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GOODNESS-OF-FIT TESTS BASED
ON CHARACTERIZATIONS
OF CONTINUOUS DISTRIBUTIONS

Abstract. We construct goodness-of-fit tests for continuous distributions
using their characterizations in terms of moments of order statistics and
moments of record values. Our approach is based on characterizations pre-
sented in [2]-[4], [5], [9].

1. Introduction. Let (Xi,...,X,) be a random sample from a dis-
tribution F(z) = P[X < z], z € R, and let X}., denote the kth smallest
order statistic of the sample. In what follows we use the following char-
acterizations of continuous distributions via moments of functions of order
statistics.

THEOREM 1 (cf. [9]). Let m be a positive integer and EX}?. < oo for
some pair (k,n). Then

k-1 ., (k+m—1) (k + 2m — 1)!
—FX; —-2—FEXp impim + ——m————— =
n! hin (n+m)! kpmentm + (n+2m)!
iff F(z) = 2'/™ on (0,1).
Taking k =n =1, we get
COROLLARY 1. F(x) = z'/™ on (0,1) iff
2 1
——FEX 41 - EX? = .
m 1 2m + 1

In particular, X ~ U(0,1) iff EX2.0 — EX? =1/3.
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In the following theorems, X denotes a random variable with distribution
F, and I(F') denotes the minimal interval containing the support of F'.

THEOREM 2 (cf. [5]). Let n, k, | be given integers such that n >k > 1>
1. Assume that G is a nondecreasing right-continuous function from R to
R. Then the relations

(k+1)...(k+1)
n+2)...(n+1+4+1)’

(k—=14+1)...(k+1)
m=142)...(n+1+1)
hold iff F(x) = G(x) on I(F) and F is continuous on R.

Taking n =k =1=1, we get

EGl (Xk+1:n+1) -

EG (Xpi1—tmr11) =

COROLLARY 2. F(z) = G(x) on I(F) and F is continuous on R iff
EG2(X) = 1/3 and EG(Xa2:) = 2/3.

THEOREM 3 (cf. [2], [3]). Under the assumptions of Theorem 2, F(x) =
G(x) on I(F) and F is continuous on R iff

k—1)!
(n(_l_|_)1)!EG2l(Xk+1l:n+ll)
2%! (k+1)!
— EGH X1, —_— =
(n+1)! & (Kirrin+1) + (n+1+1)

Taking n =k =1=1, we get
COROLLARY 3. F(z) = G(x) on I(F) and F is continuous on R iff
(1.1) EG(X32) — EG*(X) = 1/3.

Before quoting characterization theorems in terms of moments of record
values we give the definition of k-record values (cf. [1]).

Let {X,,, n > 1} be a sequence of i.i.d. random variables with cdf F' and
pdf f. For a fixed k>1 we define the sequence U (1), Uy(2), ... of k-(upper)
record times of X;, X5, ... as follows: Ui(1) =1, and for n =2,3,...,

Ur(n) =min{j > Up(n — 1) : Xjj16-1 > Xvy (n—1):Us (n—1)+k—1-

Write
Yn(k) = XUk(n):Uk(n)+k—17 n > 1.

The sequence {Yék) , n > 1} is called the sequence of k-(upper) record values
of the above sequence. For convenience we also take Yo(k) = 0 and note that
Y™ = Xy = min(X1,. .., Xp).

We shall apply the following characterization results:

THEOREM 4 (cf. [3], [4]). Let {X,,, n > 1} be a sequence of i.i.d. random
variables with cdf F. Assume that G is a nondecreasing right-continuous
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function from R to (—oo, 1], and let n, k, | be given integers such that k > 1
andn >1>1. Then F(x) = G(z) on I(F) iff the following relations hold:

E[—log(1 — G(Yn(i)l))]l _ (nn"’;dl)'j
Bl tog(1 — Gy S = A

THEOREM 4’ (cf. [3], [4]). Under the assumptions of Theorem 4, F(x) =
G(x) on I(F) iff

K2 n — )EHZ (YY) — 20k EH(Y,) + (n+ 1)! = 0,

where Hy(z) = (—log(1l — G(z)))!, z € R.
In particular X has df F iff

Bl-log(1 —~ F({) ~ Bl log(1 - FY{"))] + 5 =0.
COROLLARY 4. (a) F(z) =z% on (0,1), a > 0, iff
B(~log(1 — (7)) ~ ZB(~ log(1 — (%)) + 5 =0.
In particular, X ~ U(0,1) iff
EF*%@—YﬁW2—%EFbﬂl—@“D+£f:0

(b) F(z) =1—e" /N2 250, a >0, A >0, iff

2\ 2)\2
BE(yM)% - By ) + 5 =0,
k k
In particular, X ~ Exp(1/)), i.e. F(x) =1 — e~ %/, iff
(e 2A o) | 207
E(Y}™) —?EYQ +ﬁ_0.

