K. MORRIS (Adelaide)D. SZYNAL (Lublin)

GOODNESS-OF-FIT TESTS BASED ON CHARACTERIZATIONS OF CONTINUOUS DISTRIBUTIONS

Abstract. We construct goodness-of-fit tests for continuous distributions using their characterizations in terms of moments of order statistics and moments of record values. Our approach is based on characterizations presented in [2]-[4], [5], [9].

1. Introduction. Let (X_1, \ldots, X_n) be a random sample from a distribution $F(x) = P[X \leq x]$, $x \in \mathbb{R}$, and let $X_{k:n}$ denote the kth smallest order statistic of the sample. In what follows we use the following characterizations of continuous distributions via moments of functions of order statistics.

THEOREM 1 (cf. [9]). Let m be a positive integer and $EX_{k:n}^2 < \infty$ for some pair (k,n). Then

$$\frac{(k-1)!}{n!}EX_{k:n}^2 - 2\frac{(k+m-1)!}{(n+m)!}EX_{k+m:n+m} + \frac{(k+2m-1)!}{(n+2m)!} = 0$$

iff $F(x) = x^{1/m}$ on (0,1).

Taking k = n = 1, we get

Corollary 1. $F(x) = x^{1/m}$ on (0,1) iff

$$\frac{2}{m+1}EX_{m+1:m+1} - EX^2 = \frac{1}{2m+1}.$$

In particular, $X \sim U(0,1)$ iff $EX_{2:2} - EX^2 = 1/3$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 62E10, 62F03.

Key words and phrases: order statistics; k-record values; characterization of distributions; uniform, Weibull, exponential, Pareto distributions; goodness-of-fit tests; significance probability.

In the following theorems, X denotes a random variable with distribution F, and I(F) denotes the minimal interval containing the support of F.

Theorem 2 (cf. [5]). Let n, k, l be given integers such that $n \geq k \geq l \geq 1$. Assume that G is a nondecreasing right-continuous function from \mathbb{R} to \mathbb{R} . Then the relations

$$EG^{l}(X_{k+1:n+1}) = \frac{(k+1)\dots(k+l)}{(n+2)\dots(n+l+1)},$$

$$EG^{2l}(X_{k+1-l:n+1-l}) = \frac{(k-l+1)\dots(k+l)}{(n-l+2)\dots(n+l+1)}$$

hold iff F(x) = G(x) on I(F) and F is continuous on \mathbb{R} .

Taking n = k = l = 1, we get

COROLLARY 2. F(x) = G(x) on I(F) and F is continuous on \mathbb{R} iff $EG^2(X) = 1/3$ and $EG(X_{2:2}) = 2/3$.

THEOREM 3 (cf. [2], [3]). Under the assumptions of Theorem 2, F(x) = G(x) on I(F) and F is continuous on \mathbb{R} iff

$$\frac{(k-l)!}{(n-l+1)!}EG^{2l}(X_{k+1-l:n+1-l}) - \frac{2k!}{(n+1)!}EG^{l}(X_{k+1:n+1}) + \frac{(k+l)!}{(n+l+1)!} = 0.$$

Taking n = k = l = 1, we get

COROLLARY 3. F(x) = G(x) on I(F) and F is continuous on \mathbb{R} iff (1.1) $EG(X_{2:2}) - EG^2(X) = 1/3.$

Before quoting characterization theorems in terms of moments of record values we give the definition of k-record values (cf. [1]).

Let $\{X_n, n \geq 1\}$ be a sequence of i.i.d. random variables with cdf F and pdf f. For a fixed $k \geq 1$ we define the sequence $U_k(1), U_k(2), \ldots$ of k-(upper) record times of X_1, X_2, \ldots as follows: $U_k(1) = 1$, and for $n = 2, 3, \ldots$,

$$U_k(n) = \min\{j > U_k(n-1) : X_{j:j+k-1} > X_{U_k(n-1):U_k(n-1)+k-1}\}.$$

Write

$$Y_n^{(k)} := X_{U_k(n):U_k(n)+k-1}, \quad n \ge 1.$$

The sequence $\{Y_n^{(k)}, n \geq 1\}$ is called the sequence of k-(upper) record values of the above sequence. For convenience we also take $Y_0^{(k)} = 0$ and note that $Y_1^{(k)} = X_{1:k} = \min(X_1, \dots, X_k)$.

We shall apply the following characterization results:

THEOREM 4 (cf. [3], [4]). Let $\{X_n, n \geq 1\}$ be a sequence of i.i.d. random variables with cdf F. Assume that G is a nondecreasing right-continuous

function from \mathbb{R} to $(-\infty, 1]$, and let n, k, l be given integers such that $k \ge 1$ and $n \ge l \ge 1$. Then F(x) = G(x) on I(F) iff the following relations hold:

$$E[-\log(1 - G(Y_{n+1}^{(k)}))]^{l} = \frac{(n+l)!}{n!k!},$$

$$E[-\log(1 - G(Y_{n-l}^{(k)}))]^{2l} = \frac{(n+l)!}{(n-l)!k^{2l}}.$$

Theorem 4' (cf. [3], [4]). Under the assumptions of Theorem 4, F(x) = G(x) on I(F) iff

$$k^{2l}(n-l)!EH_l^2(Y_{n-l+1}^{(k)}) - 2n!k^lEH_l(Y_{n+1}^{(k)}) + (n+l)! = 0,$$

where $H_l(x) = (-\log(1 - G(x)))^l$, $x \in \mathbb{R}$.

