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CONSISTENCY OF RECURSIVE
NONPARAMETRIC KERNEL ESTIMATES FOR

INDEPENDENT FUNCTIONAL DATA

Abstract. We propose a new nonparametric estimator of the conditional
hazard function. To this end we define nonparametric estimators of the condi-
tional cumulative distribution and the density functions of a scalar response
variable Y given a functional random variableX. The conditional cumulative
distribution, density and hazard functions for independent functional data
are estimated nonparametrically. Our estimates are based on a recursive ap-
proach. We establish under appropriate conditions the almost sure and the
quadratic average convergence rates of the resulting hazard rate estimator.
Furthermore, a simulation study and an application to a real dataset illus-
trate our methodology.

1. Introduction. The estimation of the conditional hazard function (or
hazard rate) is of great importance in statistics. The first fields of application
of the hazard function were medicine and biology where the failure rate or
interest rate risk have been studied. Currently, it is used in many fields such
as medicine, geophysics, reliability, etc. for risk analysis, or the study of
survival phenomena.

Historically, the recursive estimation with rate was introduced in [WW69].
Later, [BL94] proposed a simple recursive estimation method for linear
regression models with AR(p) disturbances. A recent application of recursive
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methods has been given in [AT16], where regression estimation was studied
by local polynomial fitting for multivariate data streams.

The objective of our work is to propose a nonparametric family of recur-
sive kernel estimators of the conditional hazard function by adapting to the
functional case the result given in [R92].

Most of the existing works in the conditional case treat only the case
where the explanatory variable is a real or a vector. The literature in the case
where the data is of a functional nature (a curve) is very limited. The first
result in this context was given by [FRV08], establishing the almost complete
convergence of the conditional hazard function estimator in the independent
case. For more information on functional data analysis, see [C14, GV16,
ABCV17] for recent advances and [GKWW18] for some selected statistical
methods of data analysis for multivariate functional data.

By definition, the conditional hazard function depends on both the con-
ditional density and the conditional survival functions. The first uniform
results on the estimation of the distribution function conditioned on a func-
tional variable were established in the thesis [T11]. From the recent literature,
we can cite [LM14] establishing the quadratic mean convergence and the
asymptotic normality of the estimator of the conditional hazard function,
considering a strictly stationary random field (process) Zi = (Xi, Yi)iεNN ,
when the univariate response variable Yi is conditioned on the functional ex-
planatory variable Xi. The asymptotic normality of the kernel estimator of
the conditional distribution function was studied in [B14], where a new non-
parametric estimator of the conditional cumulative distribution of a scalar
response variable Y given a functional random variable X was introduced.
This estimate was based on a recursive approach. Under certain conditions,
the asymptotic normality of the model was proved.

Nonparametric kernel estimates (conditional density and conditional cu-
mulative functions) are used in many fields. For instance, in finance (see
[S04, C08]) they are used in the estimation of the CVAR (Conditional Value-
at-Risk) and the CES (Conditional Expected Shortfall). The VAR [EKM10]
is currently one of the most popular risk measures employed in finance; it
measures the financial risk associated with losses and is determined for a
given probability level α, while the Expected Shortfall (ES) [A02] is the
average of the 100(1− α)% bad losses.

The aim of this paper is to consider a recursive estimation of the condi-
tional hazard function, exhibiting a clear advantage as regards computation
time compared to the classical (nonrecursive) estimator. To this end the
estimations of the conditional cumulative distribution and conditional den-
sity functions of the scalar response given functional random variables are
established using the recursive estimation method. So, we are interested in
nonparametric estimation based on conditional recursive kernels as well as its
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applications to prediction. The main objective is to improve the performance
of nonparametric conditional kernel predictors, reducing their computation
time by using recursive kernels. The recursive property is obviously useful
in sequential surveys and for large samples, because addition of a new ob-
servation means that nonrecursive estimators need to be recalculated. In
addition, we need to store complete data to calculate them. Consequently,
the simulation time is reduced compared to the classical estimation.

Moreover, note that a direct application of nonparametric estimation is
the estimation of conditional laws. Both functional conditional distributions
and density functions are used in econometrics [F11]. These conditional mod-
els are used for prediction of time series through conditional quantiles and
mode.

The outline of this paper is as follows: In Section 2 we define the model
and the estimates; the recursive estimators of the conditional cumulative
distribution, conditional density and conditional hazard functions. In Sec-
tion 3 we make some hypotheses useful for our study. The almost sure and
the quadratic mean convergence rates of the proposed estimators are given
in Section 4. Section 5 analyzes the performance of our estimator using a
simulation study and a real dataset. In Section 6 the proofs of the main
results of Section 4 are given. Finally, in Section 7 we give some concluding
remarks.

2. Model and notations. Let (X1, Y1), . . . , (Xn, Yn) be a sample of
independent pairs identically distributed as (X,Y ) which is a random pair
valued in F × R, where (F , d( ; )) is a semi-metric space.

Let

h[x](y) =
f [x](y)

1− F [x](y)
, ∀y ∈ R, when F [x](y) < 1,

be the conditional hazard function, where f [x](y) and F [x](y) are respectively
the conditional density and the distribution functions [BRS15].

Define

ĥ[x,l]n (y) =
f̂
[x,l]
n (y)

1− F̂ [x,l]
n (y)

,

as the conditional hazard function estimator, where f̂ [x,l]n (y) and F̂ [x,l]
n (y) are

respectively the conditional density and distribution functions estimators.
The conditional distribution function estimator is defined by

F̂ [x,l]
n (y) =

∑n
i=1

1
[F (hi)]l

K
(‖x−Xi‖

hi

)
H
(y−Yi

hi

)
∑n

i=1
1

[F (hi)]l
K
(‖x−Xi‖

hi

) ,

where K is a kernel, H a distribution function, hn a sequence of positive
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reals, l a parameter belonging to [0, 1], d(x,Xi) = ‖x − Xi‖ and F (hi) =
P(‖x−Xi‖ ≤ hi). Our family of estimators is a recursive modification of the
estimate just defined and can be computed recursively by

F̂
[x,l]
n+1(y)=

(
∑n

i=1(F (hi))
1−l)ϕ

[x,l]
n (y)

+ (
∑n+1

i=1 (F (hi))
1−l)H

(y−Yn+1

hn+1

)
K

[l]
n+1(‖x−Xn+1‖)

(
∑n

i=1(F (hi))
1−l)f

[l]
n (x) + (

∑n+1
i=1 (F (hi))

1−l)K
[l]
n+1(‖x−Xn+1‖)

,

where

ϕ[x,l]
n (y) =

∑n
i=1

H(
y−Yi
hi

)

[F (hi)]l
K
(‖x−Xi‖

hi

)∑n
i=1[F (hi)]

1−l ,

f [l]n (x) =

∑n
i=1

1
[F (hi)]l

K
(‖x−Xi‖

hi

)∑n
i=1[F (hi)]

1−l ,

K
[l]
i (·) = 1

[F (hi)]l
∑i

j=1[F (hj)]
1−l

K

(
.

hi

)
.

Next, the conditional density estimator is defined by

f̂ [x,l]n (y) =

∑n
i=1

1
hi[F (hi)]l

K
(‖x−Xi‖

hi

)
H ′
(y−Yi

hi

)
∑n

i=1
1

[F (hi)]l
K
(‖x−Xi‖

hi

) .

This estimator can also be computed recursively as

f̂
[x,l]
n+1(y) =

(
∑n

i=1(F (hi))
1−l)φ

[x,l]
n (y)

+ (hn+1)
−1(
∑n+1

i=1 (F (hi))
1−l)H ′

(y−Yn+1

hn+1

)
K

[l]
n+1(‖x−Xn+1‖)

(
∑n

i=1(F (hi))
1−l)f

[l]
n (x) + (

∑n+1
i=1 (F (hi))

1−l)K
[l]
n+1(‖x−Xn+1‖)

,

where

φ[x,l]n (y) =

∑n
i=1

1
hi[F (hi)]l

K
(‖x−Xi‖

hi

)
H ′
(y−Yi

hi

)∑n
i=1[F (hi)]

1−l .

