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GLOBAL EXPONENTIAL STABILITY IN LAGRANGE

SENSE FOR PERIODIC NEURAL NETWORKS WITH

VARIOUS ACTIVATION FUNCTIONS AND

TIME-VARYING DELAYS

Abstract. In recent years, the concept of Lyapunov stability has received
a remarkable attention in the field of neural networks. However the stability
in Lagrange sense for neural networks has not been studied much. It is to be
noticed that while Lyapunov stability refers to stability of the equilibrium
point, Lagrange stability refers to the stability of the total system. In this
paper, we study the global exponential stability in Lagrange sense for peri-
odic neural networks with multiple time delays and more general activation
functions including general bounded and sigmoidal type activation func-
tions. By constructing suitable Lyapunov-like functions, we provide easily
verifiable criteria for the boundedness and global exponential attractivity of
periodic neural networks. We present a detailed estimation of global expo-
nential attractive sets from the system parameters without any supposition
on existence. We investigate whether the equilibrium point of the network
system is globally exponentially stable by means of globally exponentially
attractive sets. At the end, we give some numerical examples to validate
our analytical findings. The results obtained are helpful in designing glob-
ally asymptotically stable cellular neural networks and reduce the search
domain of optimization.
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1. Introduction. Recurrent neural networks (RNN’s) have found nu-
merous applications since the pioneering work of Hopfield [8]. From the
system-theoretic point of view, because of the special non-linear structure
of neural networks, their global stability becomes of interest. When using
RNN’s to solve optimization, control or signal processing problems, Lya-
punov global stability is one of the most desirable properties. From the
dynamical point of view, globally stable networks in Lyapunov sense are
monostable systems, which restrict each neural network to one equilibrium
point. Many authors have investigated the dynamic behaviour of various
systems using the concept of Lyapunov stability. For instance, we refer to
[1, 2, 17, 5, 3, 6, 19, 18] and references cited therein. Though monostable neu-
ral networks have been found to be computationally restrictive, multistable
dynamics are essential in many applications. In such cases, neural networks
are no longer globally stable and more appropriate notions of stability are
needed.

One can view the global stability in Lyapunov sense as a special case
of stability in Lagrange sense by regarding the equilibrium point as an at-
tracting set [13]. Recently, many researchers have studied global exponential
stability in Lagrange sense for various neural network models with different
time delays. For more details, we refer to [16, 15, 21, 20, 14, 23] and refer-
ences cited therein. In [26], the authors considered boundedness, attractivity
and complete convergence as three basic properties of a multistable network.
Moreover global exponential stability in Lagrange sense is of much signifi-
cance, as discussed below.

The field of neural networks is widely used in optimization computation
to find the equilibrium point of a neural network. Through the concept of
stability in the Lagrange sense, we can easily find a globally exponentially
attractive set and thus we obtain a rough boundary of the optimization so-
lution set. Moreover, in dynamic systems, for the existence of periodic and
almost periodic solutions, the system should be ultimately bounded. The
periodic and almost periodic solutions must be within the global attractive
set, which is achieved through stability in Lagrange sense [7]. Also it is gen-
erally considered that a continuous dynamical system exhibits chaos if the
system is dissipative (or ultimately bounded) on large scale with positive
Lyapunov index on small scale [4]. In recent years, researchers have found
chaos in neural networks also. Thus it becomes important to study stabil-
ity in Lagrange sense. Furthermore, if we consider our equilibrium point as
an attractive set, then the global stability in Lyapunov sense at the unique
equilibrium point can be taken as a special case of stability in the Lagrange
sense. Hence from both practical and theoretical perspective, it becomes sig-
nificant to study the global stability in Lagrange sense for neural networks.
To date, a series of results for periodic neural networks have been obtained
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(for instance, see [10, 12, 25, 24, 11, 9, 27, 22] and references cited therein).
While analyzing stability of a neural network model, characteristics of acti-
vation functions and network parameters play an important role, since the
conditions to be imposed on the neural network are determined from them.
Consequently, studying neural networks with general activation functions
becomes important.

Motivated by the above discussion, in this paper, our objective is to study
the global exponential stability in Lagrange sense for a general periodic neu-
ral network. In [22], the authors have studied global exponential stability
in Lagrange sense for periodic neural networks by considering bounded and
Lurie-type activation functions with discrete time delay. Our results comple-
ment the results obtained in [22] and improve them in the sense that we now
take into account time-varying time delays along with activation functions
of bounded and sigmoidal type.

The organization of this paper is as follows. In Section 2, we give the
notion of globally exponentially attractive (GEA) sets and global exponential
stability (GES) in Lagrange sense along with one preliminary result; these
are used in later sections to prove the main results. In Sections 3 and 4,
we derive stability of a neural network model in Lagrange sense for various
types of activation functions. In Section 5, we give some numerical exam-
ples to validate our results. Finally, in Section 6 we give some concluding
results.

2. Preliminaries. Consider the periodic neural network (PNN) model
with different activation functions and multiple time-varying delays de-
scribed by the equation

dxi(t)

dt
= −di(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t))(2.1)

+
n∑
j=1

bij(t)gj(xj(t− τij(t))) + Ii(t),

where i = 1, . . . , n, xi(t) is the state variable of the ith neuron, aij(t) and
bij(t) are connection weights from neuron i to neuron j, Ii(t) ∈ C(R,R) is
the external bias, τij(t) represents the transmission delay and τij(t) ∈ [0, τ ],
i, j = 1, . . . , n, where τ > 0 is constant, fj ∈ C(R,R) and gj ∈ C(R,R)
are non-linear activation functions. The initial condition associated with
network (2.1) takes the form

(2.2) xi(s) = φi(s), s ∈ [−τ, 0], i = 1, . . . , n,

where φ(s) = (φ1(s), . . . , φn(s))T is a continuous function defined on [−τ, 0].
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When bij(t) = 0, the PNN (2.1) reduces to

(2.3)
dxi(t)

dt
= −di(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t)) + Ii(t).