In particular X has df F iff

$$E[-\log(1 - F(Y_1^{(k)}))]^2 - \frac{2}{k}E[-\log(1 - F(Y_2^{(k)}))] + \frac{2}{k^2} = 0.$$

Corollary 4. (a) $F(x) = x^{\alpha}$ on (0,1), $\alpha > 0$, iff

$$E(-\log(1-(Y_1^{(k)})^{\alpha}))^2 - \frac{2}{k}E(-\log(1-(Y_2^{(k)})^{\alpha})) + \frac{2}{k^2} = 0.$$

In particular, $X \sim U(0,1)$ iff

$$E(-\log(1-Y_1^{(k)}))^2 - \frac{2}{k}E(-\log(1-Y_2^{(k)})) + \frac{2}{k^2} = 0.$$

(b)
$$F(x) = 1 - e^{-(1/\lambda)x^{\alpha}}, x > 0, \alpha > 0, \lambda > 0, iff$$

$$E(Y_1^{(k)})^{2\alpha} - \frac{2\lambda}{k}E(Y_2^{(k)})^{\alpha} + \frac{2\lambda^2}{k^2} = 0.$$

In particular, $X \sim \text{Exp}(1/\lambda)$, i.e. $F(x) = 1 - e^{-x/\lambda}$, iff

$$E(Y_1^{(k)})^2 - \frac{2\lambda}{k}EY_2^{(k)} + \frac{2\lambda^2}{k^2} = 0.$$

(c)
$$F(x) = 1 - (x_0/x)^a$$
, $x > x_0$, $a > 0$, iff

$$E\left[-\log\left(\frac{x_0}{Y_1^{(k)}}\right)\right]^2 - \frac{2}{ka}E\left[-\log\left(\frac{x_0}{Y_2^{(k)}}\right)\right] + \frac{2}{k^2a^2} = 0.$$

2. Goodness-of-fit tests based on characterizations via moments of order statistics. First note that (1.1) can be written in the form

$$E(F(X_{2:2})) - \frac{1}{2}(E(F^2(X_1)) + E(F^2(X_2))) = \frac{1}{3}$$

as X_1 and X_2 are distributed as X.

Let (X_1, \ldots, X_{2n}) be a sample. Write

$$Y_j = F^2(X_{2j-1}) + F^2(X_{2j}),$$

 $Z_j = F(\max(X_{2j-1}, X_{2j})), \quad j = 1, \dots, n.$

Letting $Y := Y_1 = F^2(X_1) + F^2(X_2)$, $Z := Z_1 = F(\max(X_1, X_2))$, we quote the following result (cf. [6]).

Lemma 1. Under the above assumptions, the density of (Y,Z) is given by

$$f(y,z) = \begin{cases} 1/\sqrt{y-z^2}, & 0 \le y \le 2, \ 0 \le z \le 1, \ z^2 \le y \le 2z^2, \\ 0, & otherwise, \end{cases}$$

and

$$EY = 2/3$$
, $Var(Y) = 8/45$,
 $EZ = 2/3$, $Var(Z) = 1/18$, $Cov(Y, Z) = 4/45$.

Put

$$D_j = Z_j - \frac{1}{2}Y_j, \quad j = 1, \dots, n.$$

We see that

$$ED_j = EZ_j - \frac{1}{2}EY_j = \frac{1}{3},$$

 $Var D_j = Var Z_j + \frac{1}{4}Var Y_j - Cov(Z_j, Y_j) = \frac{1}{90}, \quad j = 1, ..., n.$

Now define

$$V_n = 3\sqrt{10n}(\overline{D_n} - 1/3),$$

where $\overline{D_n} = (1/n) \sum_{j=1}^n D_j$. Setting $X_j^* = \max(X_{2j-1}, X_{2j}), j = 1, \ldots, n$, we note that V_n can be written as

$$V_n = 3\sqrt{10n} \left(\frac{1}{n} \sum_{j=1}^n F(X_j^*) - \frac{1}{2n} \sum_{j=1}^{2n} F^2(X_j) - \frac{1}{3} \right).$$

Taking into account that

$$X_i^* = (X_{2j-1} + X_{2j})/2 + |X_{2j} - X_{2j-1}|/2$$

and writing

$$X_j^0 = (X_{2j-1} + X_{2j})/2, \quad X_j^+ = |X_{2j} - X_{2j-1}|/2$$

we obtain

$$V_n = 3\sqrt{10n}((\overline{F(X_n^0 + X_n^+)} - \overline{F^2(X_{2n})}) - 1/3),$$

where

$$\overline{F(X_n^0 + X_n^+)} = \frac{1}{n} \sum_{j=1}^n F(X_j^0 + X_j^+),$$
$$\overline{F^2(X_{2n})} = \frac{1}{2n} \sum_{j=1}^{2n} F^2(X_j).$$

Moreover, we conclude from the CLT that

$$(2.1) V_n \stackrel{D}{\to} V \sim N(0,1),$$

and hence that

$$V_n^2 \xrightarrow{D} \chi^2(1),$$

which provides a simple asymptotic test of the hypothesis $X \sim F$ when the parameters of F are specified.

