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Summary. We study the intermediate quantum groups HN ⊂ G ⊂ U+
N . The basic ex-

amples are HN ,KN , ON , UN , H+
N ,K+

N , O+
N , U+

N , which form a cube. Any other example G
sits inside the cube, and by using standard operations, namely intersection ∩ and gener-
ation 〈 , 〉, can be projected on the faces and edges. We prove that under the strongest
possible axioms, namely (1) easiness, (2) uniformity, and (3) geometric coherence of the
various projection operations, the eight basic solutions are the only ones.

Introduction. The unitary group UN has a free analogue U+
N , con-

structed by Wang [27], and the study of the closed quantum subgroups
G ⊂ U+

N is a problem of general interest. These subgroups fit into the
general theory developed by Woronowicz [29], [30], and can be studied by
using representation theory methods. A generalization of Peter–Weyl the-
ory is available for them, an analogue of the Tannakian duality holds as
well, and the Haar functional can be computed via a Weingarten integration
formula.

From the Tannakian perspective, the closed subgroups G ⊂ U+
N con-

taining the usual symmetric group, SN ⊂ G, are the “simplest”. Indeed, at
the level of the associated Tannakian categories we have a reverse inclusion,
CG ⊂ CSN

, and when coupling this with the well-known fact that CSN
is

a very elementary object, namely the span of the category of set-theoretic
partitions P , we are led in this way to pure combinatorics.

Thus, at the core of the classification work for compact quantum groups
lies the question of classifying the intermediate subgroups SN ⊂ G ⊂ U+

N .

2010 Mathematics Subject Classification: Primary 46L65; Secondary 22E46.
Key words and phrases: quantum isometry, quantum reflection.
Received 28 January 2019.
Published online 12 April 2019.

DOI: 10.4064/ba190128-8-3 [83] c© Instytut Matematyczny PAN, 2019



84 T. Banica

The work so far has focused on the “easy” case, where the Tannakian category
of G appears in the simplest possible way, namely CG = span(D), for a
certain subcategory D ⊂ P . See [11].

From the point of view of the Drinfeld–Jimbo twisting [18], [21], the easy
quantum group theory is a q = 1 theory. Twisting it at q ∈ T is not possible
in general, because Woronowicz’s formalism, based on C∗-algebras, requires
q ∈ R. Thus, the reasonable problem is that of twisting the theory over
T ∩ R = {±1}, and so at q = −1.

In Tannakian terms, the q = −1 twisting requires introducing a signature
function in the implementation of the partitions π ∈ P as linear maps. Such
a signature function exists indeed, but is defined only on the subcategory
Peven ⊂ P of partitions having even blocks. Now since span(Peven) = CHN

,
with HN being the hyperoctahedral group, the conclusion is that the q = −1
twisting procedure requires HN ⊂ G.

Summarizing, when taking into account both the easiness philosophy
and the Drinfeld–Jimbo twisting philosophy, we are led to the assumption
HN ⊂ G ⊂ U+

N . See [2].
There are many examples of intermediate quantum groups HN ⊂G⊂U+

N .
Among them, there are eight basic solutions, which form a cube:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

Here on the bottom face we have the orthogonal and unitary groups ON
and UN , and the hyperoctahedral group HN = SN o Z2 and its complex
version KN = SN o T. As for the quantum groups on the top face, these are
liberations, from [5], [7], [27].

Quite remarkably, the above cube is an “intersection and generation”
diagram. In order to explain this property, consider any of the six faces of
the cube, say

Q // S

P //

OO

R

OO
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Given any such square diagram, we can use the intersection operation ∩ and
the generation operation 〈 , 〉, and impose the following conditions:

P = Q ∩R, 〈Q,R〉 = S.

Now back to our cube, one can prove that this is indeed an intersection
and generation diagram, as a consequence of various results in [5], [7], [11].

With this observation in hand, let us go back to the HN ⊂ G ⊂ U+
N

problem. Any solution G sits inside the cube, and by using the operations
∩ and 〈 , 〉, we can “project” this quantum group on various faces and edges
of the cube. Under suitable assumptions, we end up with a “slicing” of the
cube into eight small cubes.

To be more precise, we can first associate to G six quantum groups:

Gclass = G ∩ UN , Gfree = 〈G,H+
N 〉,

Gdisc = G ∩K+
N , Gcont = 〈G,ON 〉,

Greal = G ∩O+
N , Gunit = 〈G,KN 〉.