Finally, the conditional hazard function estimator is

ĥ[x,l]n (y) =

∑n
i=1

1
hi[F (hi)]l

K
(‖x−Xi‖

hi

)
H ′
(y−Yi

hi

)
∑n

i=1
1

[F (hi)]l
K
(‖x−Xi‖

hi

)[
1−H

(y−Yi
hi

)] .
This estimator is determined recursively as

ĥ
[x,l]
n+1(y) =

[
∑n

i=1(F (hi))
1−l]φ

[x,l]
n (y)

+ (hn+1)
−1[
∑n+1

i=1 (F (hi))
1−l]H ′

(y−Yn+1

hn+1

)
K

[l]
n+1(‖x−Xn+1‖)

[
∑n

i=1(F (hi))
1−l]ϕ̃

[x,l]
n (y)

+ [
∑n+1

i=1 (F (hi))
1−l]K

[l]
n+1(‖x−Xn+1‖)

[
1−H

(y−Yn+1

hn+1

)] ,
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where

ϕ̃[x,l]
n (y) =

∑n
i=1

1
[F (hi)]l

K
(‖x−Xi‖

hi

)[
1−H

(y−Yi
hi

)]∑n
i=1[F (hi)]

1−l .

The following notations from [FMV07] will be needed:

M0 = K(1)−
1�

0

(sK(s))′τ0(s) ds,

M1 = K(1)−
1�

0

K ′(s)τ0(s) ds,

M2 = K2(1)−
1�

0

(K2(s))′τ0(s) ds, where τ0(s) = lim
h→0

F (hs)

F (h)
<∞.

3. Assumptions. In order to establish the recursive estimation of the
conditional hazard function we assume that the following hypotheses hold:

(H1) K is a bounded kernel with compact support [0, 1] such that there exist
constants c1 and c2 with 0 < c1 < K(t) < c2 <∞.

(H2) (i) The sequence {hi, i ≥ 1} of bandwidths satisfies 0 < hi ↓ 0 as
i→∞.

(ii) If hn → 0 then F (hn) → F (0) = 0 as n → ∞, and ∀s ∈ [0, 1],

τh(s) =
F (hs)

F (h)
→ τ0(s) <∞ as h→ 0.

(H3) If limn→∞ nF (hn) =∞ then, as n→∞:

(i) An,l :=
1

n

n∑
i=1

hi
hn

[
F (hi)

F (hn)

]1−l
→ α[l] <∞.

(ii) ∀r ≤ 2, Bn,r :=
1

n

n∑
i=1

[
F (hi)

F (hn)

]r
→ β[r] <∞.

(iii) P :=
1

n

n∑
i=1

1

hi

[
F (hi)

F (hn)

]1−2l
→ $[1−2l] <∞.

(H4) There exists µ > 0 such that

lim
n→∞

nF (hn)(lnn)
−1−2/µ

(ln lnn)2(α+1)
=∞ and lim

n→∞
(lnn)2/µF (hn) = 0

for some α ≥ 0.
(H5) (i) H is a C2 function with compact support.

(ii) ∃b1, b2 > 2, ∀y1, y2 ∈ R, ∀(x1, x2) ∈ N2
x ,

|F [x1](y1)− F [x2](y2)| ≤
(
d(x1, x2)

b1 + |y1 − y2|b2
)
.
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(iii) ∀y1, y2 ∈ R, ∀(x1, x2) ∈ N2
x ,

|f [x1](y1)− f [x2](y2)| ≤
(
d(x1, x2)

b1 + |y1 − y2|b2
)
,

with d(x1, x2) = ‖x1 − x2‖ and N2
x a fixed neighborhood of x.

(H6) (i) Cn,l :=
1

n

n∑
i=1

hbi
(F (hi))

a

(F (hn))1−2l
→ 0 as n → ∞ for any b ≥

max(b1 − 2; b2 − 2) and any a ≤ 2.
(ii) The function ϕ is differentiable at 0, where

ϕ(t) = E

{[
H

(
y − Yi
hi

)
− F [x](y)

] ∣∣∣∣ ‖x−Xi‖ = t

}
= E

{[ �
R

H ′(t)F [X](y − hit) dt− F [x](y)
] ∣∣∣ ‖x−Xi‖ = t

}
.

(iii) The function φ is differentiable at 0, where

φ(t) = E

{[
1

hi
H ′
(
y − Yi
hi

)
− f [x](y)

] ∣∣∣∣ ‖x−Xi‖ = t

}
= E

{[ �
R

H ′(t)f [X](y − hit) dt− f [x](y)
] ∣∣∣ ‖x−Xi‖ = t

}
.

(H7) ∃v <∞, ∀(t, y) ∈ Nx × R, f [x](y) ≤ v.
(H8) ∃β <∞, ∀(t, y) ∈ Nx × R, F [x](y) ≤ 1− β.

Remark 3.1. By using (H1) and (H2) we can prove that M0, M1 and
M2 are finite. By using (H5)(i–iii), we have

σ2εi(X) = Var

[
H

(
y − Yi
hi

) ∣∣∣∣ X] = o(h
(b2−1)
i ) + F [x](y)(1− F [x](y))

−−−→
i→∞

σ2ε(X) = F [x](y)(1− F [x](y))

and

hiθ
2
εi(X) = hiVar

[
1

hi
H ′
(
y − Yi
hi

) ∣∣∣∣ X](3.1)

−−−→
i→∞

θ2ε(X) = f [x](y)
�

R

H ′2(t) dt.

4. Main results. As the conditional hazard function depends on the
conditional density and the conditional distribution functions, its asymptotic
properties depend naturally on those of the two functions. First, let us start
with the asymptotic properties of the conditional distribution function. The
almost sure convergence is presented in the following theorem.
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Theorem 4.1. Suppose that (H1)–(H4), (H5)(i–ii) and (H6)(i–iii) are
satisfied. If limn→∞ nh

2
n = 0, then

lim sup
n→∞

[
nF (hn)

ln lnn

]1/2
[F̂ [x,l]
n (y)− F [x](y)]

=
[2M2β[1−2l]F

[x](y)(1− F [x](y))]1/2

M1β[1−l]
a.s.

Remark 4.2. Bandwidths and small ball probabilities are typically cho-
sen such that the condition limn→∞ nh

2
n = 0 is satisfied; for more details

see [ACT14].

The next Theorem concerns the quadratic mean convergence of the con-
ditional distribution function.

Theorem 4.3. Assume that (H1)–(H3), (H5)(i–ii) and (H6)(i–iii) are
satisfied. If there is a constant c > 0 such that nF (hn)h2n → c as n → ∞,
then

lim
n→∞

nF (hn)E[F̂ [x,l]
n (y)− F [x](y)]2

=
β[1−2l]

β2[1−l]

M2

M2
1

F [x](y)(1− F [x](y)) + c[ϕ′(0)]2
α2
[l]

β2[1−l]

M2
0

M2
1

.

The quadratic mean convergence of the conditional distribution func-
tion depends on the asymptotic bias and variance of the estimator, thus we
introduce the following lemmas.

Lemma 4.4. Suppose that (H1)–(H3), (H5)(i–ii) and (H6)(i–iii) are sat-
isfied. If there is a constant c > 0 such that nF (hn)h2n → c as n → ∞,
then

E[F̂ [x,l]
n (y)− F [x](y)] = hnϕ

′(0)
α[l]

β[1−l]

M0

M1
[1 + o(1)] +O

[
1

nF (hn)

]
.

The asymptotic bias of our estimator
(
E[F̂

[x,l]
n (y)−F [x](y)] ' O

[
1

nF (hn)

])
is equivalent to that of the classical one for independent [BRS15] and depen-
dent [D08] cases.

Lemma 4.5. Suppose that (H1)–(H3), (H5)(i–ii) and (H6)(i–iii) are sat-
isfied. If there is a constant c > 0 such that nF (hn)h2n → c as n → ∞,
then

lim
n→∞

nF (hn)Var[F̂
[x,l]
n (y)] =

β[1−2l]

β2[1−l]

M2

M2
1

σ2ε(X).

In practice, if we take c = 0 in Theorem 4.3 we get the following corollary.
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Corollary 4.6. Suppose that (H1)–(H3), (H5)(i–ii) and (H6)(i–iii) are
satisfied. If nF (hn)h2n → 0 as n→∞, then

lim
n→∞

nF (hn)E[F̂ [x,l]
n (y)− F [x](y)]2 =

β[1−2l]

β2[1−l]

M2

M2
1

F [x](y)(1− F [x](y)).

