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Summary. TheKotlarski–Krajewski–LachlanTheorem says that every resplendentmodel
of Peano Arithmetic has a full satisfaction class. Enayat and Visser gave a more model-
theoretic proof of this theorem. We redo their proof using kernels of directed graphs.

Prologue. A fundamental theorem of Tarski asserts that truth in arith-
metic is not arithmetically definable. Nevertheless, there is the well-known
Kotlarski–Krajewski–Lachlan Theorem [KKL81] that says that every model
M of Peano Arithmetic (PA) has an elementary extension N �M having a
full satisfaction class (and even a full truth class). Roughly, a full truth class
is a subset of the model that satisfies the usual recursive definition of truth:
the atomic sentences in the set are precisely the true ones; a disjunction
σ1 ∨ σ2 is in the set iff at least one of σ1, σ2 is in the set; an existentially
quantified sentence ∃x ϕ(x) is in the set iff some instantiation ϕ(c) of it is
in the set; etc. Over 30 years later, Enayat & Visser [EV15] gave another
proof of the KKL Theorem. According to [EV15], the proof in [KKL81] used
some “rather exotic proof-theoretic technology”, while the proof in [EV15]
uses “a perspicuous method for the construction of full satisfaction classes”.
Although not made explicit there, the proof in [EV15], when stripped to
its essentials, is seen to ultimately depend on showing that certain digraphs
have kernels. This is made explicit here.

There is a lengthy discussion in [EV15, §4] about the relationship of full
satisfaction classes to full truth classes. Satisfaction classes, which are sets
of ordered pairs consisting of a formula in the language of arithmetic and an
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assignment for that formula, are exclusively used in [EV15]. Truth classes are
sets of arithmetic sentences that may also have domain constants. By [EV15,
Prop. 4.3] (whose “routine but laborious proof is left to the reader”), there
is a canonical correspondence between full truth classes and extensional full
satisfaction classes. The culmination of [EV15, §4] is the construction of
extensional full satisfaction classes. In §2 of this paper, we will avoid the
intricacies of [EV15, §4] by working exclusively with truth classes to easily
obtain the same conclusion.

1. Digraphs and kernels. A binary relational structure A = (A,E)
is referred to here as a directed graph, or digraph for short (1). A subset
K ⊆ A is a kernel of A if for every a ∈ A, a ∈ K iff whenever aEb, then
b 6∈ K. According to [BJG09], kernels were introduced by von Neumann
[vNM44] and have subsequently found many applications. For n < ω, define
the binary relation En on A by recursion: xE0y iff x = y; xEn+1y iff xEz
and zEny for some z ∈ A. A digraph A is a directed acyclic graph (DAG)
if whenever n < ω and aEna, then n = 0. Some DAGs have kernels while
others do not. For example, if < is a linear order of A with no maximum
element, then (A,<) is a DAG with no kernel. However, every finite DAG
has a (unique) kernel, as was first noted in [vNM44].

An element b ∈ A for which there is no c ∈ A such that bEc is a sink
of A. We say that A is well-founded if every nonempty subdigraph of A has
a sink. Every finite DAG is well-founded, and every well-founded digraph
is a DAG having a kernel. The next proposition, for which we need some
more definitions, says even more is true. A subset D of a digraph A is closed
if whenever d ∈ D and dEa, then a ∈ D. If X ⊆ A and k < ω, then
define ClAk (X) by recursion: ClA0 (X) = X and ClAk+1(X) = X ∪ {a ∈ A :

dEa for some d ∈ ClAk (X)}. Let ClA(X) =
⋃
k<ω ClAk (X), which is the

smallest closed superset of X.

Proposition 1. Suppose that A is a digraph, D ⊆ A is closed, K0 ⊆ D
is a kernel of D, and A \D is well-founded. Then A has a (unique) kernel
K such that K0 = K ∩D.

