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SOME STABILITY PROBLEM FOR THE NAVIER–STOKES
EQUATIONS IN THE PERIODIC CASE

Abstract. The Navier–Stokes motions in a box with periodic bound-
ary conditions are considered. First the existence of global regular two-
dimensional solutions is proved. Since the external force does not decay in
time, the solution has the same property. The necessary estimates and ex-
istence are proved step by step in time. Dissipation in the Navier–Stokes
equations makes this approach possible. Assuming that the initial veloc-
ity and the external force are sufficiently close to the initial velocity and
the external force of the two-dimensional problems we prove existence of
global three-dimensional regular solutions which remain close to the two-
dimensional solutions for all time.

1. Introduction. The aim of this paper is to prove stability of two-
dimensional periodic solutions in the set of three-dimensional periodic solu-
tions to the Navier–Stokes equation. We consider the three-dimensional fluid
motions in the box Ω = [0, L]3, L > 0, described by

vt + v · ∇v − ν∆v +∇p = f in Ω × R+,

div v = 0 in Ω × R+,(1.1)
v|t=0 = v(0) in Ω,

where v = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity of the fluid, x =
(x1, x2, x3) with xi ∈ (0, L), i = 1, 2, 3, is a given Cartesian system of coordi-
nates, p = p(x, t) ∈ R is the pressure and f = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3

is the external force field. Finally, ν > 0 is the constant viscosity coefficient
and the dot denotes the scalar product in R3.
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Two-dimensional solutions to (1.1) are such that v = vs = (vs1(x1, x2, t),
vs2(x1, x2, t), 0) ∈ R2, p = ps(x1, x2, t) ∈ R, f = fs = (fs1(x1, x2, t),
fs2(x1, x2, t), 0) ∈ R2; they satisfy the problem

vst + vs · ∇vs − ν∆vs +∇ps = fs in Ω × R+,

div vs = 0 in Ω × R+,(1.2)
vs|t=0 = vs(0) in Ω.

We introduce the quantities
(1.3) u = v − vs, q = p− ps,
which are solutions to the problem

ut + u · ∇u− ν∆u+∇q = −vs · ∇u− u · ∇vs + g in Ω × R+,

div u = 0 in Ω × R+,(1.4)
u|t=0 = u(0) in Ω,

with g = f − fs. To show stability of solutions to (1.2) we need to prove
smallness of the quantities (1.3) in some norms for all t ∈ R+. For this pur-
pose we apply the energy method. For this we need the Poincaré inequality.
Since it does not hold for solutions to problems (1.2) or (1.4), we introduce
the quantities

v̄s = vs −
�

Ω

vs dx, p̄s = ps −
�

Ω

ps dx, f̄s = fs −
�
fsdx,

(1.5)
ū = u−

�

Ω

u dx, q̄ = q −
�

Ω

q dx, ḡ = g −
�

Ω

g dx,

where �

Ω

ω dx =
1

|Ω|

�

Ω

ω dx and |Ω| = L3.

Applying the mean operator to (1.2)1 and (1.4)1 and using the periodic
boundary conditions we obtain

d

dt

�

Ω

vs dx =
�

Ω

fs dx,(1.6)

d

dt

�

Ω

u dx =
�

Ω

g dx.(1.7)

In view of (1.6), (1.7), and since any space derivative of the mean vanishes,
we see that for the quantities (1.5) problems (1.2) and (1.4) take the forms

v̄st + vs · ∇v̄s − ν∆v̄s +∇p̄s = f̄s in Ω × R+,

div v̄s = 0 in Ω × R+,(1.8)
v̄s|t=0 = v̄s(0) in Ω,
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and

ūt + u · ∇ū− ν∆ū+∇q̄ = −vs · ∇ū− u · ∇v̄s + ḡ in Ω × R+,

div ū = 0 in Ω × R+,(1.9)
ū|t=0 = ū(0) in Ω.