(c) F(x) =1— (zo/x)*, x> x0, a >0, iff
2
Z 2 Zg 2
E|-1 — - —F|-1 — —— =0.
e ()| el (55 =0

2. Goodness-of-fit tests based on characterizations via mo-
ments of order statistics. First note that (1.1) can be written in the

form

E(F(X22)) — %(E(FQ(Xl)) + E(F2(X,))) = é

as X; and X5 are distributed as X.
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Let (X1,...,X9,) be a sample. Write
Yj = F?(X2j-1) + F*(Xa),
Z; = F(max(Xs;_1, X2j)),
Letting Y := Y] = F2(X1)+ F?(X3), Z := Z; = F(max(X1, X3)), we quote

j=1...,n.

the following result (cf. [6]).
LEMMA 1. Under the above assumptions, the density of (Y, Z) is given

by
1y =22, 0<y<2, 0<2<1, 22 <y<222
f(y7 Z) - .
0, otherwise,
and
EY =2/3, Var(Y) = 8/45,
EZ =2/3, Var(Z)=1/18, Cov(Y,Z)=4/45.
Put
1
D]:Zj_§y}a j:1> ,
We see that
1 1
ED; =FEZ; — §EYJ =3
1
VarDj:Vaij—i—ZVarYj—Cov(Zj,Yj):%, j=1,...,n.
Now define
V, = 3V10n(D,, — 1/3),

where D,, = (1/n) >'_, D;.
Setting X7 = max(Xz;-1,X2;), j = 1,...,n, we note that V,, can be

written as

n 2n
1 1 1
L =3V10n( =) F(X3)— —) F*X;)-=- ).
v, 3\/0n<njz1 (X;) QH; (X;) 3)

Taking into account that
X5 = (Xajo1 + X25) /2 + | Xpj — Xo5-1]/2

and writing
X) = (Xoj1 + X25)/2, X = |Xoj — Xpj1]/2

we obtain

V, = 3V10n((F (X3 + Xif) — F2(Xan)) — 1/3),
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where
n

1
SR X)

n <
Jj=1

2n
1
F2(Xon) = 5 > F¥(X)
j=1

Moreover, we conclude from the CLT that

FXO+XiT) =

(2.1) V, 2V~ N(0,1),
and hence that
Ve 2R,
which provides a simple asymptotic test of the hypothesis X ~ F' when the

parameters of F' are specified.
Special cases:

(a) If F(x) = 2Y/™, x € (0,1), m is a positive integer, then

1 n
Vi = 3v 10n<n D ((Xoj + Xaj1 + [ Xoj — Xoja])/2)M™

j=1

2n
1 m 1
xm )

In particular, for X ~ U(0, 1),
V, = 3V10n(Xan + Xof — X2, —1/3).
(b) If F(z) =2/0, x € (0,3), 8 > 0, then

3100 . 8
Vo, = 3 <X2n+X _BX% 3>,
(c) If F(z) = 5=5, = € (a, 3), then
3V10n (B+a—m— —F 1 af 00—«
Vn /6 a <ﬂ— X2n+X _7/8— X2 IB—a_ 3 )

() If F(z) =1—e /2" >0, a >0, \>0, then

1 n
Vn = 3V 10n<n Z 1 - eXp X2j + ng_l + ’ng - ng_l‘)a/(?lA)))

o >0 - (X7 ) - ;)
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In particular, for X ~ Exp(1/X),

V., = 3V 10n< Z 1 — exp ng + ngfl + ’ij

1 & 1
— = N1 —exp(—=Xi/A\)? — =
5 j:1( exp(—X;/N)) 3>,

(e) If F(xz) =1— (zo/x)*, > xg, a > 0, then

= X5;10)/(21)))

1 & 220
V., =3V10n| — 1-—
<n Z ( <X2j1 + Xoj + | Xo;

Jj=1

S (-(2)) -3)

j=1

o))

From (2.1) we see that in each special case V,, converges weakly to the
standard normal distribution, and so provides an asymptotic test of the
hypothesis H that X has df F' in the case when the parameter values are
specified by H. When H does not specify the parameter values we con-
sider the test statistic obtained from V,, by replacing the parameters by

estimators. In this case we have the following results.