We then have inclusions between G and these quantum groups:

Gfree

Gunit

Gdisc
// G //

OO

77
Gcont

Greal

88

Gclass

OO

This diagram can be fit inside the original cube in the obvious way.
Moreover, under suitable compatibility assumptions between the above op-
erations, we can project on the edges as well, and we end up with a slicing
of the original cube into eight small cubes.

Since we have a diagram formed by square subdiagrams, we can formu-
late:

Definition. We say that an intermediate subgroup HN ⊂ G ⊂ U+
N has

the slicing property if the cube slicing that it produces is an intersection and
generation diagram.

In order to complete our study, we will need one more concept. We recall
that a family G = (GN ) of quantum groups with GN ⊂ U+

N is called uniform
when the following conditions are satisfied, with respect to the standard
embeddings U+

N−1 ⊂ U
+
N :

GN−1 = GN ∩ U+
N−1.
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This is something natural, algebrically speaking. At a more advanced
level, this condition appeared in [11] in connection with the Bercovici–Pata
bijection [13], and also in [1], [10] in connection with various noncommutative
geometry questions.

With these preliminaries in hand, we can now formulate:

Theorem. Assume that HN ⊂ G ⊂ U+
N has the following properties:

• Easiness.
• Uniformity.
• Slicing property.

Then G must be one of the basic eight quantum groups.

This will be our main result. Of course, it is quite philosophical. We will
explain as well how to “build” on this result, by removing or modifying some
of the axioms.

The paper is organized as follows: in §1 we recall the construction of the
main cube, in §2 we explain in detail the above slicing procedure, in §3 we
prove the above theorem, and in §4 we briefly discuss further classification
results along these lines.

1. The cube. We use Woronowicz’s quantum group formalism from
[29], [30], under the extra assumption S2 = id. To be more precise, the
definition that we will need is:

Definition 1.1. Assume that (A, u) is a pair consisting of a unital C∗-
algebra A and a unitary matrix u ∈ MN (A) whose coefficients generate A
such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

define morphisms of C∗-algebras ∆ : A→ A⊗A, ε : A→ C, S : A→ Aopp.
We then write A = C(G), and call G a compact matrix quantum group.

The basic examples are the compact Lie groups G ⊂ UN . Indeed, given
such a group we can set A = C(G), and let uij : G → C be the standard
coordinates, uij(g) = gij . The axioms are then satisfied, with ∆, ε, S being
the functional-analytic transposes of the multiplication m : G×G→ G, unit
map u : {·} → G, and inverse map i : G→ G.

Another class of examples is provided by the abstract duals G = Γ̂ of
the finitely generated discrete groups Γ = 〈g1, . . . , gN 〉. Indeed, we can set
A = C∗(Γ ), and let u = diag(g1, . . . , gN ) be the diagonal matrix formed by
the generators. Once again the axioms are satisfied, and when Γ is abelian
we have an identification A = C(G).
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We are particularly interested here in the orthogonal group ON , the uni-
tary group UN , the hyperoctahedral group HN = SN o Z2, and its complex
version KN = SN o T. These groups have free analogues, constructed in [5],
[7], [27]:

Proposition 1.2. We have the following compact quantum groups, whose
associated algebras are constructed by starting with an abstract N×N matrix
u = (uij):

• U+
N , obtained by imposing the conditions u∗ = u−1, ut = ū−1,

• O+
N ⊂ U

+
N , obtained by further imposing the conditions u = ū,

• K+
N ⊂ U

+
N , obtained via the conditions u∗ijuij = uiju

∗
ij = pij = magic,

• H+
N , obtained by imposing the conditions for both O+

N and K+
N ,

with the “magic” condition stating that the pij are projections with
∑

i pij =∑
j pij = 1.

Proof. All this is standard, the idea in each case being that if u = (uij)
satisfies the conditions, then so do the matrices u∆ = (

∑
k uik ⊗ ukj), uε =

(δij), uS = (u∗ji). Thus we can construct ∆, ε, S as in Definition 1.1, by using
the universal property of C(G).