Special cases:

(a) If $F(x) = x^{1/m}$, $x \in (0,1)$, m is a positive integer, then

$$V_n = 3\sqrt{10n} \left(\frac{1}{n} \sum_{j=1}^n ((X_{2j} + X_{2j-1} + |X_{2j} - X_{2j-1}|)/2)^{1/m} - \frac{1}{2n} \sum_{j=1}^{2n} X_j^{2/m} - \frac{1}{3} \right).$$

In particular, for $X \sim U(0,1)$,

$$V_n = 3\sqrt{10n}(\overline{X_{2n}} + \overline{X_n^+} - \overline{X_{2n}^2} - 1/3).$$

(b) If
$$F(x) = x/\beta$$
, $x \in (0, \beta)$, $\beta > 0$, then

$$V_n = \frac{3\sqrt{10n}}{\beta} \left(\overline{X_{2n}} + \overline{X_n^+} - \frac{1}{\beta} \overline{X_{2n}^2} - \frac{\beta}{3} \right),$$

(c) If
$$F(x) = \frac{x-\alpha}{\beta-\alpha}$$
, $x \in (\alpha, \beta)$, then

$$V_n = \frac{3\sqrt{10n}}{\beta - \alpha} \left(\frac{\beta + \alpha}{\beta - \alpha} \overline{X_{2n}} + \overline{X_n^+} - \frac{1}{\beta - \alpha} \overline{X_{2n}^2} - \frac{\alpha\beta}{\beta - \alpha} - \frac{\beta - \alpha}{3} \right).$$

(d) If
$$F(x) = 1 - e^{-(1/\lambda)x^{\alpha}}$$
, $x \ge 0$, $\alpha > 0$, $\lambda > 0$, then

$$V_n = 3\sqrt{10n} \left(\frac{1}{n} \sum_{j=1}^n (1 - \exp(-(X_{2j} + X_{2j-1} + |X_{2j} - X_{2j-1}|)^{\alpha} / (2^{\alpha}\lambda))) - \frac{1}{2n} \sum_{j=1}^{2n} (1 - \exp(-X_j^{\alpha}/\lambda))^2 - \frac{1}{3} \right).$$

In particular, for $X \sim \text{Exp}(1/\lambda)$,

$$V_{n} = 3\sqrt{10n} \left(\frac{1}{n} \sum_{j=1}^{n} (1 - \exp(-(X_{2j} + X_{2j-1} + |X_{2j} - X_{2j-1}|)/(2\lambda))) - \frac{1}{2n} \sum_{j=1}^{2n} (1 - \exp(-X_{j}/\lambda))^{2} - \frac{1}{3} \right),$$
(e) If $F(x) = 1 - (x_{0}/x)^{a}$, $x \ge x_{0}$, $a > 0$, then
$$V_{n} = 3\sqrt{10n} \left(\frac{1}{n} \sum_{j=1}^{n} \left(1 - \left(\frac{2x_{0}}{X_{2j-1} + X_{2j} + |X_{2j} - X_{2j-1}|} \right)^{a} \right) - \frac{1}{2n} \sum_{j=1}^{2n} \left(1 - \left(\frac{x_{0}}{X_{j}} \right)^{a} \right)^{2} - \frac{1}{3} \right).$$

From (2.1) we see that in each special case V_n converges weakly to the standard normal distribution, and so provides an asymptotic test of the hypothesis H that X has df F in the case when the parameter values are specified by H. When H does not specify the parameter values we consider the test statistic obtained from V_n by replacing the parameters by estimators. In this case we have the following results.

PROPOSITION 1. When $F(x) = x/\beta$, $x \in (0, \beta)$, $\beta > 0$, the resulting test statistic is

$$V_n(\widehat{\beta}_n) := \frac{3\sqrt{10n}}{\widehat{\beta}_n} \left(\overline{X_{2n}} + \overline{X_n^+} - \frac{1}{\widehat{\beta}_n} \overline{X_{2n}^2} - \frac{\widehat{\beta}_n}{3} \right) \stackrel{D}{\to} V \sim N(0, 1),$$

where $\widehat{\beta}_n = \max(X_1, \dots, X_{2n}).$

Proof. We write

$$V_n(\widehat{\beta}_n) = \frac{\beta}{\widehat{\beta}_n} \left(\frac{3\sqrt{10n}}{\beta} \left(\overline{X_{2n}} + \overline{X_n^+} - \frac{1}{\beta} \overline{X_{2n}^2} - \frac{\beta}{3} \right) \right) - \frac{3\sqrt{10n}}{\widehat{\beta}_n} \left(\frac{1}{\widehat{\beta}_n} - \frac{1}{\beta} \right) \overline{X_{2n}^2} - \frac{\sqrt{10n}}{\widehat{\beta}_n} (\widehat{\beta}_n - \beta).$$