PROPOSITION 1. When F(z) =x/8, x € (0,3), 8 > 0, the resulting test

statistic 1s

Bn

~ 3\/10
Vo(Br) == n (in + XJr - —X%n - >
where Bn = max(Xy, ..., Xon).
Proof. We write
~ 6 (3 10n< -7 1
ValBn) = = Xon + X0 — =X3,
( ) /Bn ﬁ 2 5 2
_3 10n i_l X2_\/1On/\
Note that
Vion < 11 )XQ _ \V10n(B, — B)
= = T o |Ay = T
Bn \B, B B2
as

By ~N(0,1),

V5 P
X5, —0,

X2 B EX? and 2n(8 - B,) 2 W ~ Exp(1/8).

The assertion then follows from Slutsky’s theorem.
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PROPOSITION 2. When F(z) = Z,:g, x € (a, ), the resulting test statis-
tic is

2 \% 1 An Ani ~+ 1 ~92
Vn(anyﬂn) = ; Ozl <I/B\ ra X2n + Xr—z‘r - ﬁXgn
n — On

ﬂn_an ﬁn_an
- b ﬁ“““) LV~ N(0,1),
Brn — Qn 3

where Bn = max(X1,...,Xo2,) and @, = min(Xy,..., Xap).

Proof. The proof is similar to the proof of Proposition 1, since
~ D 5\ D
2n(a, —a) = Wi ~ Exp(1/a), 2n(8 — () = Wy ~ Exp(1/8),
Xon 5 EX, X2, L EXZ

REMARK. From the above proof we see that one can use estimators &,
and (3,, such that

Vi@, —a) 20 and va(B, — B8) 5 0.

NOTE. It appears that a similar result holds when X ~ Exp(1/\), but
the proof is too long for inclusion here.

3. Goodness-of-fit tests based on characterizations via mo-
ments of record values. From Corollary 4(b) we know that X ~ Exp(1/))
iff

k 2X k) 2A2
Consider the case A = 1. Then we see that X ~ Exp(1) iff
. 2 Ky 2
(3.1) E(min(Xy,..., Xz))% - EEY; ) 4 5 =0

The idea is to use the sample to obtain an estimate, 6, say, of the
expected value of (Yl(k))2 - (2/k)Y2(k) + 2/k? and reject H if 62 is large.
Since record values are defined in terms of an infinite sequence, it is not
clear how one can get estimates of the associated expected values from a
finite sample. But they can be estimated indirectly here because when H is
true then for each k,

1
BY;Y = EXup+ 1 (cf. [7), 8],

and so (3.1) has the form

(3.2) E<X12:k - ka) =0.
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Now suppose that X ~ Exp(1/A). Since X ~ Exp(1/A) & X/\ ~
Exp(1), it follows from (3.2) that

k
Consider first the case £k = 1. Then
BE(X? —2)X;) =0.

The sample (X1,. .., X,) provides an estimator of EW;, where W} = X% —
2A X1, of the form

2)
(3.2') E(Xik — X1:k> =0.

W, = X2 — 20X,
where X2 = (1/n) > iy XZ. Tt follows from the CLT that

Vn W, B W ~ N(0, Var(Wy)),
and hence that
T (N) := n(W, )2/ Var(W1) 2 x2(1),

which provides a simple asymptotic test of the hypothesis X ~ Exp(1/X)
when A is specified. Here

Var(W)) = EX} —4AEX? + 4N EX? = 8)\*
since X7 ~ Exp(1/A) gives EX]" = m!\"™, m =1,2,..., and so
(3.3) TV = Z(lxa— ix)
Thus we have proved
ProprosITION 3. If X, ~ Exp(1/\), n > 1, are independent then
nf{l— 2 D

2
(1) M xz_cAx ) 22,

Now consider the case k = 2. Write Uy := X1, = min(X;, X5). Here
from (3.2') we have to estimate EW/, where W| = U? — A\U;. The sample
X1,...,Xoy, provides the sample Wy,..., Wy, where W} = sz — AU; and
U; = min(Xg;_1,X2;), j =1,...,n. Then EW] is estimated by

W7 = UF - AT,

and
TP () = n(W},)?/Var(W)) 2 (D).

