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Summary. Weprovide a description of the integral points on elliptic curves y2 = x(x−2m)
× (x + p), where p and p + 2m are primes. In particular, we show that for m = 2 such a
curve has no nontorsion integral point, and for m = 1 it has at most one such point (with
y > 0). Our proofs rely upon numerical computations and a variety of results on quartic
and other diophantine equations, combined with an elementary analysis.

1. Introduction. By the famous Siegel Theorem [16], any elliptic curve
over Q has only finitely many integral points. However, searching for inte-
gral points leads to considering certain diophantine equations, so it is not
easy in general. Many authors have dealt with this problem. For example,
Draziotis [8] determined integral points on the curves y2 = x3 ± pkx (p is
a prime) by solving a finite number of quartic elliptic equations, using a
reduction through an unramified map. Bennett [2] described integral points
in a certain subfamily of congruent number curves using linear forms in
logarithms. Yang and Fu [20], combining some properties of quadratic and
quartic diophantine equations with an elementary analysis, proved that the
elliptic curve y2 = x3 + (36n2 − 9)x − 2(36n2 − 5) has, under some condi-
tions, only one integral point (2, 0). Alvanos and Draziotis [1] determined
all possible integer solution of the equation y2 = Ax4 + B by using Lucas
sequences.

In this paper, we consider elliptic curves associated to generalized twin
primes. Let us recall some information on this topic. It is believed that
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there exist infinitely many twin primes (this is the so called Twin Prime
Conjecture). More generally, one can expect that (for a fixed positive even
integer k) there exist infinitely many primes p such that p + k is also a
prime (cf. [9, first part of Conjecture B]). These conjectures are still open.
In fact, we seem nowhere close to settling this problem. One well known
result is Chen’s theorem [5] stating that there are infinitely many primes
p such that p + 2 has at most two prime factors. For the related problem
(the so called Bounded Gap Conjecture) Zhang [21] showed that there are
bounded gaps between consecutive primes infinitely often. More precisely, he
proved that lim infn→∞(pn+1−pn) ≤ 7×107 where pn denotes the nth prime
(note that the Twin Prime Conjecture says that lim infn→∞(pn+1−pn) = 2).
Next, Maynard [12], by using multidimensional sieve weights, lowered this
bound to 600 (and under the assumption of the Elliott–Halberstam conjec-
ture to 12). The Polymath project [14], which extends Maynard’s methods,
has successfully brought this bound down to 246 unconditionally, and to 6
under the assumption of the generalized Elliott–Halberstam conjecture. Note
also that since the Bounded Gap Conjecture is true, there is at least one pos-
itive even integer which can be written infinitely often as the difference of
two consecutive primes.

Let p, q be odd primes such that q−p = 2m, m ≥ 1. Consider the family
of elliptic curves over Q

(1.1) Ep,m : y2 = x(x− 2m)(x+ p).

These curves were considered by Dąbrowski and the second author [7] (note
that our notation differs from the one in [7]). The purpose of this paper
is to describe the integral points of this family. Note that Ep,m(Q)tors =
Ep,m[2] = {∞, (0, 0), (2m, 0), (−p, 0)} (see [13, Main Theorem 1]) and the
rank of Ep,m(Q) is less than or equal to 2 (see [10, Proposition 4.19]). More-
over, this bound can only be attained for m = 3 or m > 4 and certain special
primes q ≡ 1 (mod 8). Consequently, we have Ep,m(Q) ' (Z/2Z)2×Zr where
r ∈ {0, 1, 2}. We also know that the discriminant of (1.1) equals 22m+4p2q2

and the reduction at p and q is multiplicative. Summarizing, Ep,m has three
rational 2-torsion points and its conductor Np,m is 2epq for some e ≥ 0. In
particular, if m = 4 and p ≡ 1 (mod 4) then Np,m = pq. Note that Ben-
nett [2] considered elliptic curves with three rational 2-torsion points and
conductor 2apb.

