact, for ϕ ∈ BR we have

(31) |Aϕ(x)| ≤ Γ (Ω)
M2

|E| e
2R(1 +R/2),

where Γ (Ω) = supx∈Ω |
T
Ω
G(x, y) dy|. This implies that if

M2

|E| ≤ 1

Γ (Ω)
2(3 − 2

√
2)e−2(

√
2−1),

then Aϕ ∈ BR(0).
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Added in proof (November 2000). Recently new results about the problem (3)–(5)
were obtained. In the paper by P. Biler, J. Dolbeault, M. Esteban and G. Karch, Sta-
tionary solutions, intermediate asymptotics and large time behaviour of type II Streater’s
models, Adv. Differential Equations 6 (2001), 461–480, the authors proved the existence
of solutions for electric interactions in an arbitrary domain. In the paper by P. Biler,
J. Dolbeault, M. Esteban, P. A. Markovich and P. Nadzieja, Steady states for Streater’s
energy-transport models of self-gravitating particles (preprint), some partial results were
obtained in the case of gravitational interactions.


