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ANALYSIS OF A DYNAMIC CONTACT PROBLEM WITH

FRICTION, DAMAGE AND ADHESION

Abstract. We study a dynamic contact problem for viscoelastic materials
with damage. The contact is modelled with Tresca’s friction law and a first
order differential equation which describes adhesion effect of contact sur-
faces; the damage of the material is described by a function whose evolution
is governed by a parabolic inclusion. Under appropriate assumptions, we
provide a variational formulation of the mechanical problem and establish
the existence and uniqueness of a weak solution.

1. Introduction. Processes of adhesion are important in many indus-
trial settings, especially when a glue is added to prevent relative motion of
the surfaces. For this industrial interest adhesive contact problems have re-
cently received increased attention in the mathematical literature. An early
attempt to study models of contact with adhesion was made in [8]–[10].
Analysis and numerical simulations of frictionless contact problems with
adhesion can be found in [4], [5], [15], [16]. In [4] the dynamic frictionless
adhesive contact problem, with normal compliance condition, was modelled
and analyzed; a fully discrete scheme was introduced and some numerical
examples were included. The unilateral quasistatic contact problem with
local friction and adhesion was studied in [5]; an existence result, for a fric-
tion coefficient small enough, was established. The main new idea in these
papers is the introduction of the surface state variable β, the bonding field,
which has values between 0 and 1 and measures the fractional density of
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active bonds. When β = 0 there are no active bonds; when β = 1 all the
bonds are active; when 0 < β < 1 partial adhesion takes place.

On the other hand, material damage, which may be caused by the growth
of internal microcracks, appears in many applications of solids mechanics.
Since it directly reduces the usefulness of the structures or components, the
subject is important in design engineering. General models for damage were
derived in [11], [12] from the virtual power principle. In these papers the
evolution of the microscopic cracks which cause the damage is determined
by a parabolic inclusion. In an isotropic and homogeneous elastic material,
the damage function is defined by

ζ = Eeff/EY,

where EY is the Young modulus of the original material and Eeff is the current
one. It follows that the damage function ζ has values between 0 and 1.
Recent modeling, analysis and numerical simulations of contact problems
which include the evolution of material damage can be found in [3], [13],
[17], [18], [22], [23] and references therein.

This paper is a continuation and an extension of [25]. There, the constitu-
tive law was assumed to be viscoelastic; the quasistatic adhesive contact prob-
lem with Tresca’s friction law was investigated and the rate of the bonding field
was assumed to be irreversible. Here, the novelty consists in dealing with a dy-
namic contact problem with Tresca’s friction law in which both adhesion and
damage are taken into account. Moreover, the adhesion field is described by a
general function which may change sign and allows rebonding after debonding,
and the process is assumed to be with memory so that it depends on the bond-
ing history. Also, we assume that the mechanical properties of the body are
described by a nonlinear viscoelastic constitutive law with damage, such that
the damage does not affect the viscosity of the material, but only its elastic
behaviour. We derive a variational formulation of the mechanical problem for
which we prove the existence of a unique weak solution, and obtain regularity
results for the solution. The proof is based on the regularization method (see
e.g. [6]), nonlinear evolution equations with monotone operators, a version
of the Cauchy–Lipschitz theorem and the Banach fixed point theorem.

The rest of this paper is organized as follows. In Section 2 we present
the notation and some preliminaries. Section 3 is dedicated to describing
the mechanical problem and deriving its variational formulation. The main
existence and uniqueness theorem is established in Section 4.

2. Notation and preliminaries. Here we introduce the notation we
shall use and some preliminary materials. Let Ω be a bounded domain, in the
numerical space Rd (d=2, 3) of variables x = (x1, . . . , xd), with a Lipschitz
boundary Γ . We denote by Sd the space of second order symmetric tensors
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on Rd. We define the inner products and the corresponding norms on Rd
and Sd by

u · v =
d∑
i=1

uivi, |u| = 2
√
u · u, ∀u, v ∈ Rd;

σ · ξ =
∑

1≤i,j≤d
σijξij , |σ| = 2

√
σ · σ, ∀σ, ξ ∈ Sd.

We introduce the spaces

H = L2(Ω;Rd), Q = L2(Ω; Sd),
H1 = {u ∈ H; ε(u) ∈ Q},
Q1 = {σ ∈ Q; Div σ ∈ H}.

Here and below, ε : H1 → Q is the deformation operator, defined by

ε(u) = 1
2(∇u+ (∇u)T ), ∀u ∈ H1,

where (∇u)T is the transpose of the matrix ∇u which is defined by

∇u =

(
∂ui
∂xj

)
1≤i,j≤d

,

and Div : Q1 → H is the divergence operator, defined by

Div σ = ((Div σ)i)1≤i≤d =

( d∑
j=1

∂σij
∂xj

)
1≤i≤d

, ∀σ ∈ Q1.

Note that H, Q, H1, Q1 are Hilbert spaces equipped with the respective
canonical inner products

(u, v)H =
�

Ω

u · v dx, (σ, τ)Q =
�

Ω

σ · τ dx,

(u, v)H1 = (u, v)H + (ε(u), ε(v))Q,

(σ, τ)Q1 = (Div σ,Div τ)H + (σ, τ)Q,

and the associated norms are denoted by ‖ · ‖H , ‖ · ‖Q, ‖ · ‖H1 , ‖ · ‖Q1 .

Let HΓ = H1/2(Γ ;Rd) and let γ̃ : H1 → HΓ be the trace map. For every
v ∈ H1 we also write v for the trace γ̃(v) of v on Γ , and for all v ∈ H1

we denote by vν and vτ the normal and tangential components of v on the
boundary Γ :

vν = v · ν, vτ = v − vνν on Γ,

here and below ν represents the unit outward normal vector to Γ . In a similar
manner, the normal and tangential components of a regular (say C1) tensor
field σ are defined by

σν = σν · ν, στ = σν − σνν on Γ ;
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moreover the following Green’s formula holds:

(1) (Div σ, v)H + (σ, ε(v))Q =
�

Γ

σν · v da, ∀v ∈ H1,

where da is the surface measure element.
Next, for every real Banach space (X, ‖ · ‖X) and T > 0, we denote

by C([0, T ];X) and C1([0, T ];X) the spaces of continuous and continuously
differentiable functions from [0, T ] to X, and we use the standard notation
for the spaces Lp(0, T ;X) and W k,p(0, T ;X), p ∈ [1,∞] and k ≥ 1. We need
the following result (see, e.g., [24, p. 60]).

Proposition 1. Let (X, ‖ · ‖X) be a real Banach space and let F (t, · ) :
X → X be an operator defined a.e. on (0, T ) which satisfies

(i) there exists LF > 0 such that ‖F (t, z) − F (t, y)‖X ≤ LF ‖z − y‖X ,
∀z, y ∈ X, a.e. t ∈ (0, T );

(ii) there exists p∈ [1,∞] such that the mapping t 7→ F (t, z) is in Lp(0, T ;X)
for each z ∈ X.

Then, for each z0 ∈ X there exists a unique function z ∈ W 1,p(0, T ;X) such
that

ż(t) = F (t, z(t)), a.e. t ∈ (0, T ),

z(0) = z0.

Here and everywhere in this paper, the dot above a variable denotes its
derivative with respect to time.

Let X and Y be real Hilbert spaces such that X is dense in Y and the
injection map is continuous; the space Y is identified with its own dual and
with a subspace of the dual X∗ of X, i.e. X ⊂ Y ⊂ X∗ is a Gelfand triplet.
Denote by ‖ · ‖X , ‖ · ‖Y, ‖ · ‖X∗ and 〈·, ·〉X∗×X the norm on the spaces X, Y,
X∗ and the duality pairing between X and X∗, respectively.