There are many things known about the above four quantum groups,
in analogy with the known results about their classical counterparts. In the
continuous case the passage ON → UN is best understood as a complexifi-
cation at the Lie algebra level, and the free analogue of this fact states that
O+
N → U+

N is a “free complexification”, in a certain algebraic-geometry sense.
In the discrete case, the key identifications HN = SN o Z2 and KN = SN o T
have free counterparts H+

N = S+
N o∗ Z2 and K+

N = S+
N o∗ T, with S+

N being
Wang’s quantum permutation group [28], and with o∗ being Bichon’s free
wreath product operation [14]. For more on these topics, we refer to [5], [7].

In order to study these four quantum groups, and other quantum groups
of the same type, we will need Woronowicz’s Tannakian duality result from
[30], in its “soft” form, worked out by Malacarne [22]. The precise statement
that we need is as follows:

Proposition 1.3. The closed subgroups G ⊂ U+
N are in correspondence

with their Tannakian categories C(k, l) = Hom(u⊗k, u⊗l), the correspondence
being given by

C(G) = C(U+
N )/〈T ∈ Hom(u⊗k, u⊗l) | k, l, T ∈ C(k, l)〉

where all the exponents are by definition colored integers, with the corre-
sponding tensor powers being defined by u⊗∅ = 1, u⊗◦ = u, u⊗• = ū and
multiplicativity.

Proof. As already mentioned, this result is taken from [22]. The idea is
that we have a surjective arrow from left to right, and the injectivity can
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be checked by doing some algebra, and then by applying the bicommutant
theorem as a main tool. See [22].

As a last ingredient, we will need the definition and basic properties of
the ∩ and 〈 , 〉 operations for the closed subgroups of U+

N . We can proceed
as follows:

Proposition 1.4. The closed subgroups of U+
N are subject to ∩ and 〈 , 〉

operations, constructed via the above Tannakian correspondence G 7→ CG,
as follows:

(1) Intersection: defined via CG∩H = 〈CG, CH〉.
(2) Generation: defined via C〈G,H〉 = CG ∩ CH .
In the classical case, where G,H ⊂ UN , we obtain in this way the usual
notions.

Proof. Since the ∩ and 〈 , 〉 operations are clearly well-defined for the
Tannakian categories, the operations in (1, 2) make sense indeed. As for the
last assertion, it is something well-known, which follows from the definitions
via an elementary computation.

The above statement is of course quite compact. It is possible to develop
some more theory, with universality diagrams, other abstract aspects, and
more examples as well. We refer to [15], where these operations are heavily
used.

With these ingredients in hand, we can now go back to the basic four
groups and four quantum groups, and formulate a key result about them:

Theorem 1.5. The basic quantum unitary and quantum reflection groups,
with the inclusions between them, form a cubic diagram:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

Moreover, this is an intersection/generation diagram, in the sense that for
any of its square subdiagrams P ⊂ Q,R ⊂ S we have P = Q ∩ R and
〈Q,R〉 = S.

Proof. The first assertion is clear from the definitions. In order to prove
the second assertion, we must compute the Tannakian categories of our eight
quantum groups.
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For this purpose, we use the easy quantum group philosophy. Let us recall
from [11] that associated to any partition π ∈ P (k, l) between an upper row
of k points and a lower row of l points is the following linear map between
tensor powers of CN :

Tπ(ei1 ⊗ · · · ⊗ eik) =
∑
j1,...,jl

δπ

(
i1 . . . ik

j1 . . . jl

)
ej1 ⊗ · · · ⊗ ejl .

Here δπ ∈ {0, 1} is a Kronecker type symbol, whose value depends on whether
the indices fit or not, when put in the obvious way on the legs of the partition.
See [11].

With this construction in hand, the result regarding our eight quantum
groups, which is well-known from Brauer’s paper [16] and from a number of
extensions, including [5], [7], [11], is that we obtain categories of the following
type:

C(k, l) = span(Tπ | π ∈ D).

To be more precise, let Peven be the set of partitions whose blocks all
have even size, let P2 ⊂ Peven be the set of pairings, let Peven ⊂ Peven be the
set of partitions which are “matching” in the sense that #◦ = #• in each
block, when counting the upper legs with the − sign and the lower legs with
the + sign, and finally let NCeven ⊂ Peven be the set of partitions which are
noncrossing. We have so far four sets of partitions, and by further intersecting
these sets we obtain four more sets, denoted P2, NC2,NCeven,NC2.