Proof. By recursion on ordinals α, define Dα so that D0 = D, Dα+1 =
Dα ∪ {b ∈ A : b is a sink of A \ Dα}, and Dα =

⋃
β<αDβ if α is a limit

ordinal. Let γ be such that A = Dγ . Every Dα is closed. Define Kα as
follows: if α = β + 1, then Kα = Kβ ∪ {a ∈ Dα \Dβ : aEb for no b ∈ Kβ};
if α is a limit ordinal, then Kα =

⋃
{Kβ : β < α}. Let K = Kγ . One easily

proves, by induction on α, that Kα is the unique kernel of Dα such that
K0 = Kα ∩Dα. Let K = Kγ .

(1) Henceforth, A always denotes a digraph (A,E). If B ⊆ A, then we often identify
B with the the induced subdigraph B = (B,E ∩B2).
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Let A be a digraph. If there is k < ω for which there are no a, b ∈ A such
that aEk+1b, then A has finite height, and we let ht(A), the height of A,
be the least such k. If A has finite height, then it is well-founded. We say
that A has local finite height if for every m < ω there is k < ω such that
ht(ClAm(F )) ≤ k for every F ⊆ A having cardinality at most m. If A has
local finite height, then it is a DAG. Having local finite height is a first-order
property: if B ≡ A and A has local finite height, then so does B.

Theorem 2. Every digraph A having local finite height has an elemen-
tary extension B � A that has a kernel.

Proof. This proof is modeled after Theorem 3.2(b)’s in [EV15].
To get B with a kernel K, we let B0 = ∅, and then obtain an elementary

chain A = B1 ≺ B2 ≺ · · · and an increasing sequence ∅ = K0 ⊆ K1 ⊆
K2 ⊆ · · · such that for every n < ω, Kn is a kernel of ClBn+1(Bn) and
Kn = Kn+1 ∩ Bn. Having these sequences, we let B =

⋃
n<ω Bn+1 and

K =
⋃
n<ωKn. Clearly, B � A and K is a kernel of B.

We construct these sequences by recursion. Notice that we have B0, B1
and K0 at the start. Now suppose that we have Bn, Bn+1 and Kn such
that A 4 Bn+1, Bn is a closed subset of Bn+1 and Kn is a kernel of D =
ClBn+1(Bn). We obtain Bn+2 and Kn+1.

Let Σ be the union of the following three sets of sentences:

• Th((Bn+1, a)a∈Bn+1);
• {σF,k : k < ω and F ⊆ Bn+1 is finite}, where σF,k is the sentence

∀x ∈ Clk(F ) [U(x)↔ ∀y ∈ Clk+1(F ) (xEy → ¬U(y))];

• {U(d) : d ∈ Kn} ∪ {¬U(d) : d ∈ D \Kn}.
This Σ is a set of L-sentences, where L = {E,U} ∪ Bn+1 and U is a new
unary relation symbol.

It suffices to show that Σ is consistent, for then we can let (Bn+2, U) |= Σ
and let Kn+1 = U ∩ ClBn+2(Bn+1). To do so, we need only show that every
finite subset of Σ is consistent.

Let Σ0 ⊆ Σ be finite. Let k0 < ω and finite F0 ⊆ Bn+1 be such that

if σF,k ∈ Σ0, then k < k0 and F ⊆ F0. Let D0 = Cl
Bn+1

k0
(F0) and let

D1 = D0 ∪D. Since Bn+1 has local finite height, D0 has finite height, and
therefore is well-founded, so D1\D is well-founded. Since D is a closed subset
of Bn+1, it is also a closed subset of D1. We can now apply Proposition 1 to
get a kernel U of D1 such that Kn = U ∩D. Then (Bn+1, U) |= Σ0, so Σ0

is consistent.
Thus, Theorem 2 is proved.

Recall that A is resplendent iff whenever σ is a first-order ({E,R}∪A)-
sentence, where R is some new k-ary relation symbol, such that (B, S) |= σ
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for some B � A and S ⊆ Bk, then there already is R ⊆ Ak such that
(A, R) |= σ. EveryA has a resplendent elementary extension of the same car-
dinality. In general, resplendent digraphs are recursively saturated, and con-
versely, all countable, recursively saturated digraphs are resplendent [BS76].