Note that

$$-\frac{\sqrt{10n}}{\widehat{\beta}_n} \left(\frac{1}{\widehat{\beta}_n} - \frac{1}{\beta} \right) \overline{X_{2n}^2} = \frac{\sqrt{10n}(\widehat{\beta}_n - \beta)}{\widehat{\beta}_n^2 \beta} \overline{X_{2n}^2} \xrightarrow{P} 0,$$

as

$$\overline{X_{2n}^2} \xrightarrow{P} EX^2$$
 and $2n(\beta - \widehat{\beta}_n) \xrightarrow{D} W \sim \text{Exp}(1/\beta)$.

The assertion then follows from Slutsky's theorem.

PROPOSITION 2. When $F(x) = \frac{x-\alpha}{\beta-\alpha}$, $x \in (\alpha, \beta)$, the resulting test statistic is

$$V_{n}(\widehat{\alpha}_{n}, \widehat{\beta}_{n}) = \frac{3\sqrt{10n}}{\widehat{\beta}_{n} - \widehat{\alpha}_{n}} \left(\frac{\widehat{\beta}_{n} + \widehat{\alpha}_{n}}{\widehat{\beta}_{n} - \widehat{\alpha}_{n}} \overline{X_{2n}} + \overline{X_{n}^{+}} - \frac{1}{\widehat{\beta}_{n} - \widehat{\alpha}_{n}} \overline{X_{2n}^{2}} - \frac{\widehat{\alpha}_{n} \widehat{\beta}_{n}}{\widehat{\beta}_{n} - \widehat{\alpha}_{n}} - \frac{\widehat{\beta}_{n} - \widehat{\alpha}_{n}}{3} \right) \xrightarrow{D} V \sim N(0, 1),$$

where $\widehat{\beta}_n = \max(X_1, \dots, X_{2n})$ and $\widehat{\alpha}_n = \min(X_1, \dots, X_{2n})$.

Proof. The proof is similar to the proof of Proposition 1, since

$$2n(\widehat{\alpha}_n - \alpha) \xrightarrow{D} W_1 \sim \text{Exp}(1/\alpha), \quad 2n(\beta - \widehat{\beta}_n) \xrightarrow{D} W_2 \sim \text{Exp}(1/\beta),$$

 $\overline{X_{2n}} \xrightarrow{P} EX, \quad \overline{X_{2n}^2} \xrightarrow{P} EX^2.$

REMARK. From the above proof we see that one can use estimators $\widehat{\alpha}_n$ and $\widehat{\beta}_n$ such that

$$\sqrt{n}(\widehat{\alpha}_n - \alpha) \xrightarrow{P} 0$$
 and $\sqrt{n}(\widehat{\beta}_n - \beta) \xrightarrow{P} 0$.

NOTE. It appears that a similar result holds when $X \sim \text{Exp}(1/\lambda)$, but the proof is too long for inclusion here.

3. Goodness-of-fit tests based on characterizations via moments of record values. From Corollary 4(b) we know that $X \sim \text{Exp}(1/\lambda)$ iff

$$E(Y_1^{(k)})^2 - \frac{2\lambda}{k}EY_2^{(k)} + \frac{2\lambda^2}{k^2} = 0.$$

Consider the case $\lambda = 1$. Then we see that $X \sim \text{Exp}(1)$ iff

(3.1)
$$E(\min(X_1, \dots, X_k))^2 - \frac{2}{k} E Y_2^{(k)} + \frac{2}{k^2} = 0.$$

The idea is to use the sample to obtain an estimate, θ_n say, of the expected value of $(Y_1^{(k)})^2 - (2/k)Y_2^{(k)} + 2/k^2$ and reject H if θ_n^2 is large. Since record values are defined in terms of an infinite sequence, it is not clear how one can get estimates of the associated expected values from a finite sample. But they can be estimated indirectly here because when H is true then for each k,

$$EY_2^{(k)} = EX_{1:k} + \frac{1}{k}$$
 (cf. [7], [8]),

and so (3.1) has the form

(3.2)
$$E\left(X_{1:k}^2 - \frac{2}{k}X_{1:k}\right) = 0.$$

Now suppose that $X \sim \text{Exp}(1/\lambda)$. Since $X \sim \text{Exp}(1/\lambda) \Leftrightarrow X/\lambda \sim \text{Exp}(1)$, it follows from (3.2) that