An operator A : X → X∗ is said to be hemicontinuous if the real function
t 7→ 〈A(u + tv), w〉X∗×X is continuous on [0, 1] for all u, v, w ∈ X, and
monotone if 〈Av − Aw, v − w〉X∗×X ≥ 0 for all v, w ∈ X. The operator
A : X → X∗ is called pseudomonotone (see, e.g., [19]) if the following
conditions are satisfied:

(2)


(i) A is bounded;

(ii) if (wn) ⊂ X with wn ⇀ w weakly in X, and

lim sup 〈A(wn), wn − w〉X∗×X ≤ 0, then

lim inf 〈A(wn), wn − v〉X∗×X ≥ 〈A(w), w − v〉X∗×X , ∀v ∈ X.
We have the following result which may be found in [1, p. 140].

Proposition 2. Let X ⊂ Y ⊂ X∗ be a Gelfand triplet. Assume that
A : X → X∗ is a hemicontinuous and monotone operator and there are real
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constants C1 > 0, C2 and C3 > 0 such that

〈Av, v〉X∗×X ≥ C1‖v‖2X + C2, ∀v ∈ X,(3)

‖Av‖X∗ ≤ C3(‖v‖X + 1), ∀v ∈ X.(4)

Then, given w0 ∈ Y and f ∈ L2(0, T ;X∗), there exists a unique function w
which satisfies

w ∈ L2(0, T ;X) ∩ C([0, T ];Y ), ẇ ∈ L2(0, T ;X∗),

ẇ(t) +Aw(t) = f(t) in X∗, a.e. t ∈ (0, T ),

w(0) = w0.

The following abstract result can be found in [2, p. 124].

Proposition 3. Let X ⊂ Y ⊂ X∗ be a Gelfand triplet and let K be a
nonempty, closed and convex set of X. Assume that a(·, ·) : X×X → R is a
continuous and symmetric bilinear form and there are real constants c2 > 0
and c1 such that

(5) a(v, v) + c1‖v‖2Y ≥ c2‖v‖2X , ∀v ∈ X.
Then, for each w0 ∈ K and each f ∈ L2(0, T ;Y ), there exists a unique
function w ∈W 1,2(0, T ;Y ) ∩ L2(0, T ;X) such that

w(t) ∈ K, ∀t ∈ [0, T ],

〈ẇ(t), v − w(t)〉X∗×X + a
(
w(t), v − w(t)

)
≥
(
f(t), v − w(t)

)
Y
,

∀v ∈ K, a.e. t ∈ (0, T ),

w(0) = w0.

We end this section with the following Gronwall type inequality.

Proposition 4. Assume that f, g : [a, b] → R are continuous functions
which satisfy

f(t) ≤ g(t) + c

t�

a

f(s)ds, ∀t ∈ [a, b],

where c > 0 is a constant. Then

f(t) ≤ g(t) + c

t�

a

g(s) exp(c(t− s)) ds, ∀t ∈ [a, b].

The proof can be found in [14, p. 162].

3. Problem statement. Assumptions. Variational formulation.
The physical setting is as follows. A deformable body occupies a bounded
domain Ω ⊂ Rd (with d = 2, 3). The body is described by a nonlinear
viscoelastic constitutive law with damage and the process is dynamic in
the time interval of interest [0, T ]. We assume that the boundary Γ of the
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domain Ω is Lipschitz continuous, and it is partitioned into three disjoint
measurable parts Γ1, Γ2, Γ3 such that meas (Γ1) > 0. The body is clamped
on Γ1 and therefore the displacement field vanishes there, while volume
forces of density f0 act in Ω, and surface tractions of density f2 act on Γ2.
The contact is supposed to be bilateral, adhesive and governed by Tresca’s
friction law. To simplify the notation, we do not indicate explicitly the
dependence of various functions on the spatial variable x ∈ Ω ∪ Γ . Under
the above assumptions, the classical formulation of our problem is the
following.

Problem 5. Find a displacement field u : Ω× [0, T ]→ Rd, a stress field
σ : Ω × [0, T ] → Sd, a damage field ζ : Ω × [0, T ] → R and a bonding field
β : Γ3 × [0, T ]→ R such that

σ = Aε(u̇) + B(ε(u), ζ) in Ω × (0, T ),(6)

ζ̇ − κ∆ζ + ∂I[0,1](ζ) 3 G(ε(u), ζ) in Ω × (0, T ),(7)

ρü = Div σ + f0 in Ω × (0, T ),(8)

u = 0 on Γ1 × (0, T ),(9)

σν = f2 on Γ2 × (0, T ),(10)

∂ζ

∂ν
= 0 on Γ × (0, T ),(11)

uν = 0 on Γ3 × (0, T ),(12) 
|στ + pτ (β, uτ )| ≤ gb,
|στ + pτ (β, uτ )| < gb ⇒ u̇τ = 0,

|στ + pτ (β, uτ )| = gb ⇒
∃λ ≥ 0 : στ + pτ (β, uτ ) = −λu̇τ

on Γ3 × (0, T ),(13)

β̇ = Had(β, θβ, |Rτ (uτ )|) on Γ3 × (0, T ),(14)

β(0) = β0 on Γ3,(15)

ζ(0) = ζ0 in Ω,(16)

(i) u(0) = u0, (ii) u̇(0) = v0 in Ω.(17)

Equation (6) represents the viscoelastic constitutive law with damage in
which ε denotes the linearized strain tensor, A is the viscosity operator and
B is the elasticity operator. Here we assume that the damage affects only
the elastic behaviour of the material, and therefore B is a function of the
strain and the damage field. (7) is a parabolic differential inclusion which
describes the evolution of the damage field, where ∆ denotes the Laplace
operator, κ > 0 is the microcrack diffusion constant and G is the damage
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source function. The indicator function I[0,1] : R→ (−∞,∞] is given by

I[0,1](s) =

{
0 if s ∈ [0, 1],

∞ otherwise.

The subdifferential of I[0,1] at s is the set

∂I[0,1](s) = {r ∈ R; I[0,1](z)− I[0,1](s) ≥ r(z − s), ∀z ∈ R}, ∀s ∈ R,

i.e.

∂I[0,1](s) =


(−∞, 0] if s = 0,

0 if s ∈ (0, 1),

[0,∞) if s = 1,

∅ otherwise.

Therefore the subdifferential term ∂I[0,1](ζ) in (7) guarantees that ζ is re-
stricted to values between 0 and 1; when ζ = 1 the material is damage-free
and has its full capacity; when ζ = 0 the material is completely damaged;
when 0 < ζ < 1 there is partial additional damage. Equation (8) is the dy-
namic equation of motion where ρ is the mass density. Equations (9)–(10)
are the displacement-traction boundary conditions where σν represents the
Cauchy stress vector. Equation (11) means that the normal derivative of ζ,
denoted by ∂ζ/∂ν, vanishes on Γ . Therefore, there is no influx of microc-
racks across the boundary. Conditions (12)–(13) represent the bilateral con-
tact with Tresca’s friction law in which adhesion is taken into account and gb
is a friction bound. Here, pτ is a general prescribed function. In particular,
we may consider the case

pτ (β, v) =

{
qτ (β)v if 0 ≤ |v| ≤ L,
qτ (β)Lv/|v| if |v| > L,

where L > 0 is a limit bound constant and qτ is nonnegative tangential
stiffness function (see, e.g., [21]). In [25] the following form of qτ has been
employed:

qτ (β) = cτβ
2 on Γ3 × (0, T ),

where cτ is a given positive material parameter. Equation (14) represents the
evolution of the bonding field described by a general function Had which may
change sign. This condition implies that cycles of rebonding after debonding
may take place (see [16], [22] for details). Moreover, the process depends on
the bonding history, which we denote by

θβ(t, x) =

t�

0

β(s, x) ds.
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Here and below, Rτ : Rd → Rd is a truncation operator defined by

Rτ (v) =

{
v if 0 ≤ |v| ≤ L,
Lv/|v| if |v| > L.