For aij(t) = 0, (2.1) takes the form

(2.4)
dxi(t)

dt
= −di(t)xi(t) +

n∑
j=1

bij(t)gj(xj(t− τij(t))) + Ii(t).

The cases (2.3) and (2.4) are particular cases of (2.1), which are discussed
further. Throughout, we assume di(t), aij(t), bij(t), Ii(t), τij(t) are continu-
ous ω-periodic functions, that is, di(t+ ω) = di(t) for all t etc.

2.1. Notations and assumptions. Let C denote the Banach space
of continuous functions ψ : [−τ, 0] → Rn equipped with the norm ‖ψ‖ =
sups∈[−τ,0] |ψ(s)|. Let C+F be the set of all continuous functionals K : C →
[0,∞) mapping bounded sets in C into bounded sets in [0,∞). For a given
constant T > 0, the subset CT is defined as {ψ ∈ C | |ψ| ≤ T }. For any
initial condition σ ∈ C, solutions of (2.1) starting from σ will be denoted as
x(t;σ). If there is no need to emphasize the initial condition, any solution
of (2.1) will be denoted by x(t). For any continuous bounded function h(t),
t ≥ 0, we write |h̄| = supt≥0 |h(t)| and |h| = inft≥0 |h(t)|.

We define three classes of activation functions for the neural network
model (2.1). Consider the set of non-decreasing functions

(2.5) K = {φ ∈ C(R,R) | sφ(s) > 0, ∀s 6= 0, D+φ(s) ≥ 0, ∀s ∈ R},
where D+φ(s), the right upper Dini derivative of φ, is given by

D+φ(s) = lim sup
h→0+

φ(s+ h)− φ(s)

h
.

First, we consider the class of sigmoidal functions, defined by

S = {g ∈ C(R,R) | g(0) = 0, ∃k > 0, |g(x)| ≤ k, ∀x ∈ R},
where the constant k is called a saturation constant.

The second class of activation functions consists of continuous non-
decreasing activation functions vanishing at zero:

G = {g ∈ K | g(0) = 0}.
The third class of activation functions consists of bounded functions:

B = {g ∈ K | ∃k > 0, |g(x)| ≤ k, ∀x ∈ R}.

2.2. Definitions and lemmas. Let Ω ⊂ Rn be a compact set. We
denote its complement by Rn \Ω, and ρ(x,Ω) = infy∈Ω |x− y| denotes the
distance from x ∈ Rn to Ω.
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Definition 2.1 ([22]). The neural network model (2.1) is said to be
uniformly stable in Lagrange sense (or uniformly bounded) if for any L > 0,
there exists a constant K = K(L) such that |x(t;φ)| < K for all φ ∈ CL and
t ≥ 0.

Definition 2.2 ([22]). A compact set Ω ⊂ Rn is said to be a globally
attractive set of the neural network (2.1) if for every solution x(t) ∈ Rn,
t ≥ 0, we have

lim
t→+∞

ρ(x(t), Ω) = 0.

Definition 2.3 ([22]). Assume there exists a radially unbounded and
positive definite function V (x), a continuous functionalK ∈ C+F , and positive
constants l and α such that for any solution x(t) = x(t;ψ) of (2.1),

V (x(t)) > l, t ≥ 0, implies V (x(t))− l ≤ K(ψ)e−αt, ∀t ≥ 0.

Then the neural network (2.1) is said to be globally exponentially attractive
with respect to V , and the compact set Ω = {x ∈ Rn | V (x) ≤ l} is called
a globally exponentially attractive (GEA) set of (2.1).

Definition 2.4 ([22]). Suppose there exist radially unbounded and pos-
itive definite functions Vi(x), x ∈ R, continuous functionals Ki ∈ C+F , and
positive constants li and αi such that for any solution x(t) = x(t;ψ) of (2.1),

Vi(xi(t)) > li, ∀t ≥ 0, implies Vi(xi(t))− li ≤ Ki(ψ)e−αit, ∀t ≥ 0.

Then the neural network (2.1) is called globally exponentially attractive with
respect to (V1, . . . , Vn), and the compact set Ω = {x ∈ Rn | Vi(xi) ≤ li, ∀i}
is called a globally exponentially attractive set of (2.1).

Definition 2.5 ([22]). The neural network (2.1) is said to be globally
exponentially stable (GES) in Lagrange sense if it is both uniformly stable
in Lagrange sense and globally exponentially attractive. If we need to em-
phasize the Lyapunov-like functions, we say that the network is globally
exponentially stable in Lagrange sense with respect to V or (V1, . . . , Vn).

Obviously, if the network (2.1) has a global attractive set, it is uniformly
bounded; and if the network (2.1) has a GEA set, it is GES in Lagrange
sense. Next we give a lemma, which is used in the proofs of our main results.

Lemma 2.6 ([22]). Let G ∈ C([t0,∞),R), and suppose there exist con-
stants α 6= 0 and β such that

(2.6) D+G(t) ≤ −αG(t) + β, t ≥ t0.

Then

(2.7) G(t)− β

α
≤
(
G(t0)−

β

α

)
exp{−α(t− t0)}, t ≥ t0.
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In particular, if G(t) ≥ β/α for all t ≥ t0, then G(t) exponentially ap-
proaches β/α as t increases.

3. Global exponential stability for fi 6= gi. In this section, we derive
stability results for different activation functions, that is, fi 6= gi. We first
consider the case of bounded activation functions and later analyze the
results for fi of sigmoidal type and gi bounded.