Observe that these 4+4 sets of partitions are “categories of partitions” in
the sense of [11]: they are stable under vertical and horizontal concatenation
of partitions, and under upside-down turning.

With these conventions, the above-mentioned result states that the quan-
tum groups in the statement come from the following categories of partitions:

NCeven

zz

��

NC2

~~

oo

��

NCeven

��

NC2

��

oo

Peven

zz

P2

~~

oo

Peven P2
oo

Now observe that this diagram of categories of partitions is an intersec-
tion and generation diagram, as is elementary to check.

Getting back to quantum groups, via the Tannakian duality operation,
D → GD, it follows from Proposition 1.4 that we have the formulae

GD∩E = 〈GD, GE〉, G〈D,E〉 = GD ∩GE .
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Thus, our intersection and generation diagram of categories of partitions gets
transformed into an intersection and generation diagram of quantum groups,
as stated.

We will heavily use the above result, as well as the various technical
ingredients developed in its proof. In addition to what has been said, let
us mention that the quantum groups whose Tannakian categories are of the
form C = span(D), as in the above proof, are called “easy”. For more on
easiness, we refer to [11], [17].

2. Cube slicing. We are interested in the classification of the interme-
diate subgroups HN ⊂ G ⊂ U+

N . Such a quantum group can be imagined
as sitting inside the cube, and the point is that by using the operations ∩
and 〈 , 〉, we can “project” it on the faces and edges.

In order to clarify this construction, let us start with the following defi-
nition:

Definition 2.1. Associated to any quantum group HN ⊂ G ⊂ U+
N are:

• its classical version, Gclass = G ∩ UN ;
• its free version, Gfree = 〈G,H+

N 〉;
• its discrete version, Gdisc = G ∩K+

N ;
• its continuous version, Gcont = 〈G,ON 〉;
• its real version, Greal = G ∩O+

N ;
• its unitary version, Gunit = 〈G,KN 〉.

Here we have chosen the word “unitary” instead of “complex” in order for
the corresponding abbreviation “unit” not to be confused with “cont”.

In connection with our cube, we can now formulate:

Proposition 2.2. Given an intermediate quantum group HN ⊂G⊂U+
N ,

we have a diagram of closed subgroups of U+
N , obtained by inserting

Gfree

Gunit

Gdisc
// G //

OO

88
Gcont

Greal

88

Gclass

OO
//

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

in the obvious way, with each Gx belonging to the main diagonal of each face.
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Proof. The fact that we have indeed the diagram of inclusions on the left
is clear from Definition 2.1 above. Regarding now the insertion procedure,
consider any of the faces of the cube, P ⊂ Q, R ⊂ S. Our claim is that
the corresponding quantum group Gx can be inserted on the corresponding
main diagonal P ⊂ S:

Q // S

G

??

P //

OO

>>

R

OO

Thus, in order to finish, we have to check a total of 6×2 = 12 inclusions.
But, according to Definition 2.1 above, the inclusions to be checked are:

(1) HN ⊂ Gclass ⊂ UN , where Gclass = G ∩ UN ;
(2) H+

N ⊂ Gfree ⊂ U+
N , where Gfree = 〈G,H+

N 〉;
(3) HN ⊂ Gdisc ⊂ K+

N , where Gdisc = G ∩K+
N ;

(4) ON ⊂ Gcont ⊂ U+
N , where Gcont = 〈G,ON 〉;

(5) HN ⊂ Greal ⊂ O+
N , where Greal = G ∩O+

N ;
(6) KN ⊂ Gunit ⊂ U+

N , where Gunit = 〈G,KN 〉.
Since all these statements are trivial from the definition of ∩ and 〈 , 〉, and
from our assumption HN ⊂ G ⊂ U+

N , our insertion procedure works indeed,
and we are done.

In order now to complete the diagram, we also have to project G on the
edges of the cube. For this purpose, we can assume that G lies on one of the
six faces.