Corollary 3. Every resplendent (or countable, recursively saturated)
digraph that has local finite height has a kernel.

2. Truth classes. There are various ways that syntax for arithmetic
can be defined in a modelM of PA. It usually makes little difference how it
is done, so we will choose a way that is very convenient.

We will formalize the language of arithmetic by using just two ternary
relation symbols: one for addition and one for multiplication. Suppose that
M |= PA. For each a ∈M , we have a constant symbol ca. Let LM consist of
the two ternary relations and all the ca’s. The only propositional connective
we will use is the NOR connective ↓, where σ0 ↓ σ1 is ¬(σ0 ∨ σ1). The only
quantifier we will use is the “there are none such that” quantifier N, where
Nv ϕ(v) is ∀v [¬ϕ(v)]. Notice that the usual connectives and quantifiers can

be defined in terms of these new ones; for example, let ¬σ = σ ↓σ, σ1∨σ2 =
¬(σ1 ↓ σ2) and ∃v ϕ(v) = ¬ Nv ϕ(v). Let SentM be the set of LM-sentences
as defined in M. A subset S ⊆ SentM is a full truth class for M provided
the following hold for every σ ∈ SentM:

• if σ = σ0 ↓ σ1, then σ ∈ S iff σ0, σ1 6∈ S;
• if σ = Nv ϕ(v), then σ ∈ S iff there is no a ∈M such that ϕ(ca) ∈ S;
• if σ is atomic, then σ ∈ S iff M |= σ.

Notice that a full truth set behaves properly when restricted to the usual
connectives and quantifiers.

Let AM = {σ ∈ SentM : if σ is atomic, thenM |= σ}. Define the binary
relation EM on AM so that if σ1, σ2 ∈ AM, then σ2E

Mσ1 iff one of the
following holds:

• there is σ0 such that σ2 = σ0 ↓ σ1 or σ2 = σ1 ↓ σ0;
• σ2 = Nv ϕ(v) and σ1 = ϕ(ca) for some a ∈M .

Consider the digraph A = AM = (AM, EM). We easily see that S is a
full truth class for M iff S is a kernel of A.

Obviously, A is a DAG. Moreover, it has local finite height: if F ⊆ AM

is finite and m < ω, then ht(ClAm(F )) ≤ (2m+1 − 1)|F |. (A hint for proving
this: Define the equivalence relation ∼ on SentM so that σ1 ∼ σ2 iff σ′1 = σ′2,
where σ′e results after replacing all constant symbols in σe with c0. If σ0 ∼ τ0
and σ0, τ0 ∈ AM, then there are σ1, σ2 ∈ ClA1 ({σ0}) such that for every
τ ∈ ClA1 ({τ0}) there is e ≤ 2 such that τ ∼ σe.) We can now infer the
following version of the KKL Theorem. The comments preceding Corollary 3
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about resplendent digraphs apply mutatis mutandis to resplendent models
of PA.

Corollary 4. Every resplendent (or countable, recursively saturated)
M |= PA has a full truth class.

Proof. Since AM is definable in M and M is resplendent, AM is also
resplendent. Thus, by Corollary 3, AM has a kernel, which we have seen is
a full truth class for M.

Corollary 4 can be improved by replacing PA with any of its subtheories
in which enough syntax is definable. Also, Corollary 4 can be applied to
expansions of models of PA. To see an example, let ConstM be the set of
constant LM-terms as defined in M (in which + and × are considered as
function symbols). LetM be resplendent, and let I be the definable binary
relation on ConstM such that for any s, t ∈ ConstM, 〈s, t〉 ∈ I iff sM = tM.
By applying Corollary 4 to (M, I), we conclude thatM has a full truth class
S such that for all s, t ∈ ConstM, the sentence s = t is in S iff sM = tM.
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