3.1. Bounded activation functions. In this subsection, we consider
the network (2.1) with bounded feedback functions fi, gi (i = 1, . . . , n).
We further assume that the network satisfies all the assumptions of the
previous section. Let ki, hi > 0 be the saturation constants of gi and fi. For
i = 1, . . . , n, define

M
(1)
i =

1

2

( n∑
j=1

|āij |hj +

n∑
j=1

|b̄ij |kj + |Īi|
)
,

M
(2)
i =

1

2

( n∑
j=1

|āij |hj + |Īi|
)
,(3.1)

M
(3)
i =

1

2

( n∑
j=1

|b̄ij |kj + |Īi|
)
.

Now we state our result.

Theorem 3.1.Assume that the activation functions fi, gi are all bounded,
fi, gi ∈ B, |fi| ≤ hi and |gi| ≤ ki, where hi, ki > 0 are constants and
xifi(xi) > 0 for xi 6= 0, fi(0) = 0, i = 1, . . . , n, and let |di| = inft≥0 |di(t)|.
Then the PNN (2.1) is globally exponentially stable in Lagrange sense with
globally exponentially attractive sets

Ω1 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

x2i
2
≤

∑n
i=1(M

(1)
i )2/εi

2 min1≤i≤n(di − εi)
, 0 < εi < di

}
,

Ω2 = {x ∈ Rn | |xi| ≤ 2M
(1)
i /di},

Ω3 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi| ≤
∑n

i=1 2M
(1)
i

min1≤i≤n di

}
.

Proof. We prove the uniform stability of (2.1) in Lagrange sense by con-
sidering different Lyapunov functions.

• First, we employ the radially unbounded and positive definite Lya-
punov function

(3.2) V (x(t)) =
1

2

n∑
i=1

x2i (t).
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Computing the derivative of V (x(t)) along the positive half trajectory of
(2.1), we obtain

D+V (x)(t)
∣∣
(2.1)

=

n∑
i=1

xi(t)
dxi(t)

dt

=

n∑
i=1

xi(t)
[
−di(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t))

+
n∑
j=1

bij(t)gj(xj(t− τij(t))) + Ii(t)
]

≤
n∑
i=1

−dix2i (t) +
n∑
i=1

( n∑
j=1

|āij |hj +
n∑
j=1

|b̄ij |kj) + |Īi|
)
|xi(t)|

≤ −
n∑
i=1

dix
2
i (t) +

n∑
i=1

2M
(1)
i |xi(t)|

≤ −
n∑
i=1

dix
2
i (t) +

n∑
i=1

εix
2
i (t) +

n∑
i=1

(M
(1)
i )2

εi

≤ − min
1≤i≤n

{di − εi}
n∑
i=1

x2i (t) +
n∑
i=1

(M
(1)
i )2

εi

≤ −2 min
1≤i≤n

{di − εi}V (x)(t) +
n∑
i=1

(M
(1)
i )2

εi

= −αV (x(t)) + β,

where α = 2 min1≤i≤n{di − εi} and β =
∑n

i=1 (M
(1)
i )2/εi. By Lemma 2.6,

for t ≥ t0 we have

(3.3) V (x(t))− β

α
≤
(
V (x(t0))−

β

α

)
e−α(t−t0).

This implies that the solutions of (2.1) are uniformly bounded. Hence (2.1)
is uniformly stable in Lagrange sense. Also

(3.4) V (x(0))− β

α
≤ V (x(0)) =

1

2

n∑
i=1

x2i (0) =
1

2

n∑
i=1

φ2i (0) = K(φ).

Then K ∈ C+F and from (3.3), we can rewrite (3.4) as

(3.5) V (x(t))− β

α
≤ K(φ)e−αt, t ≥ 0.

By Definition 2.3, network (2.1) is globally exponentially stable and Ω1 is a
globally exponentially attractive set.
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• To prove that Ω2 is GEA, we take the n radially unbounded and
positive definite Lyapunov functions

(3.6) Vi(xi(t)) = |xi(t)|, i = 1, . . . , n.

Then on differentiation we obtain

D+Vi(xi)(t)
∣∣
(2.1)
≤ −di|xi(t)|+

n∑
j=1

|āij |hj +
n∑
j=1

|b̄ij |kj + |Īi|

= −diVi(xi(t)) + 2M
(1)
i .

Then according to Lemma 2.6,

(3.7) Vi(xi(t))−
2M

(1)
i

di
≤
(
Vi(xi(t0))−

2M
(1)
i

di

)
e−di(t−t0).

Let Ki(φ) = Vi(φi(0)) = |φi(0)|, i = 1, . . . , n. Then

Vi(xi(t))−
2M

(1)
i

di
≤ Ki(φ)e−αt,

where α = di. Thus, we conclude that Ki ∈ C+F and so Ω2 is a GEA set.

• Next, we consider the radially unbounded and positive definite Lya-
punov function

(3.8) V (x(t)) =
n∑
i=1

|xi(t)|.

Computing the upper right derivative, we obtain

D+V (x(t))
∣∣
(2.1)
≤ −

n∑
i=1

(
di|xi(t)|+

n∑
j=1

(|āij |hj + |b̄ij |kj) + |Īi|
)

= −
n∑
i=1

di|xi(t)|+
n∑
i=1

2M
(1)
i

≤ − min
1≤i≤n

di ·
n∑
i=1

|xi(t)|+
n∑
i=1

2M
(1)
i

= −αV (x(t)) + β,

where α = min1≤i≤n di and β =
∑n

i=1 2M
(1)
i . Again in the same manner,

applying Lemma 2.6 for t ≥ t0 we get

V (x(t))− β

α
≤
(
V (x(t0))−

β

α

)
e−α(t−t0).



Global exponential stability in Lagrange sense 237

Now from Lemma 2.6 and Definition 2.3,

V (x(t))−
∑n

i=1 2M
(1)
i

min1≤i≤n di
≤
(
V (x(0))−

∑n
i=1 2M

(1)
i

min1≤i≤n di

)
e−αt, t ≥ 0.