The introduction of the operator Rτ is motivated by the mathematical ar-
guments where L > 0 is a characteristic length of the bond, beyond which
there is no any additional traction. Clearly, Rτ satisfies

(18)

{
|Rτ (v)| ≤ L, ∀v ∈ Rd,∣∣|Rτ (w)| − |Rτ (v)|

∣∣ ≤ |w − v|, ∀w, v ∈ Rd.

An example of the adhesion rate function Had is

Had(β, r) = −(cτβr
2 − εa)+ on Γ3 × (0, T ),

where cτ , εa are given positive material parameters and (α)+ denotes the
positive part of α, that is, (α)+ = max{α, 0}. Since β̇ ≤ 0, the process
is irreversible and once debonding occurs, bonding cannot be reestablished
(see, e.g., [4], [25]). Another example, in which Had depends on all three
variables, is

Had(β, θβ, r) = −γ1βr
2 + γ2

β+(1− β)+

1 + d∗(θβ)2
,

where γ1, γ2 are given positive material parameters and d∗ > 0 is the his-
tory weight factor (see, e.g., [7], [16], [22]). Finally, (15)–(17) are the initial
conditions.

To obtain a variational formulation of the mechanical problem, we in-
troduce the space V and the convex set K defined by

V = {v ∈ H1; v= 0 on Γ1, vν = 0 on Γ3},
K = {ζ ∈ H1(Ω); 0 ≤ ζ ≤ 1, a.e. x ∈ Ω}.

Since meas(Γ1) > 0, Korn’s inequality holds:

(19) CK‖v‖H1 ≤ ‖ε(v)‖Q, ∀v ∈ V,

where CK > 0 is a positive constant depending only on Ω and Γ1. A proof of
Korn’s inequality can be found, for instance, in [20, p. 79]. Over the space V ,
we consider the inner product given by

(u, v)V = (ε(u), ε(v))Q, ∀u, v ∈ V,

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (19)
that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V . Therefore (V, (·, ·)V ) is a
real Hilbert space. Moreover, by the Sobolev trace theorem, there exists a
positive constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

(20) ‖v‖L2(Γ3;Rd) ≤ c0‖v‖V , ∀v ∈ V.
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In the study of the mechanical problem (6)–(17) we consider the following
assumptions. We assume that the viscosity operator A : Ω × Sd → Sd
satisfies

(21)



(i) there exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA|ε1 − ε2|2,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(ii) there exists LA > 0 such that

|A(x, ε1)−A(x, ε2)| ≤ LA|ε1 − ε2|,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(iii) the mapping x 7→ A(x, ε) is Lebesgue measurable on Ω

for any ε ∈ Sd;
(iv) the mapping x 7→ A(x, 0Sd) belongs to Q.

We assume that the operator B : Ω × Sd × R→ Sd satisfies

(22)



(i) there exists LB > 0 such that

|B(x, ε1, ξ1)− B(x, ε2, ξ1)| ≤ LB(|ε1 − ε2|+ |ξ1 − ξ2|),
∀ε1, ε2 ∈ Sd, ∀ξ1, ξ2 ∈ R, a.e. x ∈ Ω;

(ii) the mapping x 7→ B(x, ε, ξ) is Lebesgue measurable on Ω,

∀ε ∈ Sd, ∀ξ ∈ R;

(iii) the mapping x 7→ B(x, 0Sd , 0R) belongs to Q.

We assume that the damage source function G : Ω × Sd × R → R satis-
fies

(23)



(i) there exists LG > 0 such that

|G(x, ε1, ξ1)− G(x, ε2, ξ1)| ≤ LG(|ε1 − ε2|+ |ξ1 − ξ2|),
∀ε1, ε2 ∈ Sd, ∀ξ1, ξ2 ∈ R, a.e. x ∈ Ω;

(ii) the mapping x 7→ G(x, ε, ξ) is Lebesgue measurable on Ω,

∀ε ∈ Sd, ∀ξ ∈ R;

(iii) the mapping x 7→ G(x, 0Sd , 0R) belongs to L2(Ω).

We assume that the tangential contact function pτ : Γ3 × R × Rd → Rd
satisfies
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(24)



(i) there exists Lτ > 0 such that

|pτ (x, β1, r1)− pτ (x, β2, r2)| ≤ Lτ (|β1 − β2|+ |r1 − r2|),
∀β1, β2 ∈ [0, 1], ∀r1, r2 ∈ Rd, a.e. x ∈ Γ3;

(ii) r · ν(x) = 0 ⇒ pτ (x, β, r) · ν(x) = 0,

∀β ∈ R, ∀r ∈ Rd, a.e x ∈ Γ3;

(iii) the mapping x 7→ pτ (x, β, r) is Lebesgue measurable on Γ3

∀β ∈ R, ∀r ∈ Rd;
(iv) the mapping x 7→ pτ (x, 0R, 0Rd) belongs to L2(Γ3;Rd).

As in [22], the adhesion rate functionHad : Γ3×R× R×[0, L]→ R is assumed
to satisfy

(25)



(i) there exists LHad
> 0 such that

|Had(x, β1, z, r)−Had(x, β2, z, r)| ≤ LHad
|β1 − β2|,

a.e. x ∈ Γ3, ∀β1, β2, z ∈ R, ∀r ∈ [0, L];

(ii) |Had(x, β1, z1, r1)−Had(x, β2, z2, r2)|
≤ LHad

(|β1 − β2|+ |z1 − z2|+ |r1 − r2|),
∀β1, β2 ∈ [0, 1], ∀z1, z2 ∈ R, ∀r1, r2 ∈ [0, L], a.e. x ∈ Γ3;

(iii) the mapping x→ Had(x, β, z, r) is measurable on Γ3,

∀β, z ∈ R, ∀r ∈ [0, L];

(iv) the mapping (β, z, r)→ Had(x, β, z, r) is continuous on

R× R× [0, L], a.e. x ∈ Γ3;

(v) Had(x, 0, z, r) = 0, ∀z ∈ R, ∀r ∈ [0, L], a.e. x ∈ Γ3;

(vi) Had(x, β, z, r) ≥ 0, ∀β ≤ 0, ∀z ∈ R, ∀r ∈ [0, L], a.e. x ∈ Γ3,

Had(x, β, z, r) ≤ 0, ∀β ≥ 1, ∀z ∈ R, ∀r ∈ [0, L], a.e. x ∈ Γ3.

We suppose that the mass density satisfies

(26) ρ ∈ L∞(Ω) and there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗ a.e. x ∈ Ω.
Also, we suppose that the friction bound function gb : Γ3 → R+ satisfies

(27) gb ∈ L∞(Γ3).

The body forces and surface tractions have the regularity:

(28) f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(Γ2;Rd)).
Finally, we assume that the initial data satisfy

β0 ∈ L∞(Γ3), 0 ≤ β0(x) ≤ 1, a.e. x ∈ Γ3,(29)

ζ0 ∈ K,(30)

(i) u0 ∈ V, (ii) v0 ∈ H.(31)
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Next, we define a modified inner product on the Hilbert space H by

(32) ((u,w))H = (ρu,w)H , ∀u,w ∈ H,

and let ||| · |||H be the associated norm, i.e.