Now, we formulate the main results of this paper (for notation see Sec-
tion 2). From Lemmas 3.1–3.3 we have

Theorem 1 (two-dimensional solutions). Assume that for all k ∈ N0

and all σ > 3, f̄s ∈ L2(kT, (k + 1)T ;Lσ(Ω)) and v̄s(0) ∈ B1
σ,2(Ω). Then

there exists a solution (v̄s, p̄s) to problem (1.8) such that v̄s ∈W 2,1
σ,2 (Ω× (kT,

(k + 1)T )) and ∇p̄s ∈ L2(kT, (k + 1)T ;Lσ(Ω)) for all k ∈ N0, and we have
the estimates

(1.10) ‖v̄s‖W 2,1
σ,2 (Ω×(0,T ))

≤ c(A2 + ‖f̄s‖L2(0,T ;Lσ(Ω)) + ‖vs(0)‖B1
σ,2(Ω))

and

(1.11) ‖v̄s‖W 2,1
σ,2 (Ω×(kT,(k+1)T ))

≤ c(A+A2+‖f̄s‖L2((k−1)T,(k+1)T ;Lσ(Ω)))

for all k ∈ N0, where

A = A5 :=

(
1 +

cs1
1− exp(−νcs1T )

)
A2

1 + ‖vsx(0)‖2L2
,

A2
1 :=

1

νcs1

∑
k∈N0

(k+1)T�

kT

‖f̄s(t)‖2L2
dt,

and cs1 is the constant from the Poincaré inequality (2.3).

Lemma 4.2 implies

Theorem 2 (stability). Let c1 be the constant from the Poincaré inequal-
ity (2.4), c4 = c4(c1) the constant from the embedding c4‖ū‖H2 ≤ ‖uxx‖L2

(see (4.15) and (4.16)), and c5 the constant from the interpolation ‖ūx‖L3 ≤
c5‖ūxx‖1/2L2

‖ūx‖1/2L2
(after (4.15)). Let the assumptions of Theorem 1 hold.

Suppose γ ∈ (0, γ∗], νc4 − (c5/ν
3)γ2∗ ≥ c∗/2 and c∗ < νc4. Assume that

ḡ ∈ C(R+;L2) and ū(0) ∈ H1. Assume that

(1.12)

‖ū(0)‖2H1 ≤ γ,

G2(t) :=
c5
ν

[
‖v̄sx‖2L3

∣∣∣t�
0

�

Ω

g(x, t′) dx dt′ +
�

Ω

u(0)dx
∣∣∣2 + ‖ḡ‖2L2

]
≤ c∗

γ

4
,
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Let T > 0 be given and k ∈ N0. Assume that

c5
ν

(k+1)T�

kT

‖v̄sx‖2L3
dt ≤ c∗

4
T,

(k+1)T�

kT

G2(t) dt ≤ αγ,

α exp

(
c∗
4
T

)
exp

(
−c∗

4
T

)
≤ 1.

Then

(1.14) ‖ū(t)‖2H1 ≤ γ for t ∈ R+.

Finally, by the regularity theory for the Navier–Stokes equations we have

Theorem 3. Let the assumptions of Theorems 1 and 2 hold. Then there
exists a solution (v, p) to problem (1.1) such that v = vs + u ∈ W 2,1

2 (Ω ×
(kT, (k+1)T )) and ∇p = ∇(ps+q) ∈ L2(kT, (k+1)T ;L2(Ω)) for all k ∈ N0,
where vs, ps, u are determined by Theorems 1 and 2, respectively.

The first results connected with the stability of global regular solutions to
the nonstationary Navier–Stokes equations were proved by Beirão da Veiga
and Secchi [4], followed by Ponce, Racke, Sideris and Titi [17]. Paper [4] is
concerned with the stability in Lp norm of a strong three-dimensional solu-
tion of the Navier–Stokes system with zero external force in the whole space.
In [17], assuming that the external force is zero and a three-dimensional ini-
tial function is close to a two-dimensional one in H1(R3), the authors showed
the existence of a global strong solution in R3 which remains close to a two-
dimensional strong solution for all time. In [16] Mucha obtained a similar
result under weaker assumptions about the smallness of the initial velocity
perturbation.

In the class of weak Leray–Hopf solutions the first stability result was
obtained by Gallagher [8]. She proved the stability of two-dimensional so-
lutions of the Navier–Stokes equations with periodic boundary conditions
under three-dimensional perturbations both in L2 and H1/2 norms.