Let K(φ) = V (x(0)) = V (φ(0)) =
∑n

i=1 |φi(0)|. Then K ∈ C+F and hence

V (x(t))−
∑n

i=1 2M
(1)
i

min1≤i≤n di
≤ K(φ)e−αt, t ≥ 0.

Hence by Definition 2.3, Ω3 is a GEA set.

Remark 3.2. Since Ω1, Ω2, Ω3 are GEA sets of the network (2.1), we
see that Ω123 = Ω1 ∩Ω2 ∩Ω3 is a better GEA set of (2.1).

Corollary 3.3. If fi ∈ B, then the network (2.3) is globally exponen-
tially stable in Lagrange sense with GEA sets

Ω4 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

x2i
2
≤

∑n
i=1(M

(2)
i )2/εi

2 min1≤i≤n(di − εi)
, 0 < εi < di

}
,

Ω5 = {x ∈ Rn | |xi| ≤ 2M
(2)
i /di},

Ω6 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi| ≤
∑n

i=1 2M
(2)
i

min1≤i≤n di

}
.

Hence Ω456 = Ω4 ∩ Ω5 ∩ Ω6 is another globally exponentially attractive set
of (2.3).

Corollary 3.4. If gi(·) ∈ B, then the network (2.4) is globally expo-
nentially stable in Lagrange sense with GEA sets of

Ω7 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

x2i
2
≤

∑n
i=1(M

(3)
i )2/εi

2 min1≤i≤n(di − εi)
, 0 < εi < di

}
,

Ω8 = {x ∈ Rn | |xi| ≤ 2M
(3)
i /di},

Ω9 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi| ≤
∑n

i=1 2M
(3)
i

min1≤i≤n di

}
.

Hence Ω789 = Ω7 ∩Ω8 ∩Ω9 is another GEA set of (2.4).

Remark 3.5. The globally exponentially attractive sets Ωi (i = 1, . . . , n)
derived in Theorem 3.1 may not be optimal. One can choose other attractive
sets also.

3.2. Sigmoidal and bounded activation functions. In this subsec-
tion, we assume that fi ∈ S and gi ∈ B. Consider the matrix form of the
network (2.1):

(3.9) Ẋ(t) = −D(t)X(t) +A(t)F (X(t)) +B(t)G(X(t− τ(t))) + I(t).
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For B(t) = 0, the network (3.9) reduces to

(3.10) Ẋ(t) = −D(t)X(t) +A(t)F (X(t)) + I(t),

where D(t) = diag{d1(t), . . . , dn(t)}, di(t) ∈ R+, A(t) = (aij(t))n×n, B(t) =
(bij(t))n×n, I(t) = (I1(t), . . . , In(t))T and τ(t) = (τij(t))n×n. Let hi, ki > 0
be the saturation constants of fi and gi, i = 1, . . . , n. For l = 1, 2, 3, choose

matrices P (l) = (p
(l)
ij )n×n and Q(l) = (q

(l)
ij )n×n such that Ā(l) = A + P (l) =

(ā
(l)
ij )n×n and B̄(l) = B +Q(l) = (b̄

(l)
ij )n×n satisfy

• Ā(1) + (Ā(1))T < 0 and B̄(1) + (B̄(1))T < 0 are negative definite,
• Ā(2) + (Ā(2))T ≤ 0 and B̄(2) + (B̄(2))T ≤ 0 are negative semi-definite,

• a(3)ij +
∑n

i=1, i 6=j |ā
(3)
ij | ≤ 0 and b

(3)
ij +

∑n
i=1,i 6=j |b̄

(3)
ij | ≤ 0.

Choose the following constants:

M̄i =
1

2

n∑
j=1

(|p(1)ij |hj + |b̄ij |kj + |Īi|),

N̄i =
1

2

n∑
j=1

(|āij |hj + |q(1)ij |kj + |Īi|),

¯̄M =
n∑
i=1

[ n∑
j=1

|p(2)ij |hj +
n∑
j=1

|b̄ij |kj + |Īi|
]
hi,

¯̄N =
n∑
i=1

[ n∑
j=1

|āij |hj +
n∑
j=1

|q(2)ij |kj + |Īi|
]
ki,

M ′ =

n∑
i=1

[ n∑
j=1

(|p(3)ij |hj + |b̄ij |kj + |Īi|)
]
,

M ′′ =

n∑
i=1

[ n∑
j=1

(|p(3)ij |hj + |Īi|)
]
.

Theorem 3.6. Assume that fi ∈ S and gi ∈ B. Then the PNN (3.9)
is globally exponentially stable in Lagrange sense with globally exponentially
attractive sets

Ω10 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

xi(t)�

0

(fi(y) + gi(y)) dy ≤
∑n

i=1(M̄
2
i + N̄2

i )/ε

min1≤i≤n di

}
,

Ω11 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

xi(t)�

0

(fi(y) + gi(y)) dy ≤
¯̄M + ¯̄N

min1≤i≤n di

}
,

Ω12 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi| ≤
M ′

min1≤i≤n di

}
,
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where 0 < ε1, ε2 < ε � 1, Ā + ĀT + ε1In ≤ 0 and B̄ + B̄T ≤ 0. Hence
Ω = Ω10 ∩Ω11 ∩Ω12 is another GEA set of (3.9).

Proof. We will employ three Lyapunov functions.

• Consider the Lyapunov function

(3.11) V (x(t)) =
n∑
i=1

xi(t)�

0

fi(y) dy +
n∑
i=1

xi(t)�

0

gi(y) dy.