(33) |||w|||H = [(ρw,w)H ]1/2, ∀w ∈ H.

It follows from (26) and (33) that |||·|||H and ‖·‖H are equivalent norms on H.
Moreover, the inclusion mapping of (V, ‖ · ‖V ) into (H, ||| · |||H) is continuous
and dense. Identifying H with its own dual, we can write the Gelfand triplet

V ⊂ H ⊂ V ∗.

We use 〈 , 〉V ∗×V to represent the duality pairing between V ∗ and V. Then

(34) 〈v, w〉V ∗×V = ((v, w))H , ∀v ∈ H, ∀w ∈ V.

Using Riesz’s theorem, from (28) we can define f ∈ L2(0, T ;V ) by

(35) (f(t), w)V =
�

Ω

f0(t) ·w dx+
�

Γ2

f2(t) ·w da, ∀w ∈ V, a.e. t ∈ (0, T ).

Below, we use the functionals jτ : V → R and jad : L∞(Γ3) × V × V → R
defined by

jτ (w) =
�

Γ3

gb|wτ | da, ∀w ∈ V,(36)

jad(β, v, w) =
�

Γ3

pτ (β, vτ ) · wτ da, ∀(β, v, w) ∈ L∞(Γ3)× V × V.(37)

Thanks to (24) and (20), there exists Lad > 0 such that

(38) |jad(β1, u1, w)− jad(β2, u2, w)|
≤ Lad(‖β1 − β2‖L2(Γ3)+‖u1 − u2‖V )‖w‖V , ∀u1, u2, w ∈ V,

∀β1, β2 ∈ L∞(Γ3), 0 ≤ β1, β2 ≤ 1, a.e. x ∈ Γ3.

We turn now to derive a variational formulation of the mechanical prob-
lem (6)–(17). To this end, assume that (u, σ, ζ, β) are smooth functions sat-
isfying (6)–(17) and let w ∈ V and t ∈ [0, T ]. Using (8), (32), (34) and
Green’s formula (1), we obtain

(39) 〈ü(t), w〉V ∗×V + (σ(t), ε(w))Q −
�

Ω

f0(t) · w dx =
�

Γ

σ(t)ν · w da,

and by (10) we find

(40)
�

Γ

σ(t)ν · w da =
�

Γ2

f2(t) · w da+
�

Γ3

στ (t) · wτ da.
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Then (39), (40) and (35) lead to

(41) 〈ü(t), w − u̇(t)〉V ∗×V +
(
σ(t), ε(w)− ε(u̇(t))

)
Q

−
�

Γ3

στ (t) · (wτ − u̇τ (t)) da = (f(t), w − u̇(t))V .

On the other hand,

−
�

Γ3

(
στ (t) + pτ (β(t), uτ (t))

)
· wτ da ≤

�

Γ3

|στ (t) + pτ (β(t), uτ (t))| |wτ | da,

and taking into account the boundary condition (13), we deduce that

−
�

Γ3

στ (t) · wτ da ≤
�

Γ3

|στ (t) + pτ (β(t), uτ (t))| |wτ | da(42)

+
�

Γ3

pτ (β(t), uτ (t)) · wτ da

≤
�

Γ3

gb|wτ | da+
�

Γ3

pτ (β(t), uτ (t)) · wτ da.

Also, using (13) we obtain
�

Γ3

(
στ (t) + pτ (β(t), uτ (t))

)
· u̇τ (t) da = −

�

Γ3

|στ (t) + pτ (β(t), uτ (t))| |u̇τ (t)| da

= −
�

Γ3

gb|u̇τ (t)| da,

which gives
�

Γ3

στ (t) · u̇τ (t) da = −
�

Γ3

gb|u̇τ (t)| da−
�

Γ3

pτ (β(t), uτ (t)) · u̇τ (t) da,

and keeping in mind (42) and (36)–(37), we find

(43) −
�

Γ3

στ (t) · (wτ − u̇τ (t)) da

≤ jτ (w)− jτ (u̇(t)) + jad(β(t), u(t), w)− jad(β(t), u(t), u̇(t)).

Now, using integration by parts and applying condition (11) we get

(44) −(∆ζ(t), ψ)L2(Ω) = (∇ζ(t),∇ψ)L2(Ω,Rd), ∀ψ ∈ H1(Ω).

Moreover, from (7) one has(
ζ̇(t)− κ∆ζ(t)

)
(ψ − ζ(t)) + I[0,1](ψ)− I[0,1](ζ(t))

≥ G
(
ε(u(t)), ζ(t)

)
(ψ − ζ(t)), ∀ψ ∈ H1(Ω), a.e. x ∈ Ω,
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and since 0 ≤ ζ(t) ≤ 1, we obtain

(45)
(
ζ̇(t), ψ − ζ(t)

)
L2(Ω)

− κ(∆ζ(t), ψ − ζ(t))L2(Ω)

≥
(
G(ε(u(t)), ζ(t)), ψ − ζ(t)

)
L2(Ω)

, ∀ψ ∈ K.

Finally, using (41), (43)–(45) and keeping in mind (14)–(17), we obtain
the following variational formulation of problem (6)–(17) in terms of dis-
placement, damage and adhesion fields.

Problem 6. Find a displacement field u : [0, T ] → V , a damage field
ζ : [0, T ]→ H1(Ω) and a bonding field β : [0, T ]→ L∞(Γ3) such that

〈ü(t), w − u̇(t)〉V ∗×V +
(
A(ε(u̇(t))), ε(w − u̇(t))

)
Q(46)

+
(
B(ε(u(t)), ζ(t)), ε(w − u̇(t))

)
Q + jad

(
β(t), u(t), w − u̇(t)

)
+ jτ (w)− jτ (u̇(t)) ≥ (f(t), w − u̇(t))V , ∀w ∈ V, a.e. t ∈ (0, T ),

ζ(t) ∈ K,(
ζ̇(t), ψ − ζ(t)

)
L2(Ω)

+ κ(∇ζ(t),∇ψ −∇ζ(t))H(47)

≥
(
G(ε(u(t)), ζ(t)), ψ − ζ(t)

)
L2(Ω)

, ∀ψ ∈ K, a.e. t ∈ (0, T ),

β̇(t) = Had

(
β(t), θβ(t), |Rτ (uτ (t))|

)
, a.e. t ∈ (0, T ),(48)

β(0) = β0,(49)

ζ(0) = ζ0,(50)

(i) u(0) = u0, (ii) u̇(0) = v0.(51)

4. Existence and uniqueness of a weak solution. The following
theorem is the main result of this paper.

Theorem 7. Assume (21)–(31) are fulfilled. Then problem (46)–(51) has
a unique solution {u, β, ζ}. Moreover, the solution satisfies

u ∈W 1,2(0, T ;V ) ∩ C1([0, T ];H), ü ∈ L2(0, T ;V ∗),(52)

β ∈W 1,∞(0, T ;L∞(Γ3)), 0 ≤ β(t) ≤ 1, a.e. x ∈ Γ3, ∀t ∈[0, T ],(53)

ζ ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).(54)

The proof will be carried out in several steps. In the rest of this paper, the
same letter c will be used to denote different positive constants independent
of t ∈ (0, T ).

Step 1. Consider the following problem.