The asymptotic variance of our conditional cumulative estimate is equiv-
alent to that of the nonrecursive estimate for independent data [BRS15],
and smaller than in the case where the data are dependent [D08], given as
O
( (lnn)2

nF (hn)

)
.

Next, we establish the asymptotic convergence of the conditional density.
The almost sure convergence is given in the following theorem.

Theorem 4.7. Suppose that (H1)–(H3), (H5)(i–iii) and (H6)(i–iii) are
satisfied. If limn→∞ nh

2
n = 0, then

lim sup
n→∞

[
nF (hn)

ln lnn

]1/2
[f̂ [x,l]n (y)− f [x](y)]

=
[2M2$[1−2l]f

[x](y)
	
RH

′2(t) dt]1/2

β[1−l]M1
a.s.

The quadratic mean convergence of the conditional density is given in
the next theorem.

Theorem 4.8. Suppose that (H1)–(H3), (H5)(i–iii) and (H6)(i–iii) are
satisfied. If there is a constant c > 0 such that nF (hn)h2n → c as n → ∞,
then

lim
n→∞

nF (hn)E[f̂ [x,l]n (y)− f [x](y)]2

=
β[1−2l]

β2[1−l]

M2

M2
1

f [x](y)
�

R

H ′2(t)dt+ c[φ′(0)]2
α2
[l]

β2[1−l]

M2
0

M2
1

.

The proofs of the theorem depend on the following lemmas.

Lemma 4.9. Suppose that (H1)–(H3), (H5)(i–iii) and (H6)(i–iii) are sat-
isfied. If there is a constant c > 0 such that nF (hn)h2n → c as n → ∞,
then

E[f̂ [x,l]n (y)− f [x](y)] = hnφ
′(0)

α[l]

β[1−l]

M0

M1
[1 + o(1)] +O

[
1

nF (hn)

]
.

The asymptotic bias of the conditional density estimate is equivalent
to that of the nonrecursive estimate for dependent data [D08], and is dif-
ferent from the case where the data are independent [BRS15], given as
O
(

1
nhHF (hK)

)
.
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Lemma 4.10. Suppose that (H1)–(H3), (H5)(i–iii) and (H6)(i–iii) are sat-
isfied. If there is a constant c > 0 such that nF (hn)h2n → c as n→∞, then

lim
n→∞

nF (hn)Var[f̂
[x,l]
n (y)] =

β[1−2l]

β2[1−l]

M2

M2
1

θ2ε(X).

In practice, when we put c = 0 in Theorem 4.8 the following result holds.

Corollary 4.11. Suppose that (H1)–(H3), (H5)(i–iii) and (H6)(i–iii)
are satisfied. If nF (hn)h2n → 0 as n→∞, then

lim
n→∞

nF (hn)E[f̂ [x,l]n (y)− f [x](y)]2 =
β[1−2l]

β2[1−l]

M2

M2
1

f [x](y)
�

R

H ′2(t) dt.

Here, the asymptotic variance of our conditional density estimator is
different from the nonrecursive one,

(
O
(

1
nhHF (hK)

))
, for both independent

[BRS15] and dependent [D08] cases.
We can now present the asymptotic properties of our conditional hazard

function. Let us begin with the almost sure convergence given in the following
theorem.

Theorem 4.12. Suppose that hypotheses (H1)–(H3) and (H5)–(H8) are
satisfied. If limn→∞ nh

2
n = 0, then

lim sup
n→∞

[
nF (hn)

ln lnn

]1/2
[ĥ[x,l]n (y)− h[x](y)] = C(x, y)

√
2M2

M1β[1−l]
a.s.

where

C(x, y) =

√
$[1−2l]θ2ε(X) + h[x](y)

√
β[1−2l]σ2ε(X)

1− F [x](y)
.

Next, the quadratic mean convergence is stated in the following theorem.

Theorem 4.13. Suppose that (H1)–(H3) and (H5)–(H8) are satisfied. If
there exists c > 0 such that nF (hn)h2n → c as n→∞, then

lim
n→∞

nF (hn)E
[
ĥ[x,l]n (y)− h[x](y)

]2
=

h[x](y)2

[1− F [x](y)]2

{
M2β[1−2l]

β[1−2l]

β2[1−l]

M2

M2
1

σ2ε(X) + c[ϕ′(0)]2
α2
[l]

β2[1−l]

M2
0

M2
1

}

+
2h[x](y)

[1− F [x](y)]2

[
cφ′(0)ϕ′(0)

α2
[l]

β2[1−l]

M2
0

M2
1

+
β[1−2l]

β2[1−l]

M2

M2
1

√
θ2ε(X)σ2ε(X)

]

+
1

[1− F [x](y)]2

[
β[1−2l]

β2[1−l]

M2

M2
1

θ2ε(X) + c[φ′(0)]2
α2
[l]

β2[1−l]

M2
0

M2
1

]
.

In practice, by taking c = 0 in Theorem 4.13 we have the following
corollary.
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Corollary 4.14. Suppose that (H1)–(H3) and (H5)–(H8) are satisfied.
If nF (hn)h2n → 0 as n→∞, then

lim
n→∞

nF (hn)E
[
ĥ[x,l]n (y)− h[x](y)

]2
=

1

[1− F [x](y)]2
β[1−2l]

β2[1−l]

M2

M2
1

[θε(X) + h[x](y)σε(X)]2.

Remark 4.15. As noticed in [ACT14], the choices of bandwidths and
small ball probabilities involve that β[1−2l]/β2[1−l] < 1. Consequently, the
recursive estimators are more efficient than classical estimators in this case
in the sense that their asymptotic variance is small for given M1 and M2.
The bias and variance of our conditional hazard function estimator are both
equivalent to O

(
1

nF (hn)

)
and different from that of the nonrecursive estimator

whose bias and variance are both equivalent to O
(

1
nhHF (hK)

)
for independent

[BRS15] and dependent [D08] data.

5. Simulation study and a real data application. The performance
of our estimator is now checked using a simulation study. Further, in order to
show the efficiency of our approach in concrete cases, we present a practical
use of our model to study a time series.

5.1. Estimating some parameters in practice. In practice, when we
want to build the confidence interval or compute the mean square error of
the conditional hazard function, we need to estimate the constants on which
the mean square error (see Corollary 4.14) of our estimator depends: β[1−2l],
β2[1−l], M1 and M2.

In Corollary 4.14, F [x](y), f [x](y), β[1−2l] and β2[1−l] must be replaced by
their respective estimators, and K and H must be chosen.

The constants M1 and M2 are estimated [ACT14] respectively by

M̂1 =
1

n

n∑
i=1

1

F (hi)
K

(
‖x−Xi‖

hi

)
, M̂2 =

1

n

n∑
i=1

1

F (hi)
K2

(
‖x−Xi‖

hi

)
.

However, the distribution function F must be chosen.

5.2. As simulation study. To observe the behavior of our recursive
estimator in practice, this section gives a simulation study. We compare our
recursive estimator and the initial one from [BRS15] defined as

(5.1) ĥ[x](y) =
f̂ [x](y)

1− F̂ [x](y)
,
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where

F̂ [x](y) =

∑n
i=1K(h−1K d(x,Xi))H(h−1H (y − Yi))∑n

i=1K(h−1K d(x,Xi))
,

f̂ [x](y) =

∑n
i=1K(h−1K d(x,Xi))H

′(h−1H (y − Yi))
hH
∑n

i=1K(h−1K d(x,Xi))
.

We simulate our data in the following way: The functional variable X is
supposed to be generated by the equation

(5.2) X(t) = A(2− cos(πtW )) + (1−A) cos(πtW ), t ∈ [0, 1],

where W  N (0, 1) and A is a random variable Bernoulli distributed with
parameter p = 1/2. The curves X1, . . . , Xn for n = 122 are plotted in Fig-
ure 1.