On differentiating with respect to t, we obtain

D+V (x(t)) =
n∑
i=1

fi(xi(t))ẋi(t) +
n∑
i=1

gi(xi(t))ẋi(t),

=
n∑
i=1

[
−di(t)xi(t)fi(xi(t)) +

n∑
j=1

aij(t)fj(xj(t))fi(xi(t)

+

n∑
j=1

bij(t)gj(xj(t− τij(t)))fi(xi(t)) + Ii(t)fi(xi(t))
]

+
n∑
i=1

[
−di(t)xi(t)gi(xi(t)) +

n∑
j=1

aij(t)fj(xj(t))gi(xi(t))

+

n∑
j=1

bij(t)gj(xj(t− τij(t)))gi(xi(t)) + Ii(t)gi(xi(t))
]

≤
n∑
i=1

[
−dixi(t)fi(xi(t)) +

n∑
j=1

āijfj(xj(t))fi(xi(t)

+

n∑
j=1

b̄ijgj(xj(t− τij(t)))fi(xi(t)) + Īifi(xi(t))
]

+

n∑
i=1

[
−dixi(t)gi(xi(t)) +

n∑
j=1

āijfj(xj(t))gi(xi(t))

+

n∑
j=1

b̄ijgj(xj(t− τij(t)))gi(xi(t)) + Īigi(xi(t))
]

≤
n∑
i=1

[
−dixi(t)fi(xi(t)) +

n∑
j=1

(āij + p
(1)
ij )fj(xj(t))fi(xi(t)

+

n∑
j=1

b̄ijgj(xj(t−τij(t)))fi(xi(t))+Īifi(xi(t))

−
n∑
j=1

p
(1)
ij fj(xj(t))fi(xi(t)

]
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+

n∑
i=1

[
−dixi(t)gi(xi(t)) +

n∑
j=1

āijfj(xj(t))gi(xi(t))

+

n∑
j=1

(b̄ij + q
(1)
ij )gj(xj(t− τij(t)))gi(xi(t)) + Īigi(xi(t))

−
n∑
j=1

q
(1)
ij gj(xj(t− τij(t)))gi(xi(t)

]

≤ −
n∑
i=1

dixi(t)(fi(xi(t)) + gi(xi(t)))

+
1

2
fT (x(t))(Ā(1) + (Ā(1))T )f(x(t))

+

n∑
i=1

[ n∑
j=1

|p(1)ij |hj +

n∑
j=1

|b̄ij |hj + |Īi|
]
fi(xi(t))

+
1

2
gT (x(t))(B̄(1) + (B̄(1))T )g(x(t− τ))

+

n∑
i=1

[ n∑
j=1

|āij |hj +

n∑
j=1

|q(1)ij |kj + |Īi|
]
gi(xi(t))

≤ − min
1≤i≤n

di ·
[ n∑
i=1

xi(t)�

0

(fi(y) + gi(y)) dy
]

+
1

2
fT (x(t))(Ā(1) + (Ā(1))T )f(x(t))

+
1

2
gT (x(t))(B̄(1) + (B̄(1))T )g(x(t− τ))

+ 2
n∑
i=1

M̄i|fi(xi(t))|+ 2
n∑
i=1

N̄i|gi(xi(t))|

≤ − min
1≤i≤n

di ·
[ n∑
i=1

xi(t)�

0

(fi(y) + gi(y)) dy
]

+
1

2
fT (x(t))(Ā(1)

+ (Ā(1))T + ε1In)f(x(t)) +
1

2
gT (x(t))(B̄(1) + (B̄(1))T )g(x(t− τ))

+
1

2
gT (x(t))ε2g(x(t)) +

n∑
i=1

M̄2
i

ε1
+

n∑
i=1

N̄2
i

ε2

≤ − min
1≤i≤n

di · V (x(t)) +
n∑
i=1

M̄2
i

ε
+

n∑
i=1

N̄2
i

ε
= −αV (x(t)) + β,
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where α = min1≤i≤n di and β =
∑n

i=1 (M̄2
i + N̄2

i )/ε. Hence from Lemma 2.6,
Ω10 is a GEA set of (3.9).

• We again consider the positive definite and radially unbounded Lya-
punov function

(3.12) V (x(t)) =
n∑
i=1

xi(t)�

0

fi(y) dy +
n∑
i=1

xi(t)�

0

gi(y) dy.

Differentiating, we obtain

D+V (x(t)) ≤ −
n∑
i=1

di(t)xi(t)
(
fi(xi(t)) + gi(xi(t))

)
+

1

2
fT (x(t))(Ā(2) + (Ā(2))T )f(x(t))

+
1

2
gT (x(t))

(
B̄(2) + (B̄(2))T

)
g(x(t− τ))

+
n∑
i=1

[ n∑
j=1

|p(2)ij |hj +
n∑
j=1

|b̄ij |kj + |Īi|
]
hi

+

n∑
i=1

[ n∑
j=1

|āij |hj +

n∑
j=1

|q(2)ij |kj + |Īi|
]
ki

≤ − min
1≤i≤n

di · V (x(t)) + ( ¯̄M + ¯̄N) = −αV (x(t)) + β,

where α = min1≤i≤n di and β = ¯̄M + ¯̄N , i = 1, 2, . . . . By Lemma 2.6, Ω11 is
a GEA set of (3.9).
• Now we consider the radially unbounded and positive definite Lya-

punov function

(3.13) V (x(t)) =
n∑
i=1

|xi(t)|.