Taking into account that U; ~ Exp(2/)\) we see that Var(W]) = A\*/2. Thus
another simple asymptotic test is provided by
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ProposITION 4. If X, ~ Exp(1/\), n > 1, are independent then

om —
(3.4) TP = 3502 = 2002 2 ().
The same argument leads to a similar test for the case k =3,...,n—1

based on a sample of size kn.

We now consider the case k = n. Write U,, = min(Xy,...,X,). Then
by (3.2") we have to estimate E(U2 — (2\/n)U,). The obvious estimate is
U2 — (2\/n)U,, itself, and then when ) is specified the test statistic is

2
TM () = (Uﬁ - QnAUn> :

As above, under H, U,, ~ Exp(n/)), whence
(3.5) U= %Un ~Exp(1), n>1.
It follows that \
) = (U? - 20)?

and so an equivalent test statistic is 7' := (U? — 2U)?, which provides an
exact test for H : X ~ Exp(1/)).

ProOPOSITION 5. The significance probability of the test using T s
e_l_m if t>1,
e 1-VIHVE + e IHVISVE _om1-V1-VE if 0<t<1.

Proof. The first statement is obtained from the positive root of the
equation u? — 2u — v/t = 0, and the second from the positive roots of the
equation (u? — 2u)? =t.

Pt::P[T>t]:{

In particular we consider the 5% test of H, i.e. P, = 0.05. But since
P[T > 1] = e~ 14V2) 5 0,05,
the 5% test rejects when U > zq, where e = 0.05, i.e. when 2y = 3.00.
Thus the exact 5% test rejects when (n/\)U, > 3.

We now consider corresponding tests when A is not specified. The general
idea is to consider the statistics obtained by replacing A in (3.3) and (3.4)
by an estimate A, obtained from the sample.

In this case we have the following results based on TY(LI)()\) and T752)()\).

PROPOSITION 6. When F(z) = 1 — e %/*, 2 > 0, A > 0, the resulting
test statistic is

2TV = 20V () = T (X2 /(Xa)? = 2)” 233 (1),

where /)\\n =X,.
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PROPOSITION 7. When F(z) = 1 —e %/ 2 > 0, A > 0, the resulting

statistic 1s

4~ 4 ~ 8N — ~ —
T2 .= _TP(\,) = — (U2 — \, U, )?
8n( U2 U, \° p
(T TYp
3 (XZn) X2n
where Xn = Xo,.
Proof of Proposition 6. Consider V = ())((2) Then V,, = (?) and by
the CLT,
— D
\/’E(Vn - :u) - N(07 2)’
where
2)2 20A% 4N3
,u,—EV—<)\> and Z—Var(V)—<4/\3 12

We now use a theorem on asymptotic distributions of functions of statis-
tics (cf. [10], p. 260), with g(x) = z1/23. Then

g(p) =2, 7= (gi)x:u = (i@i) v Iy =4,

and so
Vi(g(V) — g(w) = Va(X2/(X,)? —2) Z W ~ N(0,4),

and n
2T = S(XZ/(X)? =2 2 (1),
In the proof of Proposition 7 we shall apply the following

LEMMA 2. Let X7 ~ Exp(1/)), Xy ~ Exp(1/)\) be independent and put
U :=U; =min(X1,Xs), Y = (X1 + X2)/2. Then the pdf of U and Y is

4
h(u,y) = Fe_%/’\, O<u<y, y>0,

and
Cov(U,Y) = A?/4, Cov(U%Y) = \3/2.

Proof of Proposition 7. We now consider

U? o U2
V= U, ., V,=| U,
(X1 + X2)/2 X,

By the CLT,
Vi(Vy, — i) 2 N(0, 5),
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where © = E'V and Y = Var V. Now using Lemma 2 we get

A2/2 SA/4 N3/2 A3)2
w=1 A2 and X = | X3/2 A%/4 N%/4
A A3/2 N2/4 N%)2

Using the above theorem of Wilks [10] with g(x) = x1 /2% — 22/23 we have

99 1/A2
gp) =0, ~:= (8){) = -1/x |, +Xy=3/8.
x=p —1/2X
Thus
V(U2 /(Xan ) = UnfXau) = N(0,3/8),
and so
) (K )~ T X ¥ = 5T 250,
REMARK. Instead of the MLE Xn one could consider the correspond-
ing estimate A} := 2U,, obtained from Ui,...,U,. But since Var(\}) >