Problem 8. Let η ∈ L2(0, T ;V ). Find a function ζη : [0, T ] → H1(Ω)
such that
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ζη(t) ∈ K,
(ζ̇η(t), ψ − ζη(t))L2(Ω) + κ(∇ζη(t),∇ψ −∇ζη(t))H

≥
(
G(ε(η(t)), ζη(t)), ψ − ζη(t)

)
L2(Ω)

, ∀ψ ∈ K, a.e. t ∈ (0, T ),

(55)

ζη(0) = ζ0.(56)

Lemma 9. Assume that (23) and (30) hold. Then problem (55)–(56) has
a unique solution ζη which satisfies

(57) ζη ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Furthermore, there is a constant c > 0 such that for all η1, η2 ∈ L2(0, T ;V ),

(58) ‖ζη1(t)− ζη2(t)‖2L2(Ω) ≤ c
t�

0

‖η1(s)− η2(s)‖2V ds, ∀t ∈ [0, T ],

where ζηi (i = 1, 2) is the solution corresponding to ηi.

Proof. Let (η, φ) ∈ L2(0, T ;V )× L2(0, T ;L2(Ω)). From (23) we can de-
fine fηφ ∈ L2(0, T ;L2(Ω)) by

fηφ(t) = G(ε(η(t)), φ(t)), a.e. t ∈ (0, T ).

On the other hand, let a : H1(Ω)×H1(Ω)→ R be the bilinear form defined
by

a(ϕ,ψ) = κ(∇ϕ,∇ψ)H , ∀ϕ,ψ ∈ H1(Ω).

After some algebraic computations, we find that a satisfies (5) and it is
continuous and symmetric on H1(Ω). Therefore, applying Proposition 3
with X = H1(Ω), Y = L2(Ω) and K = K, we can see that, for each (η, φ) ∈
L2(0, T ;V ) ×L2(0, T ;L2(Ω)), the system

ζηφ(t) ∈ K,
(ζ̇ηφ(t), ψ − ζηφ(t))L2(Ω) + κ(∇ζηφ(t),∇ψ −∇ζηφ(t))H

≥
(
G(ε(η(t)), φ(t)), ψ − ζηφ(t)

)
L2(Ω)

, ∀ψ ∈ K, a.e. t ∈ (0, T ),

(59)

ζηφ(0) = ζ0(60)

has a unique solution ζηφ which satisfies

(61) ζηφ ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

To continue, assume ζηφ1 , ζηφ2 are two solutions to system (59)–(60),
corresponding to (η, φ) = (η, φ1) and (η, φ) = (η, φ2), respectively. Then
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t�

0

(
ζ̇ηφ1(s)− ζ̇ηφ2(s), ζηφ1(s)− ζηφ2(s)

)
L2(Ω)

ds

+κ

t�

0

a
(
ζηφ1(s)− ζηφ2(s), ζηφ1(s)− ζηφ2(s)

)
ds

≤
t�

0

(
G(ε(η(s)), φ1(s))− G(ε(η(s)), φ2(s)), ζηφ1(s)− ζηφ2(s)

)
L2(Ω)

ds,

and using the inequality

λδ ≤ 1
2λ

2 + 1
2δ

2, ∀λ, δ ∈ R,

we deduce that

‖ζηφ1(t)− ζηφ2(t)‖2L2(Ω) ≤ c
t�

0

‖φ1(s)− φ2(s)‖2L2(Ω) ds

+ c

t�

0

‖ζηφ1(s)− ζηφ2(s)‖2L2(Ω) ds.

From Gronwall’s inequality, we obtain

(62) ‖ζηφ1(t)− ζηφ2(t)‖2L2(Ω) ≤ c
t�

0

‖φ1(s)− φ2(s)‖2L2(Ω) ds, ∀t ∈ [0, T ].

Now, for each η ∈ L2(0, T ;V ), consider the operator Φη : L2(0, T ;L2(Ω))→
L2(0, T ;L2(Ω)) defined by

(63) Φηφ = ζηφ, ∀φ ∈ L2(0, T ;L2(Ω)),

where ζηφ is the unique solution satisfying (59)–(60). Using (62)–(63) we get

‖Φηφ1(t)− Φηφ2(t)‖2L2(Ω) ≤ c
t�

0

‖φ1(s)− φ2(s)‖2L2(Ω) ds, ∀t ∈ [0, T ].

Reiterating the last inequality n times, we infer that

‖Φnηφ1 − Φnηφ2‖2L2(0,T ;L2(Ω)) ≤
(cT )n

n!
‖φ1 − φ2‖2L2(0,T ;L2(Ω)),

which implies that, for n sufficiently large, a power Φnη of Φη is a contraction

in the Banach space L2(0, T ;L2(Ω)). Therefore, Φη has a unique fixed point
φ∗η ∈ L2(0, T ;L2(Ω)). Now, let η ∈ L2(0, T ;V ), let φ∗η be the fixed point of Φη,
let ζη = ζηφ∗η and keeping in mind (59)–(61), it is straightforward to see that

ζη is a unique solution to problem (55)–(56) such that (57) holds. Finally,
assume ζη1 , ζη2 are two solutions to problem (55)–(56), corresponding to η1
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and η2, respectively. Then we get

‖ζη1(t)− ζη2(t)‖2L2(Ω)

≤ c
t�

0

‖η1(s)− η2(s)‖2V ds+ c

t�

0

‖ζη1(s)− ζη2(s)‖2L2(Ω) ds, ∀t ∈ [0, T ].

Thus, using Gronwall’s inequality, we obtain (58).

Now, consider the following problem.

Problem 10. Let η ∈ L2(0, T ;V ). Find a function βη : [0, T ]→ L∞(Γ3)
such that

β̇η(t) = Had

(
βη(t), θβη(t), |Rτ (ητ (t))|

)
, a.e. t ∈ (0, T ),(64)

βη(0) = β0,(65)

where

(66) θβη(t) =

t�

0

βη(s) ds, ∀t ∈ [0, T ].

Lemma 11. Assume (25) and (29) are fulfilled. Then problem (64)–(66)
has a unique solution which satisfies

(67)

{
(i) βη ∈W 1,∞(0, T ;L∞(Γ3)),

(ii) 0 ≤ βη(t) ≤ 1, ∀t ∈ [0, T ], a.e. x ∈ Γ3.

Moreover, there exists a constant c > 0 such that for all η1, η2 ∈ L2(0, T ;V ),

(68) ‖βη1(t)− βη2(t)‖2L2(Γ3) ≤ c
t�

0

‖η1(s)− η2(s)‖2V ds, ∀t ∈ [0, T ],

where βηi (i = 1, 2) is the solution corresponding to ηi.

Proof. Fix (η, θ) ∈ L2(0, T ;V ) × L∞(0, T ;L∞(Γ3)) and consider F :
[0, T ]× L∞(Γ3)→ L∞(Γ3) defined by

(69) F (t, β) = Had(β, θ(t), |Rτ (ητ (t))|), ∀β ∈ L∞(Γ3), a.e. t ∈ (0, T ).

Let β1, β2 ∈ L∞(Γ3). From (69) and (25), we obtain

|F (t, β1)− F (t, β2)|
≤
∣∣Had

(
β1, θ(t), |Rτ (ητ (t))|

)
−Had

(
β2, θ(t), |Rτ (ητ (t))|

)∣∣
≤ LHad

|β1 − β2|, a.e. t ∈ (0, T ),

which implies that

‖F (t, β1)− F (t, β2)‖L∞(Γ3) ≤ LHad
‖β1 − β2‖L∞(Γ3), a.e. t ∈ (0, T ).

Hence, F is Lipschitz continuous with respect to the second argument,
uniformly in time. Moreover, t 7→ F (t, β) belongs to L∞(0, T ;L∞(Γ3)),
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∀β ∈ L∞(Γ3). Thus, using Proposition 1, we deduce that there exists a
unique βηθ ∈W 1,∞(0, T ;L∞(Γ3)) such that

β̇ηθ(t) = Had(βηθ(t), θ(t), |Rτ (ητ (t))|), a.e. t ∈ (0, T ),(70)

βηθ(0) = β0.(71)

Moreover, from (70)–(71), (25), (29) and using arguments similar to those
in [16], [22], we deduce that

(72) 0 ≤ βηθ(t) ≤ 1, ∀t ∈ [0, T ], a.e. x ∈ Γ3.