(3.2')
$$E\left(X_{1:k}^2 - \frac{2\lambda}{k}X_{1:k}\right) = 0.$$

Consider first the case k = 1. Then

$$E(X_1^2 - 2\lambda X_1) = 0.$$

The sample (X_1, \ldots, X_n) provides an estimator of EW_1 , where $W_1 = X_1^2 - 2\lambda X_1$, of the form

$$\overline{W_n} = \overline{X_n^2} - 2\lambda \overline{X_n},$$

where $\overline{X_n^2} = (1/n) \sum_{j=1}^n X_j^2$. It follows from the CLT that

$$\sqrt{n} \ \overline{W_n} \stackrel{D}{\to} W \sim N(0, \text{Var}(W_1)),$$

and hence that

$$T_n^{(1)}(\lambda) := n(\overline{W_n})^2/\operatorname{Var}(W_1) \xrightarrow{D} \chi^2(1),$$

which provides a simple asymptotic test of the hypothesis $X \sim \text{Exp}(1/\lambda)$ when λ is specified. Here

$$Var(W_1) = EX_1^4 - 4\lambda EX_1^3 + 4\lambda^2 EX_1^2 = 8\lambda^4$$

since $X_1 \sim \text{Exp}(1/\lambda)$ gives $EX_1^m = m!\lambda^m$, m = 1, 2, ..., and so

(3.3)
$$T_n^{(1)}(\lambda) = \frac{n}{8} \left(\frac{1}{\lambda^2} \overline{X_n^2} - \frac{2}{\lambda} \overline{X_n} \right)^2.$$

Thus we have proved

PROPOSITION 3. If $X_n \sim \text{Exp}(1/\lambda)$, $n \geq 1$, are independent then

$$T_n^{(1)}(\lambda) = \frac{n}{8} \left(\frac{1}{\lambda^2} \overline{X_n^2} - \frac{2}{\lambda} \overline{X_n} \right)^2 \stackrel{D}{\to} \chi^2(1).$$

Now consider the case k=2. Write $U_1:=X_{1:2}=\min(X_1,X_2)$. Here from (3.2') we have to estimate EW_1' , where $W_1'=U_1^2-\lambda U_1$. The sample X_1,\ldots,X_{2n} provides the sample W_1',\ldots,W_n' , where $W_j'=U_j^2-\lambda U_j$ and $U_j=\min(X_{2j-1},X_{2j}),\ j=1,\ldots,n$. Then EW_1' is estimated by

$$\overline{W_n'} = \overline{U_n^2} - \lambda \overline{U_n},$$

and

$$T_n^{(2)}(\lambda) := n(\overline{W_n'})^2/\mathrm{Var}(W_1') \overset{D}{\to} \chi^2(1).$$

Taking into account that $U_1 \sim \text{Exp}(2/\lambda)$ we see that $\text{Var}(W_1') = \lambda^4/2$. Thus another simple asymptotic test is provided by

PROPOSITION 4. If $X_n \sim \text{Exp}(1/\lambda)$, $n \geq 1$, are independent then

(3.4)
$$T_n^{(2)}(\lambda) = \frac{2n}{\lambda^4} (\overline{U_n^2} - \lambda \overline{U_n})^2 \xrightarrow{D} \chi^2(1).$$

The same argument leads to a similar test for the case k = 3, ..., n-1 based on a sample of size kn.

We now consider the case k = n. Write $U_n = \min(X_1, \dots, X_n)$. Then by (3.2') we have to estimate $E(U_n^2 - (2\lambda/n)U_n)$. The obvious estimate is $U_n^2 - (2\lambda/n)U_n$ itself, and then when λ is specified the test statistic is

$$T_n^{(n)}(\lambda) := \left(U_n^2 - \frac{2\lambda}{n}U_n\right)^2.$$

As above, under $H, U_n \sim \text{Exp}(n/\lambda)$, whence

(3.5)
$$U := \frac{n}{\lambda} U_n \sim \text{Exp}(1), \quad n \ge 1.$$

It follows that

$$T_n^{(n)}(\lambda) = \frac{\lambda^4}{n^4} (U^2 - 2U)^2$$

and so an equivalent test statistic is $T := (U^2 - 2U)^2$, which provides an exact test for $H: X \sim \text{Exp}(1/\lambda)$.

Proposition 5. The significance probability of the test using T is

$$P_t := P[T > t] = \begin{cases} e^{-1 - \sqrt{1 + \sqrt{t}}} & \text{if } t > 1, \\ e^{-1 - \sqrt{1 + \sqrt{t}}} + e^{-1 + \sqrt{1 - \sqrt{t}}} - e^{-1 - \sqrt{1 - \sqrt{t}}} & \text{if } 0 < t < 1. \end{cases}$$

Proof. The first statement is obtained from the positive root of the equation $u^2 - 2u - \sqrt{t} = 0$, and the second from the positive roots of the equation $(u^2 - 2u)^2 = t$.

In particular we consider the 5% test of H, i.e. $P_t = 0.05$. But since

$$P[T > 1] = e^{-(1+\sqrt{2})} > 0.05,$$

the 5% test rejects when $U > x_0$, where $e^{-x_0} = 0.05$, i.e. when $x_0 = 3.00$. Thus the exact 5% test rejects when $(n/\lambda)U_n > 3$.

We now consider corresponding tests when λ is not specified. The general idea is to consider the statistics obtained by replacing λ in (3.3) and (3.4) by an estimate $\widehat{\lambda}_n$ obtained from the sample.

In this case we have the following results based on $T_n^{(1)}(\lambda)$ and $T_n^{(2)}(\lambda)$.