Calculating the upper right derivative, we obtain

D+V (x(t)) =

n∑
i=1

ẋi(t) sign(xi(t)) =

n∑
i=1

[
−di(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t))

+
n∑
j=1

bij(t)gj(xj(t− τij(t))) + Ii(t)
]

sign(xi(t)),

=

n∑
i=1

[
−di(t)xi(t) +

n∑
j=1

(ā
(3)
ij − p

(3)
ij )fj(xj(t))

+
n∑
j=1

bij(t)gj(xj(t− τij(t))) + Ii(t)
]
.
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Further we break ā
(3)
ij as ā

(3)
ij = ā

(3)
jj +

∑
i,i 6=j |ā

(3)
ij |. This yields

D+V (x(t)) ≤ − min
1≤i≤n

di ·
n∑
i=1

|xi(t)|+
n∑
j=1

(
ā
(3)
jj +

∑
i,i 6=j
|ā(3)ij |

)
fj(xj(t))

+
n∑
j=1

bij(t)gj(xj(t− τij(t))) + Ii(t)−
n∑
j=1

p
(3)
ij fj(xj(t))

≤ − min
1≤i≤n

di ·
n∑
i=1

|xi(t)|+
n∑
j=1

(
ā
(3)
jj +

∑
i,i 6=j
|ā(3)ij |

)
fj(xj(t))

+

n∑
i=1

[ n∑
j=1

(|p(3)ij |hj + |b̄ij |kj) + |Īi|
]

≤ − min
1≤i≤n

di · V (x(t)) +M ′ = −αV (x(t)) + β,

with α = min1≤i≤n di and β = M ′.

Again, from Lemma 2.6, Ω12 is a GEA set of (3.9).

Corollary 3.7. Assume that fi ∈ S and gi ∈ B. Then the PNN (3.10)
is globally exponentially stable in Lagrange sense with globally exponentially
attractive set

Ω13 =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi(t)| ≤
M ′′

min1≤i≤n di

}
.

4. Global exponential stability for fi = gi. In this subsection we
consider fi = gi. In this case, the PNN under consideration takes the form

dxi(t)

dt
= −di(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t))(4.1)

+

n∑
j=1

bij(t)fj(xj(t− τij(t))) + Ii(t).

The assumptions on the system are as in Section 2. The PNN (4.1) is an-
alyzed considering bounded activation functions and sigmoidal activation
functions. This network is a generalization of the periodic neural network
model considered in [22] as it consists of time-varying delays.

If bij(t) = 0, then (4.1) reduces to

(4.2)
dxi(t)

dt
= −di(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t)) + Ii(t).
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For aij(t) = 0, (4.1) takes the form

(4.3)
dxi(t)

dt
= −di(t)xi(t) +

n∑
j=1

bij(t)fj(xj(t− τij(t))) + Ii(t).

4.1. Bounded activation functions. In this subsection, we consider
the network (4.1) under the same assumptions as in Subsection 3.1 with
fi ∈ B. Let hi > 0 be the saturation constants of fi (i = 1, . . . , n). Define

(4.4) M
(4)
i =

1

2

( n∑
j=1

(|āij |+ |b̄ij |)hj + |Īi|
)
, M

(5)
i =

1

2

( n∑
j=1

|b̄ij |hj + |Īi|
)
.

Theorem 4.1. Assume that fi ∈ B, i.e. |fi| ≤ hi with hi > 0 and
xifi(xi) > 0 for xi 6= 0, fi(0) = 0, i = 1, . . . , n. Then the network (4.1)
is globally exponentially stable in Lagrange sense with globally exponentially
attractive sets

Ωa =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

x2i (t)

2
≤

∑n
i=1(M

(4)
i )2/ε′i

2 min1≤i≤n(di − ε′i)
, 0 < ε′i < di

}
,

Ωb = {x ∈ Rn | |xi(t)| ≤ 2M
(4)
i /di},

Ωc =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi(t)| ≤
∑n

i=1 2M
(4)
i

min1≤i≤n di

}
.

Hence Ω = Ωa ∩Ωb ∩Ωc is another GEA set of (4.1).

Proof. The proof follows similar steps to those for Theorem 3.1.

Remark 4.2. The size of the globally exponentially attractive sets Ω1

and Ωa is related to the exponential decay rate of trajectories. It involves
selection of εi, ε

′
i > 0. The smaller the εi, ε

′
i, the larger the attractive set, and

hence the convergence rate of the trajectories into Ω1 and Ωa gets greater.
So selecting smaller εi, ε

′
i is preferred.

Corollary 4.3. If fi ∈ B, then the network (4.3) is GES in Lagrange
sense with GEA sets

Ωd =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

x2i (t)

2
≤

∑n
i=1(M

(5)
i )2/εi

2 min1≤i≤n(di − ε′i)
, 0 < ε′i < di

}
,

Ωe = {x ∈ Rn | |xi(t)| ≤ 2M
(5)
i /di},

Ωf =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi(t)| ≤
∑n

i=1 2M
(5)
i

min1≤i≤n di

}
.

Hence Ω = Ωd ∩Ωe ∩Ωf is another GEA set of (4.3).



244 S. Tyagi et al.

Remark 4.4. For bij(t) = 0, the network (4.2) takes the form of (2.3).
This case has already been discussed in Corollary 3.3.

4.2. Sigmoidal activation functions. In this subsection, we consider
the network (4.1) with fi ∈ S. Let mj (j = 1, . . . , n) be the saturation
constant of fj(·). Under similar notations to those in Subsection 3.2, consider
the matrix form of network (4.1),

(4.5) Ẋ(t) = −D(t)X(t) +A(t)F (X(t)) +B(t)F (X(t− τ(t))) + I(t).

For B(t) = 0, the network (3.9) reduces to

(4.6) Ẋ(t) = −D(t)X(t) +A(t)F (X(t)) + I(t).

Choose the following constants:

H
(1)
i =

1

2

( n∑
j=1

(|p(1)ij |+ |b̄ij |)mj + |Īi|
)
,

H(2) =

n∑
i=1

( n∑
j=1

(|p(2)ij |+ |b̄ij |)mj + |Īi|
)
mi,

H(3) =
n∑
i=1

( n∑
j=1

(|p(3)ij |+ |b̄ij |)mj + |Īi|)
)
,

H(4) =
n∑
i=1

( n∑
j=1

|p(3)ij |mj + |Īi|
)
.