~

Var(A,,), one would expect intuitively that the resulting test would be in
some respect poorer. This leads to

;%) = SO/, ) - 2%,
Then it follows as in the discussion of Proposition 6 that
27 B\ 2(1).
Referring to (3.5), in the case when k& = n we use the statistic U, =

nU, /Xn where Xn = X,,. Consider the test that rejects when ﬁn > 3. Now

U, = (A/Xn)U where U = nU, /A ~ Exp(1), and U, B U since A, 2 A
Thus
lim P(U, >3) = P(U > 3) = 0.05

n—oo
and so this is an asymptotic 5% test.
Moreover, we have
PROPOSITION 8. Let T, := (ﬁﬁ — Zﬁn)2 and let P, := P[fn > t] stand
for the associated significance probability. Then lim,, .., P; = P;, where P,
is given by Proposition 5.
Proof. Since U, = (A/A,)U, we have

T = [(MA)2U% — 200/ XU B T,

which ends the proof.
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4. Simulations. Here we consider tests of Exp(1/\).

First note that some goodness-of-fit tests based on a characterization
were also proposed in [6] where the x?(2) approximation was used. Here we
observe that a long and complicated argument shows that

2n 2
~ 110/ 1 ~ 1
Du(h) =45n| = (== S (1 —exp(—X;/A)? — &
(An) 5n[ 0 (Qn j:1( exp(—X;/An)) 3>

1 — ~ 1\ 2
21 — —( X9 + Xo,i_ Xoi — Xoi_ 2M,)) — =
+ <n;exp( (Xoj + Xoj—1 + | Xoj — Xo5-1])/(2An)) 3>

- 4(21n i(l — exp(=X; /3))? — ;)

j=1
Ly Xo; 4+ Xo; Xo; — Xo; 2\ L
x nz;eXP(( 2j + Xaj—1 + | X25 — X2j-1])/(2An)) — 5
o

— x?%(2), where Xn = Xo,.

Simulation strongly confirms that indeed D, () 2 x2(2), and so D,,(A,)
provides a simple test for X ~ Exp(1/A). We see that D, ()\,,) differs from

D,, of [6] by having leading coefficient L instead of 3.

The test statistics investigated here are: D, (\,),

n

V() = 90”[2 D (1= exp(—(Xaj + Xoj1 + [Xaj — Xa;-11)/(27n)))

j=1

:F,&l), ﬁ(lz), T @) and Tn from Propositions 8 and 5.

Firstly, 2000 samples of size 20 were obtained from an exponential distri-
bution and the 6 statistics evaluated for each sample, and tested for signifi-
cance at the 10%, 5% and 1% levels approximately. For D, (),) the x?(2)
approximation was used, so that for the approximate 10% test the observed
value is significant if it exceeds 4.605 etc. Then for VnQ(Xn), T, 7¥ and

T, @) the x2(1) approximation was used, and for fn the approximation ob-
tained from Propositions 5 and 8. In each case the percentage of significant
samples is shown in the table below. Then this was repeated for samples of
size 40, 100, 200.
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n Dn(w) V20w TV 7% @ 7,

20 8.1 11.7 3.2 3.6 1.4 10.0
40 8.6 9.6 5.8 4.5 3.8 10.8
10%
100 9.6 8.7 7.8 6.5 5.5 9.6
200 9.3 9.4 8.9 7.9 7.9 10.5
20 3.6 5.7 2.0 2.5 0.8 4.6
5% 40 4.3 4.8 3.5 3.1 2.5 5.5
100 5.0 4.1 3.8 3.8 2.9 5.3
200 4.2 4.3 3.9 4.5 4.1 5.5
20 0.8 0.9 0.7 0.8 0.4 1.0
1% 40 0.7 1.1 1.4 1.8 1.0 0.7
100 1.2 0.9 14 1.7 1.3 1.3
200 0.7 0.9 0.8 2.1 1.8 1.2

It appears that 7, performs the best, followed by D,, (Xn) and V2 (Xn),

and the other tests are poorer when n is small.

REMARK. The above statistics Dy, (A,) and V2(A,) are derived from the

statistics

110 /—  1)\? _2\? — 1\ /~ 2
D, =45n|— (Y, — = NZ,—2) —a(V,—=)(Z, -2,
i (Temg) w27 -3) —a(m-3) (7 3)]

2
VE= 90n(Zn - l?n — 1> ,

2 3
respectively.
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