The general result that we will need is as follows:

Proposition 2.3. Given an intersection/generation diagram P ⊂ Q,
R ⊂ S and an intermediate quantum group P ⊂ G ⊂ S, we have the following
diagram:

Q // 〈G,Q〉 // S

G ∩Q

OO

// G //

OO

〈G,R〉

OO

P //

OO

G ∩R

OO

// R

OO

In addition, G slices the square, in the sense that this is an intersection and
generation diagram precisely when G = 〈G ∩ Q,G ∩ R〉 and G = 〈G,Q〉 ∩
〈G,R〉.
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Proof. This is indeed clear from the definitions, because the intersection
and generation diagram conditions are automatic for the upper left and lower
right squares, as also are half of the generation diagram conditions for the
lower left and upper right squares.

Let us also record the Tannakian version of this construction:

Proposition 2.4. Given an intersection/generation diagram P ⊂ Q,
R ⊂ S and an intermediate quantum group P ⊂ G ⊂ S, we have the following
diagram:

CQ

��

CG ∩ CQoo

��

CSoo

��
〈CG, CQ〉

��

CGoo

��

CG ∩ CR

��

oo

CP 〈CG, CR〉oo CRoo

Also, CG slices the square, in the sense that this is an intersection and
generation diagram precisely when CP = 〈CG, CQ〉 ∩ 〈CG, CR〉 and CS =
〈CG ∩ CQ, CG ∩ CR〉.

Proof. This is indeed clear from the definitions, by proceeding as in the
proof of Proposition 2.3. Observe that this is the diagram of Tannakian
categories for the quantum groups in Proposition 2.3, due to the conversion
formulae from Proposition 1.4.

Now back to the cube, given an intermediate subgroup HN ⊂ G ⊂ U+
N

we can perform the construction in Proposition 2.3 for each of the six faces
of the cube. The problem, however, is that we will not obtain a diagram
of inclusions in this way, because for each of the 12 edges of the cube, the
corresponding “midpoint” will be defined twice.

As a first observation, six of these midpoints are actually well-defined,
and there is no problem with them, because we have some compatibility
formulae:

Proposition 2.5. We have the following results:

(1) (Gclass)disc = (Gdisc)class = G ∩KN .
(2) (Gclass)real = (Greal)class = G ∩ON .
(3) (Gdisc)real = (Greal)disc = G ∩H+

N .
(4) (Gfree)cont = (Gcont)free = 〈G,O+

N 〉.
(5) (Gfree)unit = (Gunit)free = 〈G,K+

N 〉.
(6) (Gcont)unit = (Gunit)cont = 〈G,UN 〉.
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Proof. The formulae (1, 2, 3) are all of the following type:
(G ∩Q) ∩R = (G ∩R) ∩Q = G ∩ P.

As for (4, 5, 6), these are all of the following type:
〈〈G,Q〉, R〉 = 〈〈G,R〉, Q〉 = 〈G,S〉.

Thus the value of G is in fact irrelevant, and the results simply follow from
the fact that the cube is an intersection and generation diagram.

Regarding now the remaining six edges, the compatibility conditions here
for the midpoints are not automatic, and we have to introduce the following
notion:

Definition 2.6. We say that G pre-slices the cube if it satisfies the
following conditions:
• (Gclass)cont = (Gcont)class.
• (Gclass)unit = (Gunit)class.
• (Gdisc)free = (Gfree)disc.
• (Gdisc)unit = (Gunit)disc.
• (Greal)free = (Gfree)real.
• (Greal)cont = (Gcont)real.

In other words, we are asking here for each intersection operation in
Definition 2.1 to commute with the generation operations, except for the
“opposite” operation.

We can now formulate our first slicing result:
Proposition 2.7. Assuming that G pre-slices the cube in the above

sense, the diagram in Proposition 2.2 can be completed, via the construc-
tion in Proposition 2.3, to a diagram fully slicing the cube along the three
coordinate axes, into eight small cubes.

Proof. As already mentioned, checking that the conclusion holds is a
matter of checking that the 12 projections on the edges are well-defined.
And the situation is as follows:

(1) Regarding the three edges emanating from HN , and the three edges
landing in U+

N , the result follows from the formulae in Proposition 2.5.
(2) For the remaining six edges, not emanating from HN or landing in

U+
N , the result follows from the formulae in Definition 2.6.
We are not done with the slicing work yet, because nothing guarantees

that our slicing is “neat”, in the sense that we obtain an intersection and
generation diagram. In order to have this property, we have to introduce one
more definition:

Definition 2.8. We say that G slices the cube when
• G pre-slices the cube in the sense of Definition 2.6,
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• Gclass, G,Gfree slice the classical/intermediate/free faces,
• Gdisc, G,Gcont slice the discrete/intermediate/continuous faces,
• Greal, G,Gunit slice the real/intermediate/unitary faces,

where by “intermediate” we mean in each case “parallel to its neighbors”.