Theorem 4.5. Assume that fi ∈ S. Then PNN (4.5) is globally exponen-
tially stable in Lagrange sense with globally exponentially attractive sets

Ωm =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

xi(t)�

0

fi(y) dy ≤
∑n

i=1(H
(1)
i )2/ε′′

min1≤i≤n di

}
,

Ωn =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

xi(t)�

0

fi(y) dy ≤ H(2)

min1≤i≤n di

}
,

Ωp =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi(t)| ≤
H(3)

min1≤i≤n di

}
,

where 0 < ε′′ � 1, Ā+ĀT+ε′′In ≤ 0 and B̄+B̄T ≤ 0. HenceΩ = Ωm∩Ωn∩Ωp
is another GEA set of (4.5).

Proof. We employ three Lyapunov functions.

• Consider the Lyapunov function

(4.7) V (x(t)) =

n∑
i=1

xi(t)�

0

fi(y) dy.
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On differentiating with respect to t, we get

D+V (x(t))
∣∣∣
(4.5)

=
n∑
i=1

fi(xi(t))ẋi(t)

≤
n∑
i=1

[
−dixi(t)fi(xi(t)) +

n∑
j=1

āijfj(xj(t))fi(xi(t))

+

n∑
j=1

b̄ijfj(xj(t− τij(t)))fi(xi(t)) + Īifi(xi(t))
]

≤
n∑
i=1

[
−dixi(t)fi(xi(t)) +

n∑
j=1

(āij + p
(1)
ij )fj(xj(t))fi(xi(t))

+
n∑
j=1

b̄ijfj(xj(t− τij(t)))fi(xi(t)) + Īifi(xi(t))

− p(1)ij fj(xj(t))fi(xi(t))
]

≤
n∑
i=1

−dixi(t)fi(xi(t)) +
1

2
fT (x(t))[Ā(1) + (Ā(1))T ]f(x(t))

+
n∑
i=1

[ n∑
j=1

(|p(1)ij |mj + |b̄ij |mj) + |Īi|
]
|fi(xi(t))|f(x(t))

+ 2

n∑
i=1

H
(1)
i |fi(xi(t))|

≤ − min
1≤i≤n

di ·
[ n∑
i=1

xi(t)�

0

fi(y) dy
]

+
1

2
fT (x(t))[Ā(1) + (Ā(1))T + ε′′In]f(x(t))

n∑
i=1

(H
(1)
i )2

ε′′

≤ − min
1≤i≤n

di · V (x(t)) +

n∑
i=1

(H
(1)
i )2

ε′′
= −αV (x(t)) + β,

where α = min1≤i≤n di and β =
∑n

i=1 (H
(1)
i )2/ε′′. If

V (x(t0)) >
β

α
, V (x(t)) >

β

α
, t ≥ t0,

then using Lemma 2.6 we obtain

V (x(t))− β

α
≤
(
V (x(t0))−

β

α

)
e−α(t−t0).

Hence Ωm is a GEA set of (4.5).
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• We employ the same positive definite and radially unbounded Lya-
punov function as in (4.7):

(4.8) V (x(t)) =

n∑
i=1

xi(t)�

0

fi(y) dy.

On differentiation, we obtain

D+V (x(t))
∣∣
(4.5)
≤ −

n∑
i=1

dixi(t)fi(xi(t)) +
1

2
fT (x(t))[Ā(2) + (Ā(2))T ]f(x(t))

+
n∑
i=1

[ n∑
j=1

(|p(2)ij |mj + |b̄ij |mj) + |Īi|
]
mi

≤ − min
1≤i≤n

di · V (x(t)) +H(2) = −αV (x(t)) + β,

where α = min1≤i≤n di and β = H(2). Using Lemma 2.6, we conclude that
Ωn is a GEA set of (4.5).

• Now we consider the radially unbounded and positive definite Lya-
punov function

(4.9) V (x(t)) =

n∑
i=1

|xi(t)|.

Then

D+V (x(t))
∣∣
(4.5)
≤

n∑
i=1

[
−dixi(t) +

n∑
j=1

āijfj(xj(t))

+

n∑
j=1

b̄ijfj(xj(t− τij(t))) + Īi

]
sign(xi(t))

≤
n∑
i=1

[
−dixi(t) +

n∑
j=1

ā
(3)
ij fj(xj(t))−

n∑
j=1

p̄
(3)
ij fj(xj(t))

+

n∑
j=1

b̄ijfj(xj(t− τij(t))) + Īi

]
sign(xi(t))

≤ −
n∑
i=1

di|xi(t)|+
n∑
j=1

(ā
(3)
jj +

n∑
i=1, i 6=j

|ā(3)ij |)|fj(xj(t))|

+

n∑
i=1

[ n∑
j=1

(|p(3)ij |+ |b̄ij |)mj + Īi

]
≤ − min

1≤i≤n
di · V (x(t)) +H(3).
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From Lemma 2.6, for t ≥ t0, we have

V (x(t))− H(3)

min1≤i≤n di
≤
(
V (x(t0))−

H(3)

min1≤i≤n di

)
e−min1≤i≤n di(t−t0).

Hence from Lemma 2.6, Ωp is a GEA set of (4.5).

Corollary 4.6. Assume that fi ∈ S. Then PNN (4.6) is GES in La-
grange sense with globally exponentially stable set

Ωq =

{
x ∈ Rn

∣∣∣∣ n∑
i=1

|xi(t)| ≤
H(4)

min1≤i≤n di

}
.

Remark 4.7. According to Theorems 3.1–4.5, outside a globally ex-
ponentially attractive set, there is no equilibrium point, periodic solution,
almost periodic solution or chaos attractor of the neural network.