PROPOSITION 6. When $F(x) = 1 - e^{-x/\lambda}$, x > 0, $\lambda > 0$, the resulting test statistic is

$$2\widehat{T}_{n}^{(1)} := 2T_{n}^{(1)}(\widehat{\lambda}_{n}) = \frac{n}{4}(\overline{X_{n}^{2}}/(\overline{X_{n}})^{2} - 2)^{2} \xrightarrow{D} \chi^{2}(1),$$

where $\widehat{\lambda}_n = \overline{X_n}$.

PROPOSITION 7. When $F(x) = 1 - e^{-x/\lambda}$, x > 0, $\lambda > 0$, the resulting statistic is

$$\begin{split} \frac{4}{3}\widehat{T}_n^{(2)} &:= \frac{4}{3}T_n^{(2)}(\widehat{\lambda}_n) = \frac{8n}{3\widehat{\lambda}_n^4}(\overline{U_n^2} - \widehat{\lambda}_n\overline{U_n})^2 \\ &= \frac{8n}{3}\bigg(\frac{\overline{U_n^2}}{(\overline{X_{2n}})^2} - \frac{\overline{U_n}}{\overline{X_{2n}}}\bigg)^2 \overset{D}{\to} \chi^2(1), \end{split}$$

where $\widehat{\lambda}_n = \overline{X_{2n}}$.

Proof of Proposition 6. Consider $\mathbf{V} = {X^2 \choose X}$. Then $\overline{\mathbf{V}_n} = {\overline{X_n^2 \choose X_n}}$ and by the CLT,

$$\sqrt{n}(\overline{\mathbf{V}_n} - \mu) \stackrel{D}{\to} N(0, \Sigma),$$

where

$$\mu = E\mathbf{V} = \begin{pmatrix} 2\lambda^2 \\ \lambda \end{pmatrix}$$
 and $\Sigma = \text{Var}(\mathbf{V}) = \begin{pmatrix} 20\lambda^4 & 4\lambda^3 \\ 4\lambda^3 & \lambda^2 \end{pmatrix}$.

We now use a theorem on asymptotic distributions of functions of statistics (cf. [10], p. 260), with $g(\mathbf{x}) = x_1/x_2^2$. Then

$$g(\mu) = 2, \quad \gamma := \left(\frac{\partial g}{\partial \mathbf{x}}\right)_{\mathbf{x} = \mu} = \begin{pmatrix} 1/\lambda^2 \\ -4/\lambda \end{pmatrix}, \quad \gamma' \Sigma \gamma = 4,$$

and so

$$\sqrt{n}(g(\overline{\mathbf{V}_n}) - g(\mu)) = \sqrt{n}(\overline{X_n^2}/(\overline{X_n})^2 - 2) \xrightarrow{D} W \sim N(0, 4),$$

and

$$2\widehat{T}_n^{(1)} = \frac{n}{4} (\overline{X_n^2} / (\overline{X_n})^2 - 2)^2 \xrightarrow{D} \chi^2(1).$$

In the proof of Proposition 7 we shall apply the following

LEMMA 2. Let $X_1 \sim \text{Exp}(1/\lambda)$, $X_2 \sim \text{Exp}(1/\lambda)$ be independent and put $U := U_1 = \min(X_1, X_2)$, $Y = (X_1 + X_2)/2$. Then the pdf of U and Y is

$$h(u,y) = \frac{4}{\lambda^2} e^{-2y/\lambda}, \quad 0 < u < y, \ y > 0,$$

and

$$Cov(U, Y) = \lambda^2/4$$
, $Cov(U^2, Y) = \lambda^3/2$.

Proof of Proposition 7. We now consider

$$\mathbf{V} = \begin{pmatrix} U_1^2 \\ U_1 \\ (X_1 + X_2)/2 \end{pmatrix}, \quad \overline{\mathbf{V}}_n = \begin{pmatrix} \overline{U_n^2} \\ \overline{U_n} \\ \overline{X_{2n}} \end{pmatrix}.$$

By the CLT,

$$\sqrt{n}(\overline{\mathbf{V}_n} - \mu) \stackrel{D}{\to} N(\mathbf{0}, \Sigma),$$

where $\mu = E\mathbf{V}$ and $\Sigma = \text{Var }\mathbf{V}$. Now using Lemma 2 we get

$$\mu = \begin{pmatrix} \lambda^2/2 \\ \lambda/2 \\ \lambda \end{pmatrix} \quad \text{and} \quad \Sigma = \begin{pmatrix} 5\lambda^4/4 & \lambda^3/2 & \lambda^3/2 \\ \lambda^3/2 & \lambda^2/4 & \lambda^2/4 \\ \lambda^3/2 & \lambda^2/4 & \lambda^2/2 \end{pmatrix}.$$

Using the above theorem of Wilks [10] with $g(\mathbf{x}) = x_1/x_3^2 - x_2/x_3$ we have

$$g(\mu) = 0, \quad \gamma := \left(\frac{\partial g}{\partial \mathbf{x}}\right)_{\mathbf{x} = \mu} = \begin{pmatrix} 1/\lambda^2 \\ -1/\lambda \\ -1/2\lambda \end{pmatrix}, \quad \gamma' \Sigma \gamma = 3/8.$$