In short, we are asking here for a total of 6 × 4 = 24 conditions to be
satisfied, namely the six slicing conditions from Definition 2.6, and then the
6 × 3 = 18 conditions coming from the two conditions in Proposition 2.3,
applied to the 3× 3 faces of the slicing.

We can now finish the slicing procedure:

Theorem 2.9. Assuming that G slices the cube in the above sense, we
have a diagram fully slicing the cube into eight small cubes, which is an
intersection diagram, in the sense that each of its 36 small square faces is
an intersection and generation diagram.

Proof. Here the first assertion follows from Proposition 2.7, and the sec-
ond from Proposition 2.3, via our assumptions from Definition 2.8.

Summarizing, we know now how to slice the cube, with the remark that
the 36 × 2 = 72 intersection and generation properties that are a priori
needed, for the various small faces, collapse in fact to the 6×4 = 24 conditions
from Definition 2.8.

Of course, this 72 → 24 simplification is trivial, simply coming from
the fact that the cube is an intersection and generation diagram, and not
involving G itself. It is probably possible to do slightly better here by careful
inspection.

However, when going on this way, at some point there will certainly be
a need for a deep result. So, the problem of fully simplifying our axioms is
open, and interesting.

3. Classification. All the above is quite natural, and looking for quan-
tum groups having the slicing property is an interesting question. However,
our purpose here is a bit different: we are interested in formulating a foun-
dational result, rather than something technical.

In order to do so, we introduce one more concept:

Definition 3.1. A family of compact quantum groups G = (GN ), with
GN ⊂ U+

N for any N ∈ N, is called uniform when

GN−1 = GN ∩ U+
N−1

with respect to the standard embeddings U+
N−1⊂U

+
N , given by u=diag(1, v).

This condition is very natural, algebrically speaking, because we are here
in an injective/projective limit situation for the associated compact and dis-
crete quantum groups. At a more advanced level, this condition appeared
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in [11], in connection with the Bercovici–Pata bijection [13] for the asymp-
totic laws of truncated characters, and also in [1], [10], in connection with
various noncommutative geometry questions. See [3].

We can now prove the statement announced in the introduction, namely:

Theorem 3.2. Assume that HN ⊂ G ⊂ U+
N has the following properties:

• Easiness.
• Uniformity.
• Slicing property.

Then G must be one of the basic eight quantum groups.

Proof. The idea will be that of “locating” our quantum group inside the
cube, in a 3D sense, by using the slicing property. There are many ways of
doing so, and in view of the known classification results, whose technical
level can vary a lot, the best is by using the results for the classical face from
[26], and the results for the orthogonal edge from [12]. In other words, we
would like to use the “coordinate system” highlighted below:

K+
N

// U+
N

H+
N

//

==

O+
N

==

KN
+3

OO

UN

OO

HN

OO

7?

+3 ON

KS

8@

Let us start with the classical face. Our goal here is to find the possible
values of Gclass, which belong by definition to this face. In order to simplify
the discussion, we will temporarily assume G = Gclass. Thus, we would like
to find the intermediate quantum groups HN ⊂ G ⊂ UN which are easy,
uniform, and which slice the lower face.

According to Proposition 2.3, the slicing diagram for the lower face is

KN
// Gunit

// UN

Gdisc

OO

// G //

OO

Gcont

OO

HN
//

OO

Greal

OO

// ON

OO

With these preliminaries in hand, we can now survey the known results
on the subject. There are several statements here, all based on [26]:
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Classical face, easy case. The full classification of the intermediate easy
quantum groups HN ⊂ G ⊂ UN is available from [26]. There are many
examples here, with the whole subject being quite technical, and we refer to
[26] for the full details.

Classical face, easy uniform case. As explained in [1], in the context of
the noncommutative homogeneous space considerations there, which require
the uniformity axiom, imposing this axiom leads to some simplifications, the
solutions being as follows:

KN
// UN

Hs
N

OO OO

HN
//

OO

ON

OO

Here the extra groups on the left are the complex reflection groups Hs
N =

Zs o SN with s ∈ {2, 4, 6, . . . ,∞} from [5], which at s = 2,∞ cover HN ,KN .
See [1].