0.0 0.2 0.4 0.6 0.8 1.0

t

−
1

0
1

2
3

X
i
(t
)

Fig. 1. The curves {Xi(t)}122i=1, t ∈ [0, 1]

As the curves are smooth, the L2 distance between the second derivatives
of the curves can be utilized as a semi-metric. We simulate the values of Y
by the relation Y = R(x) + ε =

	1
0 x
′(s)2 ds + ε· The error ε is simulated

as a Gaussian random variable with mean 0 and standard deviation 0.1.
Note that with this model definition, the conditional distribution of Yi given
Xi = x is the Gaussian distribution N (R(x), 0.01), thus we may explicitly
get the conditional hazard function h[X](·).

In this investigation, the proposed estimator depends on the choice of
various parameters, namely, the semi-norm ‖ · ‖ of the function space F ,
the sequence (hn) of bandwidths, the kernel K, the parameter l and the
distribution function F when l 6= 0. And as the choice of K is not important,
we employed the quadratic kernel defined by K(u) = (1 − u2)I[0,1](u) for
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all u ∈ R, which behaves properly in practice and is easy to implement,
and we put H ′ = K. We estimated the distribution function F by using the
empirical distribution function, which is uniformly convergent. For the choice
of the parameter l, we computed the mean square errors of our recursive
estimators for some values l in {0, 1/2, 1}. The parameter l has shown a
negligible influence on the mean square error (MSE) of our estimator, for
500 simulations we obtained approximately the same value (MSE = 0.0050).
Thus, we take l = 0.
• Choice of the bandwidth. In this simulation, the semi-metric (semi-

norm) was based on the second derivatives of the curves; the shape of the
curves (Figure 1) permits us to utilize

‖x− x′‖ =
( 1�

0

(x(i)(t)− x′(i)(t))2 dt
)1/2

,

where x(i) is the ith derivative of the curve x(·); here we take i = 2. Moreover,
as indicated in [ACT14], the choice of the semi-norm depends on the treated
data. Then, as pointed out in [LM14], there is no automatic data-driven
method for selecting bandwidths when estimating a conditional hazard func-
tion in the functional case. Consequently, for our investigation we consider
the bandwidth selector associated to the conditional density estimation pre-
sented as

CV fY/X(h) =
1

n

n∑
i=1

W1(Xi)
�
f̂ [Xi,l]

2

n (y)W2(y) dy

− 2

n

n∑
i=1

f̂ [Xi,l]
−i

n (Yi)W1(Xi)W2(Yi),

where W1 and W2 are some suitable trimming functions and

f̂ [Xi,l]
−i

n (y) =

∑
j 6=i

1
hj [F (hj)]l

K
(‖x−Xj‖

hj

)
H ′
(y−Yj

hj

)
∑

j 6=i
1

[F (hj)]l
K
(‖x−Xj‖

hj

) ,

and we use it for the conditional hazard function. As mentioned in [LM14],
the optimal bandwidth is locally selected among the k nearest neighbors (for
more discussion see [BFRV07]). For the conditional distribution function we
can use the following cross-validation rule:

CVFY/X(h) =
1

n

n∑
i=1

� [
IYi≤y − F̂ [Xi,l]

−i
n (y)

]2
W (y) dy,

where W is a suitable trimming function and
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F̂ [Xi,l]
−i

n (y) =

∑
j 6=i

1
[F (hj)]l

K
(‖x−Xj‖

hj

)
H
(y−Yj

hj

)
∑

j 6=i
1

[F (hj)]l
K
(‖x−Xj‖

hj

) .

To facilitate calculations, as E(Y | X = x) =
	
yf [x](y) dy, and a natural

estimator of the regression function is
	
yf̂

[x,l]
n (y) dy, we propose to use the

criterion

(5.3) CV(h) =
1

n

n∑
i=1

(
Yi −

�
yf̂ [Xi,l]

−i
n (y) dy

)2
.

For our recursive estimator, we use a sequence of bandwidths hi =
Cmaxi=1,...,n ‖Xi−x‖ i−v = hi(C, v) with C ∈ {1, 1.5, 2, 4} and v ∈

{
1
10 ,

1
9 ,

1
7 ,

1
3 ,

1
2 , 1
}
. We choose C and v that minimize CV(C, v), we found C = 2 and

v = 1
10 . For the nonrecursive method we used a global bandwidth selection

(hK = hH = h) with a cross-validation procedure on the k-nearest neighbors.
• Comparative tools. To examine the performance of ĥ[x,l]n (y), we ran-

domly split the data into two subsets, a training sample (Xi, Yi)i∈I (100
locations) and a test sample (Xi, Yi)i∈J (22 locations), then we utilize an
empirical version of the global mean squared error (MSE) and mean absolute
error (MAE),

MSE =
1

22

∑
i∈J

(
h[Xi](Yi)− ĥ[Xi,l]n (Yi)

)2
,

MAE =
1

22

∑
i∈J

∣∣h[Xi](Yi)− ĥ[Xi,l]n (Yi)
∣∣,

as accuracy measures.

Table 1. MAE and MSE computed via 500 simulations for different values of n with the
optimal values of bandwidth provided by CCV and vCV.

n = 122 n = 178 n = 478

(1) 0.0812 0.0625 0.0462
0.0085 0.0043 0.0023

(2) 0.0805 0.0623 0.0459
0.0084 0.0042 0.0023

As is seen in Table 1 (where (1) represents MAE and MSE of our recur-
sive estimator and (2) represents those of the nonrecursive one) for different
values of n, the classical estimator is better than the recursive one. Its MSE
and MAE are smaller, but there is not a great difference between the behav-
ior of the two methods. In fact, the difference in terms of MSE (as appearing
in the table) is very small. Moreover, in order to check the behavior of the
prediction errors when the sample size increases, we used n = 122, n = 178
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and n = 478. Then, as expected, the errors decreased when the sample size
increased.
• Computation times. Here we emphasize a significant advantage of the

recursive estimator over the nonrecursive one, when new values of the ex-
planatory variable are sequentially added to the database. As pointed out in
[ACT14], when a new observation (Xn+1, Yn+1) appears, the computation of
the recursive estimator ĥ[x,l]n (y) requires another iteration of the algorithm
via its value computed with the sequence (Xi, Yi)

n
i=1, while the initial esti-

mator must be recalculated via the complete sample (Xi, Yi)
n+1
i=1 .

Next, we illustrate the computation time difference between the two esti-
mators in such situations. From an initial sample (Xi, Yi)

n
i=1 of size n = 122,

we consider N additional observations for different values of N . We compare
the cumulative computation times to get the recursive and the classical es-
timators when these new observations are added. The characteristics of the
computer we used to perform these computations are CPU: Intel Celeron
N2830 2.60 GHz, HD: 250 G, Memory: 3.23 G. The curves X1, . . . , Xn as
well as the new observations Xn+1, . . . , Xn+N are computed via (5.2) with
n = 122 and N ∈ {1, 28, 78, 178, 478}. The semi-norm, the bandwidth se-
quence and the parameter l are selected as previously. The computation times
are listed in Table 2. Here, our estimator shows a significant preference as
regards computation time compared to the nonrecursive estimator.

Table 2. Cumulative computation times in seconds for the recursive and nonrecursive
estimators when adding N new observations for different values of N .

N 1 28 78 178 478
Comp. time for ĥ[x,l]

n+1 0.840 1.050 1.260 1.260 2.490
Comp. time for ĥ[x]

n+1 1.640 3.680 18.150 75.600 375.520

5.3. Real data application. In this subection we examine the efficiency
of our procedure in a real dataset study. The functional data are particulary
suitable for analyzing time series. We illustrate this via the El Niño time
series (1) that furnishes the monthly sea surface temperature from January
1982 to December 2016 (420 months). From this time series, we extracted 34
annual curves X1, . . . , X34 from 1982 to 2016, discretized into p = 12 points.
These curves are presented in Figure 2.

The variable of interest at month j of year i is the sea temperature Xi+1

for month j. Namely, for j = 1, . . . , 12 and i = 1, . . . , 34, we have Y [j]
i =

Xi+1(j). We predicted the values of Y [1]
34 , . . . , Y

[12]
34 (that is, the values of the

(1) Available at http://www.cpc.ncep.noaa.gov/data/indices/.

http://www.cpc.ncep.noaa.gov/data/indices/
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curve X35) via conditional mode, using the routine npfda (2). The estimators
(recursive and nonrecursive) were computed by selecting the semi-norm, the
bandwidth sequence and the parameter l as previously.
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Fig. 2. El Niño annual temperature curves from 1982 to 2016
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Fig. 3. Curves of the two conditional hazard functions. The solid line represents our
recursive conditional hazard function, the dashed line denotes the nonrecursive one.