The stability of nontrivial periodic regular solutions to the Navier–Stokes
equations was studied by Iftimie [10] and by Mucha [14]. The paper [14] is de-
voted to the case when the external force is a potential in Lr,loc(T3× [0,∞))

and the initial data belongs to W 2−2/r
r (T3) ∩ L2(T3), where r ≥ 2 and T is

a torus. Under the assumption that there exists a global solution with data
of regularity mentioned above and that small perturbations of data have the
same regularity as above, the author proves that perturbations of the veloc-
ity and the gradient of the pressure remain small inW 2,1

r (T3×(k, k+1)) and
Lr(T3×(k, k+1)), k ∈ N0, respectively. Paper [10] contains results concerning
stability of two-dimensional regular solutions to the Navier–Stokes system in
a three-dimensional torus but here the initial data in the three-dimensional
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problem belongs to an anisotropic space of functions having different regu-
larity in the first two directions than in the third direction, and the external
force vanishes. Moreover, Mucha [15] studies the stability of regular solutions
to the nonstationary Navier–Stokes system in R3 assuming that they tend
in W 2,1

r (r ≥ 2) to constant flows.
The papers of Auscher, Dubois and Tchamitchian [2] and of Gallagher,

Iftimie and Planchon [9] concern the stability of global regular solutions to
the Navier–Stokes equations in the whole R3 with zero external force. These
authors assume that appropriate norms of the solutions considered decay as
t→∞.

It is worth mentioning the paper of Zhou [22], who proved the asymp-
totic stability of weak solutions u ∈ L2(0,∞,BMO) to the Navier–Stokes
equations in Rn, n ≥ 3, with force vanishing as t→∞.

An interesting result was obtained by Karch and Pilarczyk [11], who
concentrate on the stability of Landau solutions to the Navier–Stokes system
in R3. Assuming that the external force is a singular distribution they prove
the asymptotic stability of the solution under any L2-perturbation.

Paper [7] of Chemin and Gallagher is devoted to the stability of some
unique global solution with large data in a very weak sense.

Finally, the stability of Leray-Hopf weak solutions has recently been ex-
amined by Bardos et al. [3], where equations with vanishing external force are
considered. That paper concerns the following three cases: two-dimensional
flows in infinite cylinders under three-dimensional perturbations which are
periodic in the vertical direction; helical flows in circular cylinders under
general three-dimensional perturbations; and axisymmetric flows under gen-
eral three-dimensional perturbations. The theorem concerning the first case
extends a result obtained by Gallagher [8] for purely periodic boundary con-
ditions.

Most of the papers discussed above concern the case with zero external
force [2, 3, 4, 9, 10, 16, 17], or with force which decays as t→∞ [22]. Excep-
tions are [11, 14, 15], where very special external forces, which are singular
distributions in [11] or potentials in [14, 15], are considered. However, the
case of potential forces is easily reduced to the case of zero external forces.

The aim of our paper is to prove a stability result for a large class of
external forces fs which do not produce solutions decaying as t→∞.

It is essential that our stability results are obtained together with the exis-
tence of a global strong three-dimensional solution close to a two-dimensional
one.

The paper is divided into two main parts. In the first we prove existence
of global strong two-dimensional solutions not vanishing as t → ∞ because
the external force does not vanish either. To prove existence of such solutions
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we use the step by step method. For this purpose we have to show that the
data in the time interval [kT, (k + 1)T ], k ∈ N0, do not increase with k. We
do not need any restrictions on the time step T .

In the second part we prove existence of three-dimensional solutions that
remain close to two-dimensional solutions. For this we need the initial veloc-
ity and the external force to be sufficiently close in apropriate norms to the
initial velocity and the external force of the two-dimensional problems.

The proofs of this paper are based on the energy method, which strongly
simplifies thanks to the periodic boundary conditions. The proofs of global
existence which follow from the step by step technique are possible thanks
to the natural decay property of the Navier–Stokes equations. This is mainly
used in the first part of the paper (Section 3). To prove stability (Section 4)
we use smallness of v(0)−vs(0), f−fs and a contradiction argument applied
to the nonlinear ordinary differential inequality (4.20).

We restrict ourselves to proving estimates only, because existence follows
easily by the Faedo–Galerkin method.