Remark 4.8. In [22] the neural network model considered consists of
a single activation function, whereas in this work we have considered peri-
odic neural networks (2.1) consisting of different activation functions and
multiple time-varying delays. Thus the results derived are more general and
can be applied to any general neural network model with several activation
functions.

5. Numerical example

Example 5.1. Consider the neural network model

(5.1) ẋ(t) = −d(t)x(t) +AF (x(t)) +BG(x(t− τ)),

where F (x(t)) = (f(x1(t)), f(x2(t)), f(x3(t)))
T , G(x(t− τ)) = (g(x1(t− τ)),

g(x2(t−τ)), g(x3(t−τ)))T , with bounded activation functions f(x) = g(x) =
(|x+ 1| − |x− 1|)/2, and

A =

1.5 −1.4 0

1.5 1 + s 0.8

0 1.2 1.6

 , B =

1.2 −0.8 0

1.4 1.2 1 + s

1.2 0 1.2 + s

 , d =

1 0 0

0 1 0

0 0 1

.
For s = −0.8, 2M1 =

∑3
j=1(|a1j |+ |b1j |) = 4.9, 2M2 =

∑3
j=1(|a2j |+ |b2j |)

= 5.3, 2M3 =
∑3

j=1(|a3j |+|b3j |) = 5.12. Moreover, ki = hi = 1 (i = 1, . . . , n).
According to Theorem 4.1, the network (5.1) is globally exponentially stable
in Lagrange sense. Furthermore, we can estimate the size of the global ex-
ponential attractors Ω1, Ω2, Ω3. If we select ε1 = 0.5, ε2 = 1/10, ε3 = 1/20
to satisfy 0 < εi < di, then

Ω1 =

{
x ∈ R3

∣∣∣∣ 1

2

3∑
i=1

x2i ≤
(2.45)2 + (2.65)2 + (2.56)2

0.5
≈ 39.1572

}
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is a GEA set of (5.1). Fig. 1 depicts the state trajectories for delay values
(0.01, 0.02, 0.01) and 12 initial values.
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Fig. 1. State trajectories of solutions of (5.1) for s = −0.8

Similarly, Ω2 = {(x1, x2, x3) | |x1| ≤ 4.9, |x2| ≤ 5.3, |x3| ≤ 5.12} is
also a globally exponentially attractive set of (5.1). Moreover, for s = 0,
Ω3 = {(x1, x2, x3) | |x1| ≤ 4.9, |x2| ≤ 6.9, |x3| ≤ 5.2} is a globally exponen-
tially attractive set of (5.1). In the same manner, we can construct other
globally exponentially attractive sets.

Example 5.2. Consider the above neural network model (5.1) with sig-
moidal and bounded type activation functions. Take

A =

−1 −2 4
2 −2 3
−4 −3 8

 and B =

−4 −2 3
2 −1 8
−3 −8 7


with

f(x) = (|x+ 1| − |x− 1|)/2, g(x) =
ex − e−x

ex + e−x
;

then aij , bij , cij are all constants. Take

P =

0 0 0
0 0 0
0 0 −8

 and Q =

0 0 0
0 0 0
0 0 −7

 ;
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then

Ā =

−1 −2 4
2 −2 3
−4 −3 0

 and B̄ =

−4 −2 3
2 −1 8
−3 −8 0

 ,

Ā+ ĀT ≤ 0 and B̄ + B̄T ≤ 0. By Theorem 3.6, the sets

Ω4 =
{
x ∈ R3

∣∣∣ 3∑
i=1

xi(t)�

0

(fi(y) + gi(y)) dy ≤ 182 + 232
}
,

Ω5 =
{
x ∈ R3

∣∣∣ 3∑
i=1

xi(t)�

0

(fi(y) + gi(y)) dy ≤ 82
}

are globally exponentially attractive for (5.1).

Example 5.3. Consider the two-neuron network model described as:

(5.2)
ẏ1(t) = −0.45y1(t)− 0.0489f(y2(t)) + 0.0752 sin(t)g(y2(t− 0.02)),

ẏ2(t) = −0.45y2(t)− 0.0489f(y1(t)) + 0.0752 sin(t)g(y1(t− 0.01)).

We consider different bounded type activation functions in this case. Take
f(y) = sin(y) and g(y) = (|y + 1| − |y − 1|)/2, ε1 = 0.2, ε2 = 0.3. Then
hi = gi = 1.
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Fig. 2. State trajectories of solutions of system (5.2)
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Clearly, the network (5.2) is globally exponentially stable in Lagrange
sense, and from Theorem 3.1 we have the following GEA sets:

Ω1 =

{
x ∈ R2

∣∣∣∣ x21(t) + x22(t)

2
≤ 0.78361

}
,

Ω2 = {x ∈ R2 | |x1(t)| ≤ 1.2538, |x2(t)| ≤ 1.2538},
Ω3 = {x ∈ R2 | |x1(t)|+ |x2(t)| ≤ 2.5076}.

A simulation result for the network (5.2) with 15 initial values is depicted
in Fig. 2.

6. Conclusion. In this work, we have studied the global exponen-
tial stability in Lagrange sense for periodic neural networks with general
bounded and sigmoidal activation functions and multiple time-varying de-
lays, relying on Lyapunov stability theory. Via analyzing different activation
functions and constructing different Lyapunov functionals, we have obtained
several globally exponentially attractive sets. Moreover, we have verified that
there is no periodic state, almost periodic state or chaos attractor outside
the globally exponentially attractive set. Since we have not made any as-
sumption on the number of equilibria, the results obtained can be applied
to analyzing monostable, multistable as well as more extensive neural net-
works. From the comparison between different attractive sets Ωi, we find a
better method to reduce the constraints on the criteria, which narrows the
search domains of optimization and associative memories and also provides
theoretical guidelines for applications. The results are applicable to mono-
stable and multistable neural networks as well as chaos control and chaos
synchronization and can be extended to more complex systems.
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