The probabilities that the time series take some predicted values Ŷ [1]
34 , . . .

. . . , Ŷ
[12]
34 are given by the conditional densities f̂ [X34]

n (Ŷ
[1]
34 ), . . . , f̂

[X34]
n (Ŷ

[12]
34 ).

The instantaneous risks are ĥ[X34]
n (Ŷ

[1]
34 ), . . . , ĥ

[X3]
n (Ŷ

[12]
34 ). We analyzed the

(2) Available at http://www.math.univ-toulouse.fr/staph/npfda/.

http://www.math.univ-toulouse.fr/staph/npfda/
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mean square prediction error through 2016 and obtained MSPE = 0.00025
for the recursive estimator, and MSPE = 0.00011 for the nonrecursive one.
The classical nonparametric (nonrecursive) estimator once more showed its
advantage as regards prediction, while our estimator behaved well and had an
advantage regarding computation time. The computation time (in seconds)
required for our estimator to predict twelve values (the last year) was 0.020s,
while for the nonrecursive estimator the time was 0.250s. We plot the two
hazard functions in Figure 3.

It is difficult to decide which curve is smoother, even if the nonrecursive
estimator (dashed curve) seems to be slightly smoother compared to the
recursive one. We conclude that even if the nonrecursive estimator showed
a small advantage over our estimator with regard to the mean prediction
error, there is not a big difference between their behavior, and our recursive
estimator has an advantage as regards computation time.

6. Proofs

Proof of Theorem 4.1. Note that F̂ [x,l]
n (y) can be written as

F̂ [x,l]
n (y) =

ϕ
[x,l]
n (y)

f
[l]
n (x)

,

where ϕ[x,l]
n (y) and f [l]n (x) are defined above. Let

F̂ [x,l]
n (y)− F [x](y) =

ϕ
[x,l]
n (y)− F [x](y)f

[l]
n (x)

f
[l]
n (x)

.

The main idea is to show that f [l]n (x) converges almost surely to f [l](x) and
that ϕ[x,l]

n (y)− F [x](y)f
(l)
n (x) converges almost surely to 0.

1. Firstly, we prove that ϕ[x,l]
n (y)− F [x](y)f

(l)
n (x) converges almost surely

to 0.

We can write

ϕ[x,l]
n (y)− F [x](y)f [l]n (x)

= {ϕ[x,l]
n (y)− F [x](y)f [l]n (y)− E[ϕ[x,l]

n (y)− F [x](y)f [l]n (x)]}
+ {E[ϕ[x,l]

n (y)− F [x](y)f [l]n (x)]}
= I1 + I2.

Studying I1. Let

Wi =
1

[F (hi)]l
K

(
‖x−Xi‖

hi

)[
H

(
y − Yi
hi

)
− F [x](y)

]
,

Zi =Wi − E(Wi), Sn =
n∑
i=1

Zi.
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Note that

I1 =
Sn∑n

i=1[F (hi)]
1−l .

Putting Vn =
∑n

i=1EZ
2
i , we get

Vn =

n∑
i=1

Var(Wi)

=
n∑
i=1

[F (hi)]
−2l
{
E(K2

(
‖x−Xi‖

hi

)[
H

(
y − Yi
hi

)− F [x](y)

]2)}

−
n∑
i=1

[F (hi)]
−2lE2

(
K

(
‖x−Xi‖

hi

)[
H

(
y − Yi
hi

)
− F [x](y)

])
= A1 −A2.

We have

A1 =
n∑
i=1

[F (hi)]
−2lE

{
K2

(
‖x−Xi‖

hi

)
E

([
H

(
y − Yi
hi

)− F [x](y)

]2 ∣∣∣∣ Xi

)}
.

Now

E

([
H

(
y − Yi
hi

)
− F [x](y)

]2 ∣∣∣∣ Xi

)
= Var

([
H

(
y − Yi
hi

)] ∣∣∣∣ Xi

)
+ E2

([
H

(
y − Yi
hi

)
− F [x](y)

] ∣∣∣∣ Xi

)
= σ2εi(X) + E2

([
H

(
y − Yi
hi

)
− F [x](y)

] ∣∣∣∣ Xi

)
.

Since

E

([
H

(
y − Yi
hi

)
− F [x](y)

] ∣∣∣∣ Xi

)
=

�

R

H ′(t)[F [Xi](y − hit)− F [Xi](y)] dt

+
�

R

H ′(t)[F [Xi](y)− F [x](y)] dt

= o(hb2−1i ) + [F [Xi](y)− F [x](y)] (H5)(i–ii),

we get

E

([
H

(
y − Yi
hi

)
−F [x](y)

]2 ∣∣∣∣ Xi

)
= o(hb2−1i )+σ2εi(X)+[F [Xi](y)−F [x](y)]2.

Consequently,
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E

(
K2

(
‖x−Xi‖

hi

)[
H

(
y − Yi
hi

)
− F [x](y)

]2)
= {o(hb2−1i ) + σ2εi(X)}E

[
K2

(
‖x−Xi‖

hi

)]

+ E

[
{F [Xi](y)− F [x](y)}2K2

(
‖x−Xi‖

hi

)]
.

Let

(6.1) E

[
K2

(
‖x−Xi‖

hi

)]
= F (hi)

[
K2(1)−

1�

0

(K2(s))′τhi(s) ds
]
.

Next, by using (H3)(ii), (H6)(i), (6.1) and Toeplitz’ Lemma we find that

(6.2)

∑n
i=1[F (hi)]

−2l{o(hb2−1i ) + σ2εi(X)}E
[
K2
(‖x−Xi‖

hi

)]
n[F (hn)]1−2l

n→∞−−−→ β[1−2l]F
[x](y)(1− F [x](y))M2.

Using (H5)(ii) we get

0 ≤ E
[
{F [Xi](y)− F [x](y)}2K2

(
‖x−Xi‖

hi

)]
≤ E

[
‖x−Xi‖2b1K2

(
‖x−Xi‖

hi

)]
.

But

E

[
‖x−Xi‖2b1K2

(
‖x−Xi‖

hi

)]
≤ E

[
sup

Xi∈B(x,hi)
‖x−Xi‖2b1K2

(
‖x−Xi‖

hi

)]
≤ h2b1i E

[
K2

(
‖x−Xi‖

hi

)]
,

where B(x, hi) = {x′ ∈ F | ‖x− x′‖ ≤ hi}. Then, via (6.1),

(6.3) 0 ≤
∑n

i=1[F (hi)]
−2lh2b1i E

[
K2
(‖x−Xi‖

hi

)]
n[F (hn)]1−2l

n→∞−−−→ 0.

Now, using (6.2) and (6.3), we obtain

A1

n[F (hn)]1−2l
n→∞−−−→ β[1−2l]F

[x](y)(1− F [x](y))M2.
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Similarly to (6.3), when (H6)(i) is satisfied we get
A2

n[F (hn)]1−2l
−−−→
n→∞

0.

Therefore, Vn ∼ n[F (hn)]
1−2lβ[1−2l]F

[x](y)(1 − F [x](y))M2 as n → ∞. By
assuming that n[F (hn)] → ∞ we obtain also lnF (hn)/ lnn → 0. By (H4),
we deduce that

lim
n→∞

nF (hn)(lnn)
−2/µ

ln[n(F (hn))1−2l]{ln ln[n(F (hn))1−2l]}2(α+1)
=∞.

Now, let bn = (δ lnn)1/µ with δ > 0. There exists n0 ≥ 1 such that for
all i ≥ n0,

iF (hi)(ln i)
−2/µ

ln[i(F (hi))1−2l]{ln ln[i(F (hi))]}2(α+1)

>
2‖K‖2∞max{|F x(y)|2, (δ ln i)2/µ}

[F (hi)]2l
≥ Z2

i ,

as the event {
Z2
i >

i[F (hi)]
1−2l

ln[i(F (hi))1−2l]{ln ln[i(F (hi))]}2(α+1)

}
is impossible for i ≥ n0.