Classical face, easy slicing case. As explained in [3], when imposing the
slicing condition on the lower face, which comes from the general noncom-
mutative geometry considerations in [2], [6], some simplifications appear as
well, the solutions being as follows:

KN
// UN

HN,L

OO

// ON,L

OO

HN
//

OO

ON

OO

Here the various extra groups are obtained by “arithmetic complexifica-
tion”, according to the formula GL = ZLG, with L ∈ {2, 3, . . . ,∞}. See [2],
[3], [6].

Classical face, easy uniform slicing case. In order to obtain the solutions
here, we just have to intersect the above two diagrams, and we obtain

KN
// UN

HN
//

OO

ON

OO

In short, getting back to our original problem, we have reached the con-
clusion that Gclass must be one of the four vertices of the lower face of the
cube.
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With this result in hand, we can now go ahead, and finish by using [12].
Indeed, the projection of G on the real continuous edge, ON ⊂ O+

N , must be
an intermediate easy quantum group ON ⊂ G ⊂ O+

N . But, according to [12],
the only nontrivial solution here is the half-classical orthogonal group O∗N ,
coming from the half-commutation relations abc = cba. And since this quan-
tum group is not uniform, simply because abc = cba with c = 1 imply
ab = ba, as explained in [10], we have only ON , O+

N as solutions.
Summarizing, our intermediate quantum group HN ⊂ G ⊂ U+

N must lie
on the upper or the lower face of the cube, and its projection on the lower
face must be one of the four vertices of the lower face. Thus G must be one
of the eight vertices of the cube, as claimed.

4. Conclusion. We have seen that by “piling up” a number of axioms,
which are natural in the noncommutative geometry and free probability con-
text, and which actually came from a substantial amount of work in this
direction, we are left with eight quantum groups.

All this is of course quite philosophical. What we have here is rather
some kind of “ground zero” result, providing a foundational framework for
more specialized classification results, which can be obtained by carefully
modifying or removing the axioms.

Here is a brief discussion, regarding the modification/removal of these
axioms:

Problem 4.1. Modify or remove the slicing axiom.

Generally speaking, totally removing the slicing axiom leads to some
difficult questions, with the problem coming from lack of 3D orientation
inside the cube.

One fruitful direction, however, comes by restricting attention to the six
faces of the cube, and trying to find uniform easy quantum groups which
slice the face.

Skipping the details here, let us mention that the problem is solved in [26]
for the upper and lower faces; it is elementary as well for the front and right
face, using the results from [12], [26], and is still in need of some non-trivial
combinatorial work, based on the results in [23], [24], [25], as regards the left
face and the bottom face.

Problem 4.2. Modify or remove the uniformity axiom.

This is another interesting direction. The general strategy from the proof
of Theorem 3.2 above can be followed, with the only piece of work still needed
being to unify the constructions on HN,L, ON,L with the construction of the
half-liberations.

Problem 4.3. Modify or remove the easiness axiom.
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This is something heavier. In principle the general strategy from the proof
of Theorem 3.2 above can be followed too, the work in the classical case being
probably quite standard, and with conjectural input for the orthogonal edge
coming from [8].

There are also several modifications of the easy quantum group theory
which can be used, the most standard ones, at least for now, coming from
the work in [9], [19], [20].

Problem 4.4. Modify or remove the HN ⊂ G axiom.
Once again, this is heavier. A natural direction, which would however re-

quire rethinking the slicing procedure, is that of using the condition SN ⊂ G.
Note that this would also require dealing with all the “singleton issues” which
might appear.

Along the same lines, using some even weaker conditions, of type AN ⊂G,
makes sense as well, at least theoretically. For some comments here, we refer
to [4].

Problem 4.5. Modify everything.
This is somewhat philosophical. Let us remember that the extra axioms

in Theorem 3.2 were obtained by “putting to work” compact quantum groups,
in connection with various questions in noncommutative geometry and free
probability. There are of course many other potential applications of com-
pact quantum groups, and putting them to work on other topics, with some
axiomatics in mind, could perfectly lead, in the long run, to a different phi-
losophy, different axioms, and a different “ground zero” result.

Having such an alternative work done would be of course immensely
useful.
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