Now, let βηθ1 , βηθ2 be two solutions satisfying (70)–(71). It follows from (25)
that

‖βηθ1(t)− βηθ2(t)‖L∞(Γ3) ≤ c
t�

0

‖βηθ1(s)− βηθ2(s)‖L∞(Γ3) ds

+ c

t�

0

‖θ1(s)− θ2(s)‖L∞(Γ3) ds.

Using Gronwall’s inequality we get

(73) ‖βηθ1(t)− βηθ2(t)‖L∞(Γ3) ≤ c
t�

0

‖θ1(s)− θ2(s)‖L∞(Γ3) ds.

To continue, for each η ∈ L2(0, T ;V ), consider the operator Θη :
L∞(0, T ;L∞(Γ3))→ L∞(0, T ;L∞(Γ3)) defined by

(74) Θηθ(t) =

t�

0

βηθ(s) ds, ∀t ∈ [0, T ], ∀θ ∈ L∞(0, T ;L∞(Γ3)),

where βηθ is the unique solution of (70)–(71). Using (73)–(74) we have

‖Θηθ1(t)−Θηθ2(t)‖L∞(Γ3) ≤
t�

0

‖βηθ1(s)− βηθ2(s)‖L∞(Γ3) ds

≤ c
t�

0

s�

0

‖θ1(r)− θ2(r)‖L∞(Γ3) dr ds

≤ c
t�

0

‖θ1(r)− θ2(r)‖L∞(Γ3) dr, ∀t ∈ [0, T ].

Reiterating this inequality n times, we obtain

‖Θηθ1 −Θηθ2‖L∞(0,T ;L∞(Γ3)) ≤
(cT )n

n!
‖θ1 − θ2‖L∞(0,T ;L∞(Γ3)),

which implies that, for n sufficiently large, a power Θnη of Θη is a contraction
in the Banach space L∞(0, T ;L∞(Γ3)). Therefore, Θη has a unique fixed
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point θ∗η ∈ L∞(0, T ;L∞(Γ3)) given by

θ∗η(t) =

t�

0

βηθ∗η(s) ds, ∀t ∈ [0, T ].

Now, let η ∈ L2(0, T ;V ), let θ∗η be the fixed point of Θη, let βη = βηθ∗η , let

θβη = θ∗η and keeping in mind (70)–(72), it is straightforward to see that βη
is a unique solution to problem (64)–(66) such that (67) holds.

Finally, assume βη1 , βη2 are two solutions to problem (64)–(66), corre-
sponding to η1 and η2, respectively. Then from (25) and (18) we obtain

‖βη1(t)− βη2(t)‖2L2(Γ3)

≤ c
t�

0

‖βη1(s)− βη2(s)‖2L2(Γ3) ds+ c

t�

0

‖θ∗η1(s)− θ∗η2(s)‖2L2(Γ3) ds

+ c

t�

0

‖η1(s)− η2(s)‖2L2(Γ3;Rd) ds

≤ c
t�

0

‖βη1(s)− βη2(s)‖2L2(Γ3) ds+ c

t�

0

s�

0

‖βη1(r)− βη2(r)‖2L2(Γ3) dr ds

+ c

t�

0

‖η1(s)− η2(s)‖2L2(Γ3;Rd) ds,

which leads to

‖βη1(t)− βη2(t)‖2L2(Γ3) ≤ c
t�

0

‖βη1(r)− βη2(r)‖2L2(Γ3) dr

+ c

t�

0

‖η1(s)− η2(s)‖2L2(Γ3,Rd) ds,

which, together with Gronwall’s inequality (20), gives (68).

Step 2. Let α > 0. We define a regularized functional jα : V → R by

jα(w) =
�

Γ3

gb
√
|wτ |2 + α2 da, ∀w ∈ V,

which represents an approximation of jτ . More precisely,

(75) |jα(w)− jτ (w)| ≤ α‖gb‖L1(Γ3), ∀w ∈ V.

Moreover, jα has a Gâteaux derivative j′α : V → V ∗ given by

(76) 〈j′α(y), w〉V ∗×V =
�

Γ3

gb√
|yτ |2 + α2

yτ ·wτ da, ∀w, y ∈ V.
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Since jα is a convex function, it follows (see, e.g., [19]) that j′α is a hemicon-
tinuous operator and satisfies

(77) 〈j′α(y), w − y〉V ∗×V ≤ jα(w)− jα(y), ∀w, y ∈ V,
which leads to

(78) 〈j′α(y)− j′α(w), y − w〉V ∗×V ≥ 0, ∀w, y ∈ V.
To continue, let α > 0, let η ∈ L2(0, T ;V ), let βη be the unique solution of
problem (64)–(66), let ζη be the unique solution of problem (55)–(56). We
can define fη ∈ L2(0, T ;V ∗) by

〈fη(t), w〉V ∗×V = (f(t), w)V −
(
B(ε(η(t)), ζη(t)), ε(w)

)
Q(79)

− jad(βη(t), η(t), w), a.e. t ∈ (0, T ), ∀w ∈ V,
and we consider the following regularized problem.

Problem 12. Let α > 0 and let η ∈ L2(0, T ;V ). Find a function vαη :
[0, T ]→ V such that

〈v̇αη (t), w〉V ∗×V + (A(ε(vαη (t))), ε(w))Q + 〈j′α(vαη (t)), w〉V ∗×V(80)

= 〈fη(t), w〉V ∗×V , ∀w ∈ V, a.e. t ∈ (0, T ),

vαη (0) = v0.(81)

Lemma 13. Assume that (21)–(30) and (31)(ii) hold. Then problem
(80)–(81) has a unique solution vαη which satisfies

(82) vαη ∈ L2(0, T ;V ) ∩ C([0, T ];H), v̇αη ∈ L2(0, T ;V ∗).

Proof. Let A : V → V ∗ be defined by

(83) 〈Aw, z〉V ∗×V = (A(ε(w)), ε(z))Q + 〈j′α(w), z〉V ∗×V , ∀w, z ∈ V.
From (21) and (78), we deduce that A is a monotone operator. Moreover,
using (83), (21) one has, for all λ, λ0 ∈ R,

|〈A(w + λv)−A(w + λ0v), z〉V ∗×V | ≤ LA|λ− λ0| ‖v‖V ‖z‖V
+ |〈j′α(w + λv)− j′α(w + λ0v), z〉V ∗×V |, ∀w, v, z ∈ V,

and since j′α is hemicontinuous, it follows that A is hemicontinuous from V
to V ∗. To continue, since 〈j′α(v), v〉V ∗×V ≥ 0, using (21) and (83) we get

mA‖v‖2V ≤
(
A(ε(v))−A(ε(0)), ε(v)− ε(0)

)
Q

≤ (A(ε(v)), ε(v))Q − (A(ε(0)), ε(v))Q

≤ (A(ε(v)), ε(v))Q + 〈j′α(v), v〉V ∗×V − (A(0), ε(v))Q

≤ 〈Av, v〉V ∗×V + ‖A(0)‖Q‖v‖V ,
which leads to

mA‖v‖2V ≤ 〈Av, v〉V ∗×V +
1

2mA
‖A(0)‖2Q +

mA
2
‖v‖2V ,
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which implies that

mA
2
‖v‖2V −

1

2mA
‖A(0)‖2Q ≤ 〈Av, v〉V ∗×V .