Suppose that we have a solution of y2 = x(x−2m)(x+p) in nonzero inte-
gers x and y. Then the point (x, y) with (without loss of generality) y > 0 is
nontorsion and we call it a nontrivial integral point of Ep,m (however, note
that the equation (1.1) is not minimal in general). If Ep,m has a nontriv-
ial integral point then, by the considerations above, the rank of Ep,m(Q) is
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in {1, 2}. However, two nontrivial integral points on Ep,m may not be inde-
pendent. For example, E5,3 has rank one and two nontrivial integral points
(−1, 6) and (40, 240) (they differ by the torsion point (0, 0)).

In this paper, we provide a description of the nontrivial integral points
on the elliptic curves Ep,m (Theorems 2.1–2.4 below). In particular, we show
that Ep,2 has no nontrivial integral points, and Ep,1 has at most one such
point. Our proofs rely upon computations in Magma [4] and a variety of
results on quartic and other Diophantine equations, combined with an ele-
mentary analysis.

2. Results. In this section, we state the main results of this paper (the
numbers of cases refer to Section 3).

Theorem 2.1. There is at most one nontrivial integral point on the curve
Ep,1. If there is one such a point then it arises from case 3.8. Furthermore,
p ≡ 1, 7 (mod 8) and p > 416440.

In fact, we conjecture that there are no nontrivial integral points on Ep,1
at all.

Theorem 2.2. The curve Ep,,2 has no nontrivial integral points.

Theorem 2.3. If the curve Ep,3 has a nontrivial integral point then it
must arise from cases 3.1, 3.8, 3.9 or 3.10. Furthermore, cases 3.8 and 3.9
can give at most three such points and these cases can only arise if p ≡ 1
(mod 8) and p > 329080.

We conjecture that cases 3.8 and 3.9 never occur for m = 3.
In general, we have the following result.

Theorem 2.4. If the elliptic curve Ep,m has a nontrivial integral point
(x, y) then (x, p,m) belongs to the list given below:

• Case 3.1:

x = −(2m−2 − 1)2, p = c2 + (2m−2 − 1)2,

where m ≥ 3 and c is a positive even integer.
• Case 3.2:

x = 2ma2, a2 − (p+ 2m)b2 = 1, c2 − 2mb2 = 1,

where a, b, c are pairwise coprime positive integers such that b, c and m ≥ 3
are odd, and a is even.
• Case 3.3:

x = 2αa2, a2 − (p+ 2m)b2 = 2m−α, c2 − 2αb2 = 1,

where a, b, c are odd pairwise coprime positive integers and m ≥ α+1 ≥ 4
with odd α.
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• Case 3.4:

x = 2α(2m−α−2 + 1)2, p = c2 − 2α(2m−α−2 + 1)2,

where m ≥ α+ 3 ≥ 4 and c is a positive odd integer.
• Case 3.5:

x = −2α(2m−α−2 − 1)2, p = c2 + 2α(2m−α−2 − 1)2,

where m ≥ α+ 3 ≥ 4 and c is a positive odd integer.
• Case 3.6:

x = 2αpa2, qc2 − 2αa2 = 1, pc2 − 2αb2 = 1,

where a, b, c are odd pairwise coprime positive integers and m ≥ α+3 ≥ 4.
• Case 3.7:

x = 2αpa2, pa2 − b2 = 2m−α, c2 − 2αa2 = 1,

where a, b, c are odd pairwise coprime positive integers and m ≥ α+1 ≥ 4
with odd α.
• Case 3.8:

x = 2ma2, a2 − (p+ 2m)b2 = 1, c2 − 2mb2 = 1,

where a, b, c are pairwise coprime positive integers such that a, c and m
are odd, and b is even.
• Case 3.9:

x = 2mpa2, pa2 − (p+ 2m)b2 = 1, pc2 − 2mb2 = 1,

where a, b, c are pairwise coprime positive integers such that b is even and
a, c are odd.
• Case 3.10:

x = 2mpa2, pa2 − b2 = 1, c2 − 2ma2 = 1,

where a, b, c are pairwise coprime positive integers such that b is even and
a, c are odd, and m ≥ 3 is odd.