Thus

$$\sqrt{n}(\overline{U_n^2}/(\overline{X_{2n}})^2 - \overline{U_n}/\overline{X_{2n}}) \stackrel{D}{\to} N(0, 3/8),$$

and so

$$\frac{8n}{3}(\overline{U_{n}^{2}}/(\overline{X_{2n}}\,)^{2}-\overline{U_{n}}/\overline{X_{2n}}\,)^{2}=\frac{4}{3}\widehat{T}_{n}^{(2)}\overset{D}{\to}\chi^{2}(1).$$

REMARK. Instead of the MLE $\widehat{\lambda}_n$ one could consider the corresponding estimate $\lambda_n^* := 2\overline{U_n}$ obtained from U_1, \dots, U_n . But since $\operatorname{Var}(\lambda_n^*) > \operatorname{Var}(\widehat{\lambda}_n)$, one would expect intuitively that the resulting test would be in some respect poorer. This leads to

$$T_n^{*(2)} := \frac{n}{8} (\overline{U_n^2} / (\overline{U_n})^2 - 2)^2.$$

Then it follows as in the discussion of Proposition 6 that

$$2T_n^{*(2)} \xrightarrow{D} \chi^2(1).$$

Referring to (3.5), in the case when k=n we use the statistic $\widehat{U}_n=nU_n/\widehat{\lambda}_n$ where $\widehat{\lambda}_n=\overline{X_n}$. Consider the test that rejects when $\widehat{U}_n>3$. Now $\widehat{U}_n=(\lambda/\widehat{\lambda}_n)U$ where $U=nU_n/\lambda\sim \mathrm{Exp}(1)$, and $\widehat{U}_n\stackrel{D}{\to} U$ since $\widehat{\lambda}_n\stackrel{P}{\to}\lambda$.

$$\lim_{n \to \infty} P(\hat{U}_n > 3) = P(U > 3) = 0.05$$

and so this is an asymptotic 5% test.

Moreover, we have

PROPOSITION 8. Let $\widehat{T}_n := (\widehat{U}_n^2 - 2\widehat{U}_n)^2$ and let $\widehat{P}_t := P[\widehat{T}_n > t]$ stand for the associated significance probability. Then $\lim_{n\to\infty} \widehat{P}_t = P_t$, where P_t is given by Proposition 5.

Proof. Since $\widehat{U}_n = (\lambda/\widehat{\lambda}_n)U$, we have

$$\widehat{T}_n = [(\lambda/\widehat{\lambda}_n)^2 U^2 - 2(\lambda/\widehat{\lambda}_n) U]^2 \stackrel{D}{\to} T,$$

which ends the proof.

4. Simulations. Here we consider tests of $\text{Exp}(1/\lambda)$.

First note that some goodness-of-fit tests based on a characterization were also proposed in [6] where the $\chi^2(2)$ approximation was used. Here we observe that a long and complicated argument shows that

$$D_{n}(\widehat{\lambda}_{n}) = 45n \left[\frac{110}{19} \left(\frac{1}{2n} \sum_{j=1}^{2n} (1 - \exp(-X_{j}/\widehat{\lambda}_{n}))^{2} - \frac{1}{3} \right)^{2} + 2 \left(\frac{1}{n} \sum_{j=1}^{n} \exp(-(X_{2j} + X_{2j-1} + |X_{2j} - X_{2j-1}|)/(2\widehat{\lambda}_{n})) - \frac{1}{3} \right)^{2} - 4 \left(\frac{1}{2n} \sum_{j=1}^{2n} (1 - \exp(-X_{j}/\widehat{\lambda}_{n}))^{2} - \frac{1}{3} \right) \times \left(\frac{1}{n} \sum_{j=1}^{n} \exp(-(X_{2j} + X_{2j-1} + |X_{2j} - X_{2j-1}|)/(2\widehat{\lambda}_{n})) - \frac{1}{3} \right) \right]$$

$$\rightarrow \chi^{2}(2), \quad \text{where } \widehat{\lambda}_{n} = \overline{X}_{2n}.$$

Simulation strongly confirms that indeed $D_n(\widehat{\lambda}_n) \xrightarrow{D} \chi^2(2)$, and so $D_n(\widehat{\lambda}_n)$ provides a simple test for $X \sim \text{Exp}(1/\lambda)$. We see that $D_n(\widehat{\lambda}_n)$ differs from D_n of [6] by having leading coefficient $\frac{110}{19}$ instead of $\frac{5}{2}$.

The test statistics investigated here are: $D_n(\widehat{\lambda}_n)$,

$$V_n^2(\widehat{\lambda}_n) = 90n \left[\frac{1}{n} \sum_{j=1}^n (1 - \exp(-(X_{2j} + X_{2j-1} + |X_{2j} - X_{2j-1}|)/(2\widehat{\lambda}_n))) - \frac{1}{2n} \sum_{j=1}^{2n} (1 - \exp(X_j/\widehat{\lambda}_n))^2 - \frac{1}{3} \right]^2,$$

 $\widehat{T}_n^{(1)},\,\widehat{T}_n^{(2)},\,T_n^{*(2)}$ and \widehat{T}_n from Propositions 8 and 5.