On the other hand, from (83), (20), (21) and (76), one has

|〈Av,w〉V ∗×V |
≤ |(A(ε(v)), ε(w))Q|+ |〈j′α(v), w〉V ∗×V |
≤
∣∣(A(ε(v))−A(ε(0)), ε(w)

)
Q
∣∣+ |(A(ε(0)), ε(w))Q|+ |〈j′α(v), w〉V ∗×V |

≤ LA‖v‖V ‖w‖V + ‖A(0)‖Q‖w‖V + c0‖gb‖L2(Γ3)‖w‖V ,
which implies that

(84) ‖Av‖V ∗ ≤ LA‖v‖V + ‖A(0)‖Q + c0‖gb‖L2(Γ3).

Thus, A satisfies conditions (3)–(4) with C1 = mA/2, C2 = − 1
2mA
‖A(0)‖2Q

and C3 = max(LA, ‖A(0)‖Q+c0‖gb‖L2(Γ3)). Now, keeping in mind (31)(ii), it
follows from Proposition 2.2 that there exists a unique function vαη satisfying

v̇αη (t) +Avαη (t) = fη(t) in V ∗, a.e. t ∈ (0, T ),(85)

vαη (0) = v0,(86)

such that (82) holds. Thus problem (80)–(81) has a unique solution vαη which
satisfies (82).

Step 3. Next, we introduce the space W = {v ∈ V; v̇ ∈ V∗} which is a
separable and reflexive Banach space equipped with the norm

‖v‖W = ‖v‖V + ‖v̇‖V∗ ,
where V = L2(0, T ;V ) and V∗ = L2(0, T ;V ∗). We have the following result.

Lemma 14. There exists a function vη ∈ W and a subsequence of {vαη },
again denoted by {vαη }, such that as α→ 0, the following convergences hold:

vαη ⇀ vη weakly in L2(0, T ;V ),(87)

v̇αη ⇀ v̇η weakly in L2(0, T ;V ∗),(88)

vαη (t) ⇀ vη(t) weakly in H, ∀t ∈ [0, T ].(89)

Proof. It follows from (80) that

〈v̇αη (s), vαη (s)〉V ∗×V +
(
A(ε(vαη (s))), ε(vαη (s))

)
Q + 〈j′α(vαη (s)), vαη (s)〉V ∗×V

= 〈fη(s), vαη (s)〉V ∗×V , s ∈ (0, T ),

and since 〈j′α(vαη (s)), vαη (s)〉V ∗×V ≥ 0, we get

〈v̇αη (s), vαη (s)〉V ∗×V +
(
A(ε(vαη (s)))−A(ε(0)), ε(vαη (s))

)
Q

≤ 〈fη(s), vαη (s)〉V ∗×V −
(
A(ε(0)), ε(vαη (s))

)
Q, s ∈ (0, T ),
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and using (21), we deduce that

〈v̇αη (s), vαη (s)〉V ∗×V +mA‖vαη (s)‖2V ≤
1

mA
‖fη(s)‖2V ∗ +

mA
4
‖vαη (s)‖2V

+
1

mA
‖A(0)‖2Q +

mA
4
‖vαη (s)‖2V .

Integrating both sides, one has

|||vαη (t)|||2H +

t�

0

‖vαη (s)‖2V ds ≤ c
t�

0

‖fη(s)‖2V ∗ ds+ |||v0|||2H + c, ∀t ∈ [0, T ].

From this, we get

(90) |||vαη |||L∞(0,T ;H) + ‖vαη ‖L2(0,T ;V ) ≤ c.

To continue, using (84)–(85), we obtain

‖v̇αη (s)‖V ∗ ≤ LA‖vαη (s)‖V + ‖A(0)‖Q + c0‖gb‖L2(Γ3) + ‖fη(s)‖V ∗ , s ∈ (0, T ),

which gives

‖v̇αη (s)‖2V ∗ ≤ c‖vαη (s)‖2V + c‖fη(s)‖2V ∗ + c, a.e. s ∈ (0, T );

integrating both sides on (0, t), we get

t�

0

‖v̇αη (s)‖2V ∗ ds ≤ c
t�

0

‖vαη (s)‖2V ds+ c

t�

0

‖fη(s)‖2V ∗ ds+ c,

which, together with (90), implies that

(91) ‖v̇αη ‖ L2(0,T ;V ∗) ≤ c.

In (90)–(91), c is a positive constant independent of α. Thus, from stan-
dard compactness arguments, there exists a function vη ∈ L2(0, T ;V ) ∩
W 1,2(0, T ;V ∗) and a subsequence of {vαη }, still denoted by {vαη }, such that the
convergences (87)–(88) hold. Now, since the inclusion mapW ⊂ C([0, T ];H)
is continuous, the convergence (89) follows from (87)–(88).

Lemma 15. For any z ∈ L2(0, T ;V ), the following properties hold:

lim inf
α→0

T�

0

〈v̇αη (s), vαη (s)− z(s)〉V ∗×V ds ≥
T�

0

〈v̇η(s), vη(s)− z(s)〉V ∗×V ds,(92)

lim inf
α→0

T�

0

[jα(vαη (s))− jα(z(s))] ds ≥
T�

0

[jτ (vη(s))− jτ (z(s))] ds,(93)
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(94) lim inf
α→0

T�

0

(A(ε(vαη (s))), ε(vαη (s)− z(s)))Q ds

≥
T�

0

(A(ε(vη(s))), ε(vη(s)− z(s)))Q ds.

Proof. Using (89) and (81) we find that vαη (0) = vη(0). Moreover, we
obtain

lim inf
α→0

T�

0

〈v̇αη (s), vαη (s)〉V ∗×V ds = lim inf
α→0

(
1
2 |||v

α
η (T )|||2H − 1

2 |||vη(0)|||2H
)

≥ 1
2 |||vη(T )|||2H − 1

2 |||vη(0)|||2H ≥
T�

0

〈v̇η(s), vη(s)〉V ∗×V ds,

which together with (88) implies (92).
To establish (93), we write

T�

0

[jα(vαη (s))− jα(z(s))] ds

=

T�

0

[jα(vαη (s))− jτ (vαη (s))] ds+

T�

0

[jτ (z(s))− jα(z(s))] ds

+

T�

0

[jτ (vαη (s))− jτ (z(s))] ds.

Keeping in mind (75), (87) and using standard lower semicontinuity argu-
ments, in the last equality, we get

lim inf
α→0

T�

0

[jα(vαη (s))− jα(z(s))] ds = lim inf
α→0

T�

0

[jτ (vαη (s))− jτ (z(s))] ds

≥
T�

0

[jτ (vη(s))− jτ (z(s))] ds.

To continue, let F : V → V∗ be the operator defined by

(95) 〈Fw, z〉V∗×V =

T�

0

(
A(ε(w(s))), ε(z(s))

)
Q ds, ∀w, z ∈ V.

From (80), (77) and (95), we get

〈Fvαη , vαη − vη〉V∗×V ≤
T�

0

〈v̇αη (s), vη(s)− vαη (s)〉V ∗×V ds

+

T�

0

[jα(vη(s))− jα(vαη (s))] ds+

T�

0

〈fη(s), vαη (s)− vη(s)〉V ∗×V ds.
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Passing to lim sup as α → 0 in the last inequality by using (92)–(93) and
(87), we obtain

lim sup
α→0

〈F(vαη ), vαη − vη〉V∗×V ≤ 0,

and since the operator F is bounded, hemicontinuous and monotone, we
deduce that F is pseudomonotone (see, e.g., [19]), and keeping in mind (2),
(87) and (95) we deduce the convergence (94).

Step 4. In this step we consider the following variational problem.