3. Case-by-case analysis. For a nontrivial integral point (x, y) on Ep,m
write x = 2αpβx0, where α and β are nonnegative integers, and x0 is coprime
to 2p.

Notice that

gcd(x, x+ p) | p, gcd(x− 2m, x+ p) | q, gcd(x, x− 2m) = 2min(α,m).

Furthermore, if gcd(x− 2m, x+ p) = q, then q - x.
In this section, we consider 32 cases depending on the values of α, β,

gcd(x− 2m, x+ p) and sgnx (we consider positive and negative values of x
separately). Throughout, a, b, c denote positive, pairwise coprime integers.

In 22 cases elementary analysis shows that these cases are impossible.
We omit the details, and only focus on the remaining ten cases.
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3.1. α = β = 0, gcd(x− 2m, x+ p) = 1, x < 0. From

x = −a2, x− 2m = −b2, x+ p = c2,

we obtain
−a2 − 2m = −b2,

whence
2m = (b− a)(b+ a).

Since a ≡ b ≡ 1 (mod 2), this implies that

b− a = 2, b+ a = 2m−1

and further
a = 2m−2 − 1.

We have thus found, for m ≥ 3, a nontrivial integral point (x, y), where

x = −(2m−2 − 1)2,

and

p = c2 + (2m−2 − 1)2, q = c2 + (2m−2 + 1)2,

for some positive c. Note that if m ≤ 2 or p ≡ 3 (mod 4) or q ≡ 3 (mod 4),
then this case does not occur.

3.2. α > m, β = 0, gcd(x− 2m, x+ p) = q, x > 0. We have

(3.1) x = 2ma2, x− 2m = 2mqb2, x+ p = qc2,

where 2 | a and 2 - bc. Combining these equations we obtain the following
system of three diophantine (quadratic) equations in a, b, c:

(3.2)


a2 − qb2 = 1,

c2 − 2mb2 = 1,

2ma2 − qc2 = −p.
Note that the second of these equations comes from subtracting the sec-
ond condition in (3.1) from the third one. Consequently, any one of these
equations depends on the remaining two. Hence in fact we have a system
of two Pell-like equations (we can use any two equations from (3.2)). Note
also that if this system has a solution (with b 6= 0), then q ≡ 3 (mod 4),
m is odd, q ≡ p (mod 8) and

(2q
p

)
=
(−2p

q

)
= 1. Hence in particular m ≥ 3.

Moreover, by [3, Corollary 1.3], this system has at most one solution in
positive integers a, b, c. Assume that such a solution exists. Then (a − c)
× (a+ c) = a2 − c2 = (q − 2m)b2 = pb2. Since gcd(a− c, a+ c) = 1, we get

(3.3)

{
a = pu2+v2

2 ,

c = v2−pu2
2 ,

or

{
a = u2+pv2

2 ,

c = pv2−u2
2 ,
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for some relatively prime positive integers u, v such that b = uv. Substituting
(3.3) into the equation a2−qb2 = 1, we deduce that u and v satisfy the Thue
equation

(3.4) X4 − 2(p+ 2m+1)X2Y 2 + p2Y 4 = 4.

3.3. 0 < α < m, β = 0, gcd(x− 2m, x+ p) = q, x > 0. We have

x = 2αa2, x− 2m = 2αqb2, x+ p = qc2,

where 2 - abc. Combining these equations (similar to case 3.2) we obtain the
following system of three diophantine equations in a, b, c:

(3.5)


a2 − qb2 = 2m−α,

c2 − 2αb2 = 1,

2αa2 − qc2 = −p.
Since each of these equations depends on the remaining ones, in fact we have
a system of two Pell-like equations. Assume that (3.5) has a solution with
b 6= 0. Then α is odd, α > 1 and

(2q
p

)
=
(−2p

q

)
= 1. Hence in particular

m ≥ 4, and so q ≡ p (mod 16). Moreover, multiplying the second equation
in (3.5) by 2m−α and subtracting it from the first one, we get

a2 = pb2 + 2m−αc2.