From Vn ∼ n[F (hn)]1−2lβ[1−2l]F [x](y)(1− F [x](y))M2, we deduce that
n∑
i=1

(ln lnVi)
α

Vi
E
(
Z2
i 1{ Vi

ln[Vi{ln ln[Vi]}2(α+1)
}
)
<∞.

Let S be a random function defined on [0,∞[, where

S(t) = Sn for t ∈ [Vn, Vn+1[.

By the law of the iterated logarithm, there exists a Brownian motion ξ such
that ∣∣∣∣ S(t)− ξ(t)(2t ln ln t)1/2

∣∣∣∣ = o[(ln ln t)−α/2], ∀t ∈ [Vn, Vn+1[.

But since Brownian motion satisfies the law of the iterated logarithm, we
have

lim
t→∞

S(t)

(2t ln ln t)1/2
= lim

t→∞

[
S(t)− ξ(t)
(2t ln ln t)1/2

+
ξ(t)

(2t ln ln t)1/2

]
= 1 a.s.

We have Sn/(2Vn ln lnVn)
1/2 → 1 a.s. By using the fact that Sn =

I1
∑n

i=1[F (hi)]
1−l and Vn+1/Vn → 1, we obtain

lim
n→∞

∑n
i=1[F (hi)]

1−lI1

(2Vn ln lnVn)1/2
n(F (hn))

1−2l{ln ln[n(F (hn))1−2l]}1/2

n(F (hn))1−2l{ln ln[n(F (hn))1−2l]}1/2
= 1 a.s.
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But
∑n

i=1[F (hi)]
1−l = Bn,(1−l)n[F (hn)]

1−l. We have

{ln ln[n(F (hn))1−2l]}1/2Bn,(1−l)
(2Vn ln lnVn)1/2

−−−→
n→∞

β[1−l]{2β[1−2l]F [x](y)(1− F [x](y))M2}1/2.

This yields

lim
n→∞

{
nF (hn)

ln ln[n(F (hn))1−2l]

}1/2

I1 = σl a.s.

where σl = {2β[1−2l]F [x](y)(1− F [x](y))M2}1/2/β[1−l].
As ln ln[n(F (hn))1−2l] = (ln lnn)[1 + o(1)], we conclude that

lim
n→∞

{
nF (hn)

ln lnn

}1/2

I1 =
{2β[1−2l]F [x](y)(1− F [x](y))M2}1/2

β[1−l]
.

Studying I2. We have to prove that

lim
n→∞

{
nF (hn)

ln lnn

}1/2

I2 = 0.

We have

I2 = E[ϕ[x,l]
n (y)− F [x](y)f [l]n (x)]

=
1∑n

i=1[F (hi)]
1−l

n∑
i=1

1

[F (hi)]l
E

{[
H

(
y − Yi
hi

)
− F [x](y)

]
K

(
‖x−Xi‖

hi

)}
=

1∑n
i=1[F (hi)]

1−l

n∑
i=1

1

[F (hi)]l

×
{
hiϕ
′(0)F (hi)

[
K(1)−

1�

0

(sK(s))′τhi(s) ds
]
+ o(hi)

}
.

The last equality was obtained as follows. Via (H6)(iii), we get evidently

E

{[
H

(
y − Yi
hi

)
−F [x](y)

]
K

(
‖x−Xi‖

hi

)}
= E

[
ϕ(‖x−Xi‖)K

(
‖x−Xi‖

hi

)]
=

1�

0

ϕ(hit)K(t) dP ‖x−xi‖/hi(t).

Using the Taylor expansion for ϕ around 0, we obtain

(6.4) E

{[
H

(
y − Yi
hi

)
− F [x](y)

]
K

(
‖x−Xi‖

hi

)}
= hiϕ

′(0)

1�

0

tK(t) dP ‖x−xi‖/hi(t) + o[hi].
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Now, using (H1) and Fubini’s Theorem, we get

1�

0

tK(t) dP ‖x−xi‖/hi(t) = F (hi)
[
K(1)−

1�

0

(sK(s))′τhi(s) ds
]
.

Then, via hypothesis (H3), as n→∞, we have

I2 ' hnϕ′(0)
α[l]

β[1−l]
M0[1 + o(1)].

Thus{
nF (hn)

ln lnn

}1/2

I2 =

{
nF (hn)

ln lnn

}1/2

hnϕ
′(0)

α[l]

β[1−l]
M0[1 + o(1)] = o(1)

when limn→∞ nh
2
n = 0. Thus we conclude

limn→∞

{
nF (hn)

ln lnn

}1/2

I2 = 0.

Thus{
nF (hn)

ln lnn

}1/2

[ϕ[x,l]
n (y)− F [x](y)f [l]n (x)]

→
{2β[1−2l]F [x](y)(1− F [x](y))M2}1/2

β[1−l]
.

2. To finish the proof, we have to show the almost sure convergence of
f
[l]
n (x) towards f [l](x).
In the same way, putting

W ′i =
1

[hiF (hi)]l
K

(
‖x−Xi‖

hi

)[
H ′
(
y − Yi
hi

)
− f [x](y)

]
,

Z ′i =W ′i − E(W ′i ), Sn =
n∑
i=1

Z ′i,

we can prove that

f [l]n (x)− E[f [l]n (x)] = O

(√
ln lnn

nF (hn)

)
a.s.

As E[f
[l]
n (x)] = M1[1 + o(1)], it now follows that f [l]n (x) converges almost

surely towards M1, because Var[f
[l]
n (x)] → 0 and one can write f [l]n (x) =[

f
[l]
n (x)− E[f

[l]
n (x)]

]
+ E[f

[l]
n (x)].
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Proof of Lemma 4.4. We use the decomposition

E[F̂ [x,l]
n (y)] =

E[ϕ
[x,l]
n (y)]

E[f
[l]
n (x)]

−
E
{[
f
[l]
n (x)− E[f

[l]
n (x)]

]
ϕ
[x,l]
n (y)

}
{E[f

[l]
n (x)]}2

+
E
{[
f
[l]
n (x)− E[f

[l]
n (x)]

]2
F̂

[x,l]
n (y)

}
{E[f

[l]
n (x)]}2

.

Let us start by studying

E[ϕ
[x,l]
n (y)]

E[f
[l]
n (x)]

− F [x](y) =

∑n
i=1

1
[F (hi)]l

E
{[
H
(y−Yi

hi

)
− F [x](y)

]
K
(‖x−Xi‖

hi

)}
∑n

i=1
1

[F (hi)]l
E
[
K
(‖x−Xi‖

hi

)] .

Using (6.4) and the fact that

E

[
K

(
‖x−Xi‖

hi

)]
=

hi�

0

K

(
t

hi

)
dP‖x−xi‖(t)

= F (hi)
[
K(1)−

1�

0

(K(s))′τhi(s) ds
]
,

we obtain by (H1),

E[ϕ
[x,l]
n (y)]

E[f
[l]
n (x)]

− F [x](y)

=

∑n
i=1 hi[F (hi)]

1−l{ϕ′(0)[K(1)−
	1
0(sK(s))′τhi(s) ds] + γi}∑n

i=1[F (hi)]
1−l[K(1)−

	1
0(K(s))′τhi(s) ds]

=
D1

D2
.

Finally, (H2), (H3) and Toeplitz’ Lemma [M86] yield
D1

nhn[F (hn)]1−l
= α[l]ϕ

′(0)M0[1+ o(1)],
D2

n[F (hn)]1−l
= β[1−l]M1[1+ o(1)].

And
E[ϕ

[x,l]
n (y)]

E[f
[l]
n (x)]

− F [x](y) = hnϕ
′(0)

α[l]

β[1−l]

M0

M1
[1 + o(1)].