Problem 16. Let η ∈ L2(0, T ;V ). Find a function vη ∈ W such that

〈v̇η(s), w − vη(s)〉V ∗×V +
(
A(ε(vη(s))), ε(w − vη(s))

)
Q(96)

+ jτ (w)− jτ (vη(s)) ≥ 〈fη(s), w − vη(s)〉V ∗×V ,
∀w ∈ V, a.e. s ∈ (0, T ),

vη(0) = v0.(97)

We have the following existence and uniqueness result.

Lemma 17. Assume that (21)–(30) and (31)(ii) hold. Then problem
(96)–(97) has a unique solution vη which satisfies

(98) vη ∈ L2(0, T ;V ) ∩ C([0, T ];H), v̇η ∈ L2(0, T ;V ∗).

Proof. In view of (80), (77) we deduce that the function vαη satisfies

(99)

T�

0

〈v̇αη (s), z(s)− vαη (s)〉V ∗×V ds

+

T�

0

(
A(ε(vαη (s))), ε(z(s)− vαη (s))

)
Q ds+

T�

0

[jα(z(s))− jα(vαη (s))] ds

≥
T�

0

〈fη(s), z(s)− vαη (s)〉V ∗×V ds, ∀z ∈ L2(0, T ;V ).

Let t ∈ (0, T ) and r > 0 be such that t+ r ∈ (0, T ), and let w ∈ V . Then in
(99) we put

z(s) =

{
w for s ∈ (t, t+ r),

vη(s) elsewhere,

and pass to the lim sup as α→ 0, to obtain

1

r

t+r�

t

〈v̇η(s), w − vη(s)〉V ∗×V ds+
1

r

t+r�

t

(
A(ε(vη(s))), ε(w − vη(s))

)
Q ds

+
1

r

t+r�

t

[jτ (w)− jτ (vη(s))] ds ≥
1

r

t+r�

t

〈fη(s), w − vη(s)〉V ∗×V ds, ∀w ∈ V.
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Let vη be the function obtained in Lemma 14. Since vαη (0) = vη(0), using
(86) and passing to the limit as r → 0 in the last inequality we deduce that
the function vη is a solution of problem (96)–(97) such that (98) holds.

For the uniqueness, let v1, v2 ∈ W be two functions satisfying (96)–(97).
Setting, in (96), (vη, w) = (v1, v2) and (vη, w) = (v2, v1), and adding the two
inequalities we get

T�

0

〈v̇1(s)− v̇2(s), v1(s)− v2(s)〉V ∗×V ds

+

T�

0

(
A(ε(v1(s)))−A(ε(v2(s))), ε(v1(s)− v2(s))

)
Q ds ≤ 0.

Keeping in mind (97) and (21), we deduce that

1
2 |||v1(T )− v2(T )|||2H +mA‖v1 − v2‖2L2(0,T ;V ) ≤ 0,

which shows that v1 = v2.

Step 5. Let η ∈ L2(0, T ;V ), let vη be the unique solution of problem
(96)–(97), let βη be the unique solution of problem (64)–(66), let ζη be
the unique solution of problem (55)–(56), and define Λ : L2(0, T ;V ) →
L2(0, T ;V ) by

(100) Λη(t) =

t�

0

vη(s) ds+ u0, ∀η ∈ L2(0, T ;V ), ∀t ∈ [0, T ].

We have the following result.

Lemma 18. The operator Λ has a unique fixed point η∗ ∈ L2(0, T ;V ).

Proof. Let η1, η2 ∈ L2(0, T ;V ), then by (96) and (79),

t�

0

〈v̇η1(s)− v̇η2(s), vη1(s)− vη2(s)〉V ∗×V ds

+

t�

0

(
A(ε(vη1(s)))−A(ε(vη2(s))), ε(vη1(s)− vη2(s))

)
Q ds

≤
t�

0

jad

(
βη1(s), η1(s), vη2(s)− vη1(s)

)
ds

−
t�

0

jad

(
βη2(s), η2(s), vη2(s)− vη1(s)

)
+

t�

0

(
B(ε(η1(s)), ζη1(s))− B(ε(η2(s)), ζη2(s)), ε(vη2(s)− vη1(s))

)
Q ds.
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Using (97), (21)–(22), (38) and (67)(ii), we obtain

|||vη1(t)− vη2(t)|||2H +

t�

0

‖vη1(s)− vη2(s)‖2V ds

≤ c
t�

0

‖βη1(s)− βη2(s)‖L2(Γ3)‖vη1(s)− vη2(s)‖V ds

+ c

t�

0

‖η1(s)− η2(s)‖V ‖vη1(s)− vη2(s)‖V ds

+ c

t�

0

‖ζη1(s)− ζη2(s)‖V ‖vη1(s)− vη2(s)‖V ds.

We then use the inequality

λδ ≤ λ2 + 1
4δ

2, ∀λ, δ ∈ R.
We deduce that

t�

0

‖vη1(s)− vη2(s)‖2V ds ≤ c
t�

0

‖βη1(s)− βη2(s)‖2L2(Γ3) ds

+ c

t�

0

‖η1(s)− η2(s)‖2V ds+ c

t�

0

‖ζη1(s)− ζη2(s)‖2L2(Ω) ds.

Therefore, by (68) and (58),

(101)

t�

0

‖vη1(s)− vη2(s)‖2V ds ≤ c
t�

0

‖η1(s)− η2(s)‖2V ds.

Now, using (100), we obtain

‖Λη1(t)− Λη2(t)‖2V ≤ c
t�

0

‖vη1(s)− vη2(s)‖2V ds,

which, together with (101), implies that

‖Λη1(t)− Λη2(t)‖2V ≤ c
t�

0

‖η1(s)− η2(s)‖2V ds, ∀t ∈ [0, T ].

Reiterating the last inequality n times, we infer that

‖Λη1 − Λη2‖2L2(0,T ;V ) ≤
(cT )n

n!
‖η1 − η2‖2L2(0,T ;V ),

which implies that, for n sufficiently large, a power Λn of Λ is a contraction
in the Banach space L2(0, T ;V ). Hence Λ has a unique fixed point η∗ ∈
L2(0, T ;V ).
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Now, we have all the ingredients to prove Theorem 7. Let Λ be the
operator defined by (100), let η∗ be the fixed point of Λ, let β = βη∗ be
the unique solution of problem (64)–(66) corresponding to η∗, let ζ = ζη∗

be the unique solution of problem (55)–(56), and let u : [0, T ] → V be the
displacement field defined by

(102) u(t) = η∗(t) =

t�

0

vη∗(s) ds+ u0, ∀t ∈ [0, T ],

where vη∗ is the unique solution of problem (96)–(97) corresponding to η∗.
We conclude by (96)–(97), (64)–(66), (55)–(56) and (102) that {u, β, ζ} is a
solution of problem (46)–(51). Moreover, the regularity (52)–(54) follows from
(67), (57), (98) and (102). The uniqueness of the solution is a consequence
of the uniqueness of the fixed point of the operator Λ and of the uniqueness
of the solution of problems (64)–(66), (55)–(56) and (96)–(97). Finally, it is
easy to see, in this case, that the function σ defined by (6) satisfies

σ ∈ L2(0, T ;Q), Div σ ∈ L2(0, T ;V ∗).
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[12] M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual

work, Int. J. Solids Structures 33 (1996), 1083–1103.
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[24] P. Suquet, Plasticité et homogénéisation, thesis, Univ. of Paris VI, 1982.
[25] A. Touzaline, A quasistatic bilateral contact problem with adhesion and friction for

viscoelastic materials, Comment. Math. Univ. Carolin. 51 (2010), 85–97.

Abderrezak Kasri
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