If 2 - m−α, then reducing modulo p we obtain
(
2
p

)
= 1, so p ≡ 1, 7 (mod 8).

Moreover, if m − α = 1 then p ≡ 7 (mod 8), and if m − α > 2 then p ≡ 1
(mod 8).

3.4. 0 < α < m, β = 0, gcd(x− 2m, x+ p) = 1, x > 0. The fact that

x = 2αa2, x− 2m = 2αb2, x+ p = c2,

where 2 - abc, implies that

2αa2 − 2m = 2αb2,

so that
2m−α = (a− b)(a+ b).

We find that
a− b = 2, a+ b = 2m−α−1.

This yields
a = 2m−α−2 + 1,

so
x = 2α(2m−α−2 + 1)2.

Hence for m ≥ α+ 3 ≥ 4 we have a nontrivial integral point on Ep,m with

p = c2 − 2α(2m−α−2 + 1)2, q = c2 − 2α(2m−α−2 − 1)2,
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for some positive c. In particular, if 2 - α and p or q is congruent to 3 or 5
modulo 8, then this case does not occur. The same is true if α = 1 and p or
q is not congruent to 7 modulo 8, and if α ≥ 3 and p or q is not congruent
to 1 modulo 8.

3.5. 0 < α < m, β = 0, gcd(x − 2m, x + p) = 1, x < 0. Similar to the
previous case, we have

x = −2αa2, x− 2m = −2αb2, x+ p = c2,

where 2 - abc. Hence
2m−α = (b− a)(b+ a)

and further
b− a = 2, b+ a = 2m−α−1.

Finally, we obtain

a = 2m−α−2 − 1, x = −2α(2m−α−2 − 1)2,

where m ≥ α+3 ≥ 4. Therefore we have a nontrivial integral point on Ep,m
with

p = c2 + 2α(2m−α−2 − 1)2, q = c2 + 2α(2m−α−2 + 1)2,

for some positive c (cf. case 3.1). Notice that for such p and q we have
p ≡ q ≡ 1 (mod 4) if 2 |α, and

(−2
p

)
=
(−2
q

)
= 1 (hence p, q ≡ 1, 3 (mod 8))

if 2 - α. Moreover, p ≡ q ≡ 1 (mod 8) if α ≥ 3, and p ≡ q ≡ 3 (mod 8) if
α = 1, and p ≡ q ≡ 5 (mod 8) if α = 2.

3.6. 0 < α < m, β > 0, gcd(x− 2m, x+ p) = q, x > 0. Now

x = 2αpa2, x− 2m = 2αqb2, x+ p = pqc2,

where 2 - abc. Combining these equations (similar to cases 3.2 or 3.3) we
obtain the system of three diophantine equations

(3.6)


pa2 − qb2 = 2m−α,

pc2 − 2αb2 = 1,

2αa2 − qc2 = −1.

As each of these equations depends on the other two, in fact we have a
system of two Pell-like equations. Assume that this system has a solution.
Then combining the second equation in (3.6) with the third one, we get

2m−αc2 = (a− b)(a+ b),

and consequentlym ≥ α+3 ≥ 4. Moreover, if α = 1 then p ≡ q ≡ 3 (mod 8),
if α = 2 then p ≡ q ≡ 5 (mod 8), and if α > 2 then p ≡ q ≡ 1 (mod 8).
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3.7. 0 < α < m, β > 0, gcd(x− 2m, x+ p) = 1, x > 0. Now

x = 2αpa2, x− 2m = 2αb2, x+ p = pc2,

where 2 - abc. Combining these equations we obtain the system

(3.7)


pa2 − b2 = 2m−α,

pc2 − 2αb2 = q,

2αa2 − c2 = −1,
with each equation depending on the other two. Assume that (3.7) has a
solution. Then from the third equation we obtain 2 - α and α > 1, so in
particular m ≥ 4 and p ≡ q (mod 16). Moreover, multiplying the third
equation in (3.7) by 2m−α and adding it to the first one, we get

qa2 = b2 + 2m−αc2.