Now, we study the variance terms. We have

E[f [l]n (x)] =
1∑n

i=1[F (hi)]
1−l

n∑
i=1

1

[F (hi)]l
E

[
K

(
‖x−Xi‖

hi

)]

=

∑n
i=1

[F (hi)]
1−l

n[F (hn)]1−l
[K(1)−

	1
0(K(s))′τhi(s)ds]

Bn,(1−l)

=M1[1 + o(1)]

and
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E[ϕ[x,l]
n (y)] =

1∑n
i=1[F (hi)]

1−l

n∑
i=1

1

[F (hi)]l
E

[
H

(
y − Yi
hi

)
K

(
‖x−Xi‖

hi

)]
=

1∑n
i=1[F (hi)]

1−l

×
n∑
i=1

E
{
[
	
RH

′(t)F [X](y − hit) dt− F [X](y) + F [X](y)]K
(‖x−Xi‖

hi

)}
[F (hi)]l

=
1∑n

i=1[F (hi)]
1−l

n∑
i=1

1

[F (hi)]l
E

{
[O(hb2i ) + F [X](y)]K

(
‖x−Xi‖

hi

)}
=

1∑n
i=1[F (hi)]

1−l

n∑
i=1

1

[F (hi)]l
F (hi)M1[F

[X](y) +O(hb2i )]

= F [X](y)M1[1 + o(1)].

Next, concerning variances and covariance, we have

E2

[
K

(
‖x−Xi‖

hi

)]
= O[{F (hi)}2].

By (6.1) we have

Var

[
K

(
‖x−Xi‖

hi

)]
=M2F (hi)[1 + γi],

where γi = O[F (hi)]. Thus

Var[f [l]n (x)] =

[
1∑n

i=1[F (hi)]
1−l

]2 n∑
i=1

[
1

[F (hi)]l

]2
M2F (hi)[1 + γi]

=
1

(
∑n

i=1[F (hi)]
1−l)2

n∑
i=1

[F (hi)]
1−2lM2[1 + γi]

=
β[1−2l]

β2[1−l]

1

nF (hn)
M2[1 + o(1)].

Then

Var[ϕ[x,l]
n (y)]

=

[
1∑n

i=1[F (hi)]
1−l

]2 n∑
i=1

[
1

[F (hi)]l

]2
Var

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]
,

where

Var

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]
= E

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]2
− E2

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]
.
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As

E2

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]
= O[{F (hi)}2]

and

E

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]2
= E

{
K2

(
‖x−Xi‖

hi

)
E2

[
H

(
y − Yi
hi

)
| X]

}
+ E

{
σ2εi(X)K

(
‖x−Xi‖

hi

)}
with

E2

[
H

(
y − Yi
hi

) ∣∣∣∣ X] = O(hb2i ) + [F [X](y)]2,

where σ2εi(X) is defined in Remark 3.1, by (H6)(ii) we have

Var[ϕ[x,l]
n (y)]

=

[
1∑n

i=1[F (hi)]
1−l

]2 n∑
i=1

[
1

[F (hi)]l

]2
M2F (hi)

[
[F [X](y)]2 + σ2ε(X)

]
[1 + γi]

=
β[1−2l]

β2[1−l]

[
[F [X](y)]2 + σ2ε(X)

] 1

nF (hn)
M2[1 + o(1)],

with γi = o(hi).
Finally,

Cov[f [l]n (x), ϕ[x,l]
n (y)]

=
1

(
∑n

i=1[F (hi)]
1−l)2

{
E

[ n∑
i=1

n∑
j=1

H
(y−Yi

hi

)
K
(‖x−Xi‖

hi

)
K
(‖x−Xj‖

hj

)
[F (hi)]l[F (hj)]l

]

−
n∑
i=1

E
[
H
(y−Yi

hi

)
K
(‖x−Xi‖

hi

)]
[F (hi)]l

n∑
j=1

E
[
K
(‖x−Xj‖

hj

)]
[F (hj)]l

}

=
1

(
∑n

i=1[F (hi)]
1−l)2

n∑
i=1

E
[
H
(y−Yi

hi

)
K2
(‖x−Xi‖

hi

)]
[F (hi)]2l

− 1

(
∑n

i=1[F (hi)]
1−l)2

n∑
i=1

E
[
H
(y−Yi

hi

)
K
(‖x−Xi‖

hi

)]
E[K(‖x−Xi‖hi

)]

[F (hi)]2l

= I − II,
where

II = O

[
1

n
(Bn,1−l)

−2Bn,2(1−l)

]
= O

(
1

nF (hn)

)
.
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And as

E

[
H

(
y − Yi
hi

)
K2

(
‖x−Xi‖

hi

)]
= F (hi)M2[F

[X](y) + γi]

with γi = o(hi), we have

I =
(Bn,1−l)

−2

nF (hn)

n∑
i=1

[F (hi)]
1−2l

n[F (hn)]1−2l
M2F

[X](y)[1 + γi].

Thus

Cov[f [l]n (x), ϕ[x,l]
n (y)] =

β[1−2l]

β2[1−l]
F [X](y)M2

1

nF (hn)
[1 + o(1)].

Finally,

(6.5) Var[F̂ [x,l]
n (y)] =

β[1−2l]

β2[1−l]

M2

M2
1

σ2ε(X)
1

nF (hn)
[1 + o(1)].

And since

E
{[
f [l]n (x)− E[f [l]n (x)]

]
ϕ[x,l]
n (y)

}
= O

[
1

nF (hn)

]
,

E
{
[f [l]n (x)− f(x)]2F̂ [x,l]

n (y)
}
= O

[
1

nF (hn)

]
,

we get

(6.6) E[F̂ [x,l]
n (y)−F [x](y)] = hnϕ

′(0)
α[l]

β[1−l]

M0

M1
[1 + o(1)] +O

[
1

nF (hn)

]
.

Proof of Lemma 4.5. It is sufficient to use the following decomposition
of variance that can be found in [C76]:

Var[F̂ [x,l]
n (y)] =

Var[ϕ
[x,l]
n (y)]

{E[f
[l]
n (x)]}2

− 4
E[ϕ

[x,l]
n (y)] Cov[f

[l]
n (x), ϕ

[x,l]
n (y)]

{E[f
[l]
n (x)]}3

+ 3Var[f [l]n (x)]
{E[ϕ

[x,l]
n (y)]}2

{E[f
[l]
n (x)]}4

+ o

[
1

nF (hn)

]
,

and the same steps used in the proof of Lemma 4.5.

Proof of Theorem 4.3. The result is a direct consequence of Lemmas 4.4
and 4.5.

Proof of Theorem 4.7. Let

f̂ [x,l]n (y)− f [x](y) = φ
[x,l]
n (y)− f [x](y)f [l]n (x)

f
[l]
n (x)

,
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where

ϕ[x,l]
n (y)− f [x](y)f [l]n (x)

= {ϕ[x,l]
n (y)− f [x](y)f [l]n (y)− E[ϕ[x,l]

n (y)− f [x](y)f [l]n (x)]}
+ {E[ϕ[x,l]

n (y)− f [x](y)f [l]n (x)]}
= I ′1 + I ′2.

The proofs for I ′1 and I ′2 are similar to those for I1 and I2, and we find

lim
n→∞

{
nF (hn)

ln lnn

}1/2

I ′1 =
{2$[1−2l]M2f

[x](y)
	
RH

′2(t)dt}1/2

β[1−l]
,

I ′2 ' hnφ′(0)
α[l]

β[1−l]
M0[1 + o(1)].

Then{
nF (hn)

ln lnn

}1/2

I ′2 =

{
nF (hn)

ln lnn

}1/2

hnφ
′(0)

α[l]

β[1−l]
M0[1 + o(1)] = o(1)

when limn→∞ nh
2
n = 0. We conclude that

lim
n→∞

{
nF (hn)

ln lnn

}1/2

I ′2 = 0

and{
nF (hn)

ln lnn

}1/2

[ϕ[x,l]
n (y)− f [x](y)f [l]n (x)]

→
{2$[1−2l]M2f

[x](y)
	
RH

′2(t) dt}1/2

β[1−l]
.

Proof of Lemma 4.9. Following the same reasoning for the conditional
cumulative distribution function, we have

E[f [l]n (x)] =M1[1 + o(1)]; E[ϕ[x,l]
n (y)] = f [X](y)M1[1 + o(1)],

Var[f [l]n (x)] =
β[1−2l]

β2[1−l]

1

nF (hn)
M2[1 + o(1)],

Var[ϕ[x,l]
n (y)] =

β[1−2l]

β2[1−l]

[
[f [X](y)]2 + θ2ε(X)

] 1

nF (hn)
M2[1 + o(1)]

(θ2ε(X) is defined in Remark 3.1). Moreover

Cov[f [l]n (x), ϕ[x,l]
n (y)] =

β[1−2l]

β2[1−l]
f [X](y)M2

1

nF (hn)
[1 + o(1)].