Firstly, 2000 samples of size 20 were obtained from an exponential distribution and the 6 statistics evaluated for each sample, and tested for significance at the 10%, 5% and 1% levels approximately. For $D_n(\widehat{\lambda}_n)$ the $\chi^2(2)$ approximation was used, so that for the approximate 10% test the observed value is significant if it exceeds 4.605 etc. Then for $V_n^2(\widehat{\lambda}_n)$, $\widehat{T}_n^{(1)}$, $\widehat{T}_n^{(2)}$ and $T_n^{*(2)}$ the $\chi^2(1)$ approximation was used, and for \widehat{T}_n the approximation obtained from Propositions 5 and 8. In each case the percentage of significant samples is shown in the table below. Then this was repeated for samples of size 40, 100, 200.

	n	$D_n(\widehat{\lambda}_n)$	$V_n^2(\widehat{\lambda}_n)$	$\widehat{T}_n^{(1)}$	$\widehat{T}_n^{(2)}$	$T_n^{*(2)}$	\widehat{T}_n
10%	20	8.1	11.7	3.2	3.6	1.4	10.0
	40	8.6	9.6	5.8	4.5	3.8	10.8
	100	9.6	8.7	7.8	6.5	5.5	9.6
	200	9.3	9.4	8.9	7.9	7.9	10.5
5%	20	3.6	5.7	2.0	2.5	0.8	4.6
	40	4.3	4.8	3.5	3.1	2.5	5.5
	100	5.0	4.1	3.8	3.8	2.9	5.3
	200	4.2	4.3	3.9	4.5	4.1	5.5
1%	20	0.8	0.9	0.7	0.8	0.4	1.0
	40	0.7	1.1	1.4	1.8	1.0	0.7
	100	1.2	0.9	1.4	1.7	1.3	1.3
	200	0.7	0.9	0.8	2.1	1.8	1.2

It appears that \widehat{T}_n performs the best, followed by $D_n(\widehat{\lambda}_n)$ and $V_n^2(\widehat{\lambda}_n)$, and the other tests are poorer when n is small.

REMARK. The above statistics $D_n(\widehat{\lambda}_n)$ and $V_n^2(\widehat{\lambda}_n)$ are derived from the statistics

$$\begin{split} D_n &= 45n \left[\frac{110}{19} \left(\overline{Y}_n - \frac{1}{3} \right)^2 + 2 \left(\overline{Z}_n - \frac{2}{3} \right)^2 - 4 \left(\overline{Y}_n - \frac{1}{3} \right) \left(\overline{Z}_n - \frac{2}{3} \right) \right], \\ V_n^2 &= 90n \left(\overline{Z}_n - \frac{1}{2} \overline{Y}_n - \frac{1}{3} \right)^2, \end{split}$$

respectively.

References

- [1] W. Dziubdziela and B. Kopociński, Limiting properties of the k-th record values, Zastos. Mat. 15 (1976), 187–190.
- [2] Z. Grudzień and D. Szynal, Characterization of continuous distributions in terms of moments of extremal statistics, J. Math. Sci. 81 (1996), 2912–2936.
- [3] —, —, Characterizations of continuous distributions via moments of the k-th record values with random indices, Brandenburgische Technische Universität Cottbus, Fakultät für Mathematik, Naturwissenschaften und Informatik, Reihe Mathematik, M-05/1997 (1997).
- [4] —, —, Characterizations of continuous distributions via moments of record values,
 J. Appl. Statist. Sci. 9 (2000), 93–104.
- [5] G. D. Lin, Characterizations of continuous distributions via expected values of two functions of order statistics, Sankhyā Ser. A 52 (1990), 84–90.
- [6] K. Morris and D. Szynal, A goodness-of-fit test for the uniform distribution based on a characterization, in: XX Internat. Sympos. on Stability Problems for Stochastic Models (Lublin–Nałęczów, 1999), Abstracts, p. 119, submitted to J. Math. Sci.
- [7] P. Pawlas and D. Szynal, Relations for single and product moments of k-th record values from exponential and Gumbel distributions, J. Appl. Statist. Sci. 7 (1998), 53–62.

- [8] P. Pawlas and D. Szynal, Recurrence relations for single and product moments of k-th record values from Weibull distributions, and a characterization, ibid. 10 (2000), 17–26.
- [9] Y. H. Too and G. D. Lin, Characterizations of uniform and exponential distributions, Statist. Probab. Lett. 7 (1989), 357–359.
- [10] S. S. Wilks, Mathematical Statistics, Wiley, New York, 1962.

Kerwin Morris
Department of Statistics
University of Adelaide
North Tce, Adelaide
South Australia, 5001
E-mail: kmorris@stats.adelaide.edu.au

Dominik Szynal Institute of Mathematics Maria Curie-Skłodowska University Pl. M. Curie-Skłodowskiej 1 20-031 Lublin, Poland E-mail: szynal@golem.umcs.lublin.pl

Received on 7.2.2000; revised version on 2.6.2000