Therefore, if 2 - m − α then reducing modulo q, we obtain
(−2
q

)
= 1, so

q ≡ 1, 3 (mod 8). Similarly, if 2 |m− α then q ≡ 1 (mod 4).

3.8. α = m, β = 0, gcd(x− 2m, x+ p) = q, x > 0. Now

x = 2ma2, x− 2m = 2mqb2, x+ p = qc2,

where 2 - ac and 2 | b. Combining these equations we obtain the same system
as in case 3.2 but now a is odd and b is even. If this system has a nontrivial
solution then m is odd and

(2q
p

)
=
(−2p

q

)
= 1. Moreover, if q ≡ 5 (mod 8)

and m > 1 then by [19, Theorem 1], the only solution is (a, b, c) = (1, 0, 1)
and consequently we get only the torsion point (2m, 0). Also in general, by
[3, Corollary 1.3] this system has at most one solution in positive integers
a, b, c. Assume that such a solution exists. Then in much the same way as in
case 3.2, we get

(3.8)

{
a = pu2 + v2,

c = v2 − pu2,
or

{
a = u2 + pv2,

c = pv2 − u2,
for some relatively prime positive integers u, v such that b = 2uv. Substitut-
ing (3.8) into the equation a2 − qb2 = 1, we deduce that u and v satisfy the
Thue equation

(3.9) X4 − 2(p+ 2m+1)X2Y 2 + p2Y 4 = 1.

Then substituting s = X2 − (p+ 2m+1)Y 2 and t = Y into (3.9), we obtain

(3.10) s2 − 2m+2qt4 = 1.

By [3, Lemma 2.2], the equation (3.10) has at most one solution in posi-
tive integers s, t. Therefore for given p and q, in case 3.8 there exists at most
one nontrivial integral point on Ep,m.

Note also that this quartic equation may have a solution but nonetheless
our curve may have no nontrivial integral points. For example for p = 311
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and m = 1 the equation s2−8×313t4 = 1 has the solution (1251, 5) but the
curve E311,1 has no such points (and has rank one). Taking p = 4799 and
m = 1 we obtain another example, and so on.

3.9. α = m, β > 0, gcd(x− 2m, x+ p) = q, x > 0. Now

x = 2mpa2, x− 2m = 2mqb2, x+ p = pqc2,

where 2 - ac and 2 | b. Combining these equations we obtain the system
pa2 − qb2 = 1,

pc2 − 2mb2 = 1,

2ma2 − qc2 = −1,
with each equation depending on the two others. If the system has a non-
trivial solution then p ≡ 1 (mod 8) and

(p
q

)
=
(−q
p

)
= 1. Moreover, by [6,

Lemma 5 and Theorem 2], this system has at most two solutions in positive
integers a, b, c. If such a solution exists then the considerations similar to
case 3.8 show that the Thue equation

(3.11) pX4 − 2(p+ 2m+1)X2Y 2 + pY 4 = 1

has a solution in positive integers.

3.10. α = m, β > 0, gcd(x− 2m, x+ p) = 1, x > 0. Now

x = 2mpa2, x− 2m = 2mb2, x+ p = pc2,

where 2 - ac and 2 | b. Combining these equations we obtain the system

(3.12)


pa2 − b2 = 1,

pc2 − 2mb2 = q,

2ma2 − c2 = −1,
with each equation depending on the other two. If this system has a nontrivial
solution then m is odd, and reducing the suitable equations in (3.12) mod-
ulo 8, p and q, we get p ≡ 1 (mod 4), p ≡ q (mod 8), and

(2p
q

)
=
(−2q

p

)
= 1.