Nonparametric estimates for functional data 79

Replacing the parameters by their respective values, one finds

(6.7) Var[f̂ [x,l]n (y)] =
β[1−2l]

β2[1−l]

M2

M2
1

θ2ε(X)
1

nF (hn)
[1 + o(1)].

Then, given

E{[f [l]n (x)− Ef [l]n (x)]ϕ[x,l]
n (y)} = O

[
1

nF (hn)

]
and

E{[f [l]n (x)− f(x)]2f̂ [x,l]n (y)} = O

[
1

nF (hn)

]
,

we have

(6.8) E[f̂ [x,l]n (y)− f [x](y)] = hnφ
′(0)

α[l]

β[1−l]

M0

M1
[1 + o(1)] +O

[
1

nF (hn)

]
.

Proof of Lemma 4.10. It is sufficient to look at (6.7).

Proof of Theorem 4.8. This is a direct consequence of Lemmas 4.9 and
4.10.

Proof of Theorem 4.12. Consider the decomposition

lim sup
n→∞

[
nF (hn)

ln lnn

]1/2
[ĥ[x,l]n (y)− h[x](y)]

= lim sup
n→∞

[
nF (hn)

ln lnn

]1/2 1

1− F̂ [x,l]
n (y)

(f̂ [x,l]n (y)− f [x](y))

+ h[x](y) lim sup
n→∞

[
nF (hn)

ln lnn

]1/2 1

1− F̂ [x,l]
n (y)

(F̂ [x,l]
n (y)− F [x](y)).

Via (6.5) and (6.6), we get the almost sure convergence of F̂ [x,l]
n (y) to F [x](y).

Then the convergence of the denominator 1 − F̂
[x,l]
n (y) to 1 − F [x](y)

is obtained almost surely. The proof is completed by using Theorems 4.1
and 4.7.

Proof of Theorem 4.13. Using the decomposition of ĥ[x,l]n (y) deduced from
[BC99], we have

E[ĥ[x,l]n (y)− h[x](y)]2

=
[h[x](y)]2

[1− F [x](y)]2
E[F̂ [x,l]

n (y)− F [x](y)]2

+
2h[x](y)

[1− F [x](y)]2
E{[F̂ [x,l]

n (y)− F [x](y)][f̂ [x,l]n (y)− f [x](y)]}

+
1

[1− F [x](y)]2
E[f̂ [x,l]n (y)− f [x](y)]2
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+
1

[1− F [x](y)]2
E
{[
(ĥ[x,l]n (y))2 − (h[x](y))2

]
[F̂ [x,l]
n (y)− F [x](y)]2

}
+

2

[1− F [x](y)]2

× E{[ĥ[x,l]n (y)− h[x](y)][f̂ [x,l]n (y)− f [x](y)][F̂ [x,l]
n (y)− F [x](y)]}

= Λ1 + Λ2 + Λ3 + Λ4 + Λ5.

Thus, the quadratic mean convergence of ĥ[x,l]n (y) into h[x](y) depends on
the convergence of Λ1, Λ2, Λ3, Λ4 and Λ5.

Studying Λ1. As

Λ1 =
[h[x](y)]2

[1− F [x](y)]2
E[F̂ [x,l]

n (y)− F [x](y)]2,

using the quadratic mean convergence of F̂ [x,l]
n (y) to F [x](y) we obtain

lim
n→∞

nF (hn)Λ1 =
[h[x](y)]2

[1− F [x](y)]2

{
β[1−2l]

β2[1−l]

M2

M2
1

σ2ε(X) + c[ϕ′(0)]2
α2
[l]

β2[1−l]

M2
0

M2
1

}
.

Studying Λ2. We have

Λ2 =
2h[x](y)

[1− F [x](y)]2
E{[F̂ [x,l]

n (y)− F [x](y)][f̂ [x,l]n (y)− f [x](y)]}

and

E{[F̂ [x,l]
n (y)− F [x](y)][f̂ [x,l]n (y)− f [x](y)]}
= [Ef̂ [x,l]n (y)− f [x](y)][EF̂ [x,l]

n (y)− F [x](y)] + Cov[f̂ [x,l]n (y), F̂ [x,l]
n (y)].

By using (6.6) and (6.8), suppose there exists c > 0 such that nF (hn)h2n → c
as n→∞, then

lim
n→∞

nF (hn)[Ef̂
[x,l]
n (y)−f [x](y)][EF̂ [x,l]

n (y)−F [x](y)]=cφ′(0)ϕ′(0)
α2
[l]

β2[1−l]

M2
0

M2
1

.

We can prove that nF (hn) Cov[f̂
[x,l]
n (y), F̂

[x,l]
n (y)]→ 0.

Effectively, by the Schwarz inequality,

Cov[f̂ [x,l]n (y), F̂ [x,l]
n (y)] ≤

√
Var(f̂

[x,l]
n (y))Var(F̂

[x,l]
n (y)).

Using (6.6) and (6.7), we find

Cov[f̂ [x,l]n (y), F̂ [x,l]
n (y)]

'
β[1−2l]

β2[1−l]

M2

M2
1

√
θ2ε(X)σ2ε(X)

1

nF (hn)
[1 +O(1)] as n→∞.
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We then get

lim
n→∞

nF (hn)Λ2

=
2h[x](y)

[1− F [x](y)]2

[
cφ′(0)ϕ′(0)

α2
[l]

β2[1−l]

M2
0

M2
1

+
β[1−2l]

β2[1−l]

M2

M2
1

√
θ2ε(X)σ2ε(X)

]
.

Studying Λ3. Recall

Λ3 =
1

[1− F [x](y)]2
E[f̂ [x,l]n (y)− f [x](y)]2.

By using the result of Theorem 4.8 we find

lim
n→∞

nF (hn)Λ3 =
1

[1− F [x](y)]2

[
β[1−2l]

β2[1−l]

M2

M2
1

θ2ε(X) + c[φ′(0)]2
α2
[l]

β2[1−l]

M2
0

M2
1

]
.

Studying Λ4. We have

Λ4 =
1

[1− F [x](y)]2
E
{[
(ĥ[x,l]n (y))2 − (h[x](y))2

]
[F̂ [x,l]
n (y)− F [x](y)]2

}
.

Since (ĥ[x,l]n (y))2− (h[x](y))2 can be bounded by a constant, the convergence
of Λ4 can be deduced easily using the quadratic mean convergence of F̂ [x,l]

n (y)

to F [x](y). For this, we use the almost sure convergence of ĥ[x,l]n (y) to h[x](y).
Hence

lim
n→∞

nF (hn)Λ4 = 0.

Studying Λ5. Using the same procedure as for Λ4, we get

lim
n→∞

nF (hn)Λ5 = 0.

7. Conclusion and future scope. In this work, our main interest was
nonparametric estimation methods based on conditional recursive kernels for
independent functional data along with their applications in prediction. We
focused on recursive estimation of the conditional hazard function; to this
end, new nonparametric models and estimates were determined, that is, re-
cursive estimators of the conditional cumulative distribution and the density
functions. Then, taking the recursive estimation approach, we established
the almost sure and the quadratic mean convergence rates of the proposed
estimators. In addition, we analyzed the performance of our estimator us-
ing a simulation study; our prime purpose was to improve the performance
of nonparametric conditional kernel predictors, reducing their computation
time using recursive kernels. Here, our proposed estimator showed a sig-
nificant advantage as regards computation time compared to the classical
nonparametric (nonrecursive) functional estimator given in [BRS15]. Fur-
ther, in order to explore the effectiveness of our technique in real cases, we
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presented the convenient use of our model to study a time series, specifically,
the El Niño time series. Here, the nonrecursive estimator showed a slight ad-
vantage over our estimator with regard to the mean prediction error, but
there is not a big difference between their behaviors, while our recursive es-
timator has better computation time. For further work, it will be interesting
to extend the present study by examining the model under strong mixing
conditions.

Acknowledgements. The authors are grateful to the anonymous refer-
ees and the editor for insightful comments and suggestions, which improved
the content and the presentation of this paper.
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