In particular, m ≥ 3.

4. Conclusion. As mentioned above, in 22 cases we have no nontrivial
integral points on Ep,m. In the remaining ten cases such a point may exist. In
three cases, namely 3.1, 3.4, and 3.5, we have explicit formulas for p and x.
In the remaining seven cases we have implicit formulas (via a system of two
Pell-like equations). Note that in each such case it is possible (using e.g.
the algorithm from [17]) to associate to the system of Pell-like equations a
finite family of quartic Thue equations. This was done (without using such
an algorithm) to facilitate the analysis in cases 3.2, 3.8 and 3.9. Note also
that these cases are different from the others (see Conjecture 6.2). Now we
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summarize the analysis from Section 3 by writing sufficient conditions for
the nonexistence of such a point in each of these ten cases separately.

Proposition 4.1.

(1) If m ≤ 2 or p ≡ 3 (mod 4) or q ≡ 3 (mod 4) then case 3.1 does not
occur.

(2) If m = 1 or 2 |m or q ≡ 1 (mod 4) or p 6≡ q (mod 8) or
(2q
p

)
= −1 or(−2p

q

)
= −1 then case 3.2 does not occur.

(3) If 2 |α or α = 1 or m ≤ 3 or
(2q
p

)
= −1 or

(−2p
q

)
= −1, or 2 - m− α

and p ≡ 3, 5 (mod 8), then case 3.3 does not occur.
(4) If m ≤ α+ 2, or m ≤ 3, or 2 - α and p or q ≡ 3, 5 (mod 8), or α ≥ 3

and p or q 6≡ 1 (mod 8), then case 3.4 does not occur.
(5) If m ≤ α + 2, or m ≤ 3, or 2 - α and p or q ≡ 5, 7 (mod 8), or 2 |α

and p or q ≡ 3 (mod 4), or α ≥ 3 and p or q 6≡ 1 (mod 8), then case
3.5 does not occur.

(6) If m ≤ α+ 2 or m ≤ 3 then case 3.6 does not occur.
(7) If 2 | α, or α = 1, or m ≤ 3, or 2 - m − α and q ≡ 5, 7 (mod 8), or

2 |m− α and q ≡ 3 (mod 4), then case 3.7 does not occur.
(8) If 2 |m or

(2q
p

)
= −1 or

(−2p
q

)
= −1 then case 3.8 does not occur.

(9) If p 6≡ 1 (mod 8) or
(−q
p

)
= −1 or

(p
q

)
= −1 then case 3.9 does not

occur.
(10) If m = 1 or 2 |m or p ≡ 3 (mod 4) or p 6≡ q (mod 8) or

(−2q
p

)
= −1

or
(2p
q

)
= −1 then case 3.10 does not occur.

Proof. This follows from the analysis of these cases made in Section 3.

Below, we show that case 3.9 does not occur for m = 1 and for m ≡ 2
(mod 4).

Proposition 4.2. The diophantine equation na2− (n+2)b2 = 1, where
n > 1, has no solution in integers.

Proof. Note that the proof is immediate if n is even. So assume that n
is odd and consider the auxiliary Pell equation x2 − n(n + 2)y2 = 1. It is
easy to check that x = n+ 1, y = 1 is its fundamental solution. By [18], the
equation

(4.1) na2 − (n+ 2)b2 = 1

is solvable if and only if the fundamental solution (x, y) of the auxiliary Pell
equation is the “square” of the smallest solution (a, b) of (4.1), meaning that
(a
√
n+ b

√
n+ 2)2 = x+

√
n(n+ 2)y. Consequently, n+ 1 = x = 2na2 − 1,

which is impossible.
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Corollary 4.3. The system of Pell-like equations{
pa2 − (p+ 2)b2 = 1,

pc2 − 2b2 = 1,

or equivalently the Thue equation pX4 − 2(p + 4)X2Y 2 + pY 4 = 1 has no
solution, and consequently case 3.9 does not occur for m = 1.

Proof. This follows immediately from Proposition 4.2 and from the anal-
ysis of case 3.9 made in Section 3.

Proposition 4.4. If m ≡ 2 (mod 4) then the Thue equation pX4 −
2(p+2m+1)X2Y 2+ pY 4 = 1, where p, p+2m are primes, has no solution in
integers. Consequently, case 3.9 does not occur for such m.

Proof. Suppose the proposition were false. Then the congruence pX4 −
(2p+ 1)X2Y 2 + pY 4 ≡ 1 (mod 5) has a solution. Note that by the assump-
tion and the Fermat little theorem, 2m ≡ −1 (mod 5) and p 6≡ 0, 1 (mod 5).
Now checking all possible values of X,Y, p modulo 5, we get a contradic-
tion.

Unfortunately, the above methods do not work for other values of m.
Also the hypergeometric method and the method of simultaneous Padé ap-
proximations do not apply here.

5. Proofs of theorems. In this section, we conclude the proofs of our
main results.

Proof of Theorem 2.1. We may assume that p ≡ 1, 7 (mod 8) because for
p ≡ 3, 5 (mod 8) we have rankEp,1(Q) = 0 by [7, Corollary 1]. Now Propo-
sition 4.1, Corollary 4.3, analysis of case 3.8 in Section 3 and computations
in Magma prove the theorem.

Proof of Theorem 2.2. Suppose that Ep,2 has a nontrivial integral point.
We may assume that p ≡ 1 (mod 4) because by [7, Corollary 1], rankEp,2
(Q) = 0 for p 6≡ 1 (mod 4). Then by Proposition 4.1, we are in case 3.9. Now
by Proposition 4.4, we get a contradiction, which completes the proof.

Proof of Theorem 2.3. Similar to the above proof, by [7, Corollary 1], we
may assume that p ≡ 1 (mod 4). Now the first part of the theorem follows
immediately from Proposition 4.1. In Section 3 we showed that case 3.8 gives
at most one nontrivial torsion point, and case 3.9 gives at most two such
points. Moreover, we may assume that p ≡ 1 (mod 8). Then computations
in Magma finish the proof.

Proof of Theorem 2.4. This follows from the analysis made in Section 3.
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6. Remarks and problems

Remark 6.1. Note that all cases from Theorem 2.4 occur form ≥ 3 with
the possible exception of 3.2, 3.8 and 3.9 (for m 6= 12). Indeed, below we
write for each such case the minimal (in lexicographic order) triple (m, p, x)
where (x, y) is a nontrivial integral point on Ep,m (p and q = p + 2m are
primes).

Table 1. Integral points on Ep,m

Case m p x

3.1 3 5 −1

3.3 4 7 200

3.4 4 7 18

3.5 4 3 −2

3.6 4 3 54

3.7 4 3 24

3.9 12 23593 16331640832

3.10 3 5 40

Numerical computations also suggest the following.

Conjecture 6.2. Cases 3.2, 3.8 and 3.9 do not occur (with the exception
of 3.9 for m = 12).

Conjecture 6.3. The curve Ep,m has at most four nontrivial integral
points.

In fact, we found only one example of Ep,m with four such points (all
other examples we found have at most three integral points): m = 9, p = 89,
q = 601, (x, y) = (−64, 960), (712, 10680), (2312, 99960), (481312, 333771360)
(these arise from cases 3.5, 3.7, 3.3 and 3.6, respectively).

Under weaker assumptions than Conjecture 6.2 we can prove the follow-
ing.

Proposition 6.4. If the system of Pell like equations{
a2 − (p+ 2)b2 = 1,

c2 − 2b2 = 1,

or equivalently the Thue equation X4 − 2(p+ 4)X2Y 2 + p2Y 4 = 1, where p,
p + 2 are primes and p ≡ 1, 7 (mod 8), has no nonzero solution, then Ep,1
has no nontrivial integral points.

Proof. This follows immediately from Theorem 2.1 and from the analysis
of case 3.8 made in Section 3.
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Remark 6.5. The above result is nontrivial because by [7, Corollary 2],
we have (assuming the Parity Conjecture) rankEp,m(Q) = 1 for m = 1 and
p ≡ 1, 7 (mod 8).

Below we explain why the standard tools for solving Thue equations
such as linear forms in logarithms (see [15]) and the hypergeometric method
(see [11]) do not work for the equations (3.9), i.e., for case 3.8.

Remark 6.6. There are examples showing that the equationX4−2(p+4)
X2Y 2+p2Y 4 = 1 may have a nonzero solution if we do not assume that p+2
is prime: (p,X, Y ) = (41039, 204, 1), (42193, 204, 1), (684132103, 78472, 3).
Moreover, if we drop the assumption that p and p+2 are primes, a solution
of this equation can be easily found. Namely, the form X4−2(p+4)X2Y 2+
p2Y 4−1 is a quadratic in p, and consequently p will be a rational solution if its
discriminant 32X2Y 6+4Y 4 is a perfect square. Hence we want 2(2XY )2+1
to be a perfect square. Therefore, for any Y , there are infinitely many X’s
(and infinitely many p’s too) which are solutions of these Thue equations.
The values of X are members of binary recurrence sequences and the p’s
grow in a similar way. Therefore, it is reasonable to conjecture that in each
such family there are infinitely many primes (for the same reasons why we
believe there are infinitely many Mersenne primes, Fibonacci primes etc.).
Since there are so many such families of p’s, it seems to be at least possible
that there is one twin prime among them. Something similar can also be
done for the Thue equation X4 − 2(p + 2m+1)X2Y 2 + p2Y 4 = 1. For both
cases, this allows us to show that the twin prime p must be very large.
In particular, if Ep,1 has a nontrivial integral point then p is very large.
Anyway, the “purely diophantine” approach (i.e., ignoring the prime pair
and congruence conditions) to the equation (3.9) does not work.

A generalization. Let us consider a more general situation. Namely,
let p, q be odd primes such that pk + 2m = ql for some positive integers
k, l,m, and let Epk,m be the elliptic curve

y2 = x(x− 2m)(x+ pk).

As before, we have Epk,m(Q)tors = Epk,m[2] = {∞, (0, 0), (2m, 0), (−pk, 0)},
and a point (x, y) on Epk,m such that x, y ∈ Z and y > 0 will be called
a nontrivial integral point. Then we write x = 2αpβx0, where α and β are
nonnegative integers, and x0 is coprime to 2p. Note that

gcd(x, x+pk)=pmin(β,k), gcd(x−2m, x+p) | ql, gcd(x, x−2m)=2min(α,m),

and if gcd(x− 2m, x+ p) 6= 1 then q - x.
Similarly to Section 3, we have considered 72 cases depending on the

values of α, β, gcd(x − 2m, x + p) and the sign of x. In 35 cases we have
easily obtained a contradiction but the remaining 37 cases cannot be rejected
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entirely (obviously as in Proposition 4.1 we can write sufficient conditions
for the nonexistence of an integral point in each of these cases). It is possible
to formulate a theorem analogous to Theorem 2.4 but it would be very long
and involve numerous systems of Pell-like equations. On the other hand, the
counterparts of Theorems 2.1 and 2.2 in this general situation are not true.
Namely, Epk,2 may have a nontrivial integral point, and Epk,1 may have three
nontrivial integral points, as is shown by the following example.

Example 6.7. We write selected quadruples (m, pk, ql, x) where (x, y) is
a nontrivial integral point on Epk,m (ql = pk + 2m).

Table 2. Integral points on Epk,m

m pk ql x

1 32 11 −6, 3, 24

1 34 83 −6, 27

2 5 32 −2, 10

2 52 29 −5, 20

2 132 173 −117

2 56 15629 −15125
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