The paper is a substantial generalization of [21] because proofs are sim-
pler, fewer restrictions are imposed on data and there is no relation between
T , ν and fs which in [21] implies some smallness for two-dimensional solu-
tions.

The paper is organized as follows. In Section 2 we introduce notation and
give some auxiliary results. Section 3 is devoted to the existence of a two-
dimensional solution. It also contains some useful estimates of the solution.
In Section 4 we prove the existence of a global strong solution to problem
(1.1) close to the two-dimensional solution for all time.

2. Notation and auxiliary results. We denote by Lp(Ω), p ∈ [1,∞],
the Lebesgue space of integrable functions and by Hs(Ω), s ∈ N0 = N∪{0},
the Sobolev space of functions with finite norm

‖u‖Hs ≡ ‖u‖Hs(Ω) =
∑
|α|≤s

( �
Ω

|Dα
xu|2 dx

)1/2
,

where Dα
x = ∂α1

x1 ∂
α2
x2 ∂

α3
x3 , |α| = α1 + α2 + α3, αi ∈ N0, i = 1, 2, 3.

Lemma 2.1. Assume that
�
Ω fs(t) dx and

�
Ω g(t) dx are locally integrable

on R+, and
�
Ω vs(0) dx and

�
Ω u(0) dx are finite. Then for all t ∈ R+,

�

Ω

vs(t) dx =

t�

0

�

Ω

fs(t
′) dx dt′ +

�

Ω

vs(0) dx,(2.1)

�

Ω

u(t) dx =

t�

0

�

Ω

g(t′) dx dt′ +
�

Ω

u(0) dx.(2.2)
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Proof. Applying the mean operator to (1.2) and (1.4), integrating by
parts and using the periodic boundary conditions, we get (2.1) and (2.2)
after integration with respect to time.

Lemma 2.2. The Poincaré inequality holds:

cs1‖v̄s‖2H1 ≤ ‖∇v̄s‖2L2
,(2.3)

c1‖ū‖2H1 ≤ ‖∇ū‖2L2
,(2.4)

where cs1, c1 are positive constants.

Let us introduce the anisotropic Lebesgue and Sobolev spaces with mixed
norms, Lp1,p2(Ω × (0, T )) and W 2,1

p1,p2(Ω × (0, T )), p1, p2 ∈ (1,∞), with the
following norms:

‖u‖Lp2 (0,T ;Lp1 (Ω)) := ‖u‖Lp1,p2 (Ω×(0,T ))

:=
(T�
0

( �
Ω

|u|p1 dx
)p2/p1

dt
)1/p2

,

‖u‖
W 2,1
p1,p2

(Ω×(0,T )) := ‖D2
xu‖Lp1,p2 (Ω×(0,T )) + ‖∂tu‖Lp1,p2 (Ω×(0,T ))

+ ‖u‖Lp1,p2 (Ω×(0,T )).

We introduce the Besov space Bs
p,q(Ω) (see [1, Ch. 7, Sect. 7.32]) by

Bs
p,q(Ω) := (Lp(Ω),Wm

p (Ω))s/m,q,J ,

where s < m ∈ N and J is the J-method of interpolation (see [1, Ch. 7]). In
[5, Ch. 4, Sect. 18] the Besov spaces are introduced more explicitly.
Let us consider the Stokes system

ωt − ν∆ω +∇q = f in Ω × (0, T ),

divω = 0 in Ω × (0, T ),(2.5)
ω|t=0 = ω(0) in Ω.

Lemma 2.3. Let p1, p2 ∈ (1,∞), f ∈ Lp2(0, T ;Lp1(Ω)) and ω(0) ∈
B

2−2/p2
p1,p2 (Ω). Then there exists a solution (ω, q) to problem (2.5) such that

ω ∈W 2,1
p1,p2(Ω × (0, T )), ∇q ∈ Lp2(0, T ;Lp1(Ω)) and

(2.6) ‖ω‖
W 2,1
p1,p2

(Ω×(0,T )) + ‖∇q‖Lp2 (0,T ;Lp1 (Ω))

≤ c(‖f‖Lp2 (0,T ;Lp1 (Ω)) + ‖ω(0)‖
B

2−2/p2
p1,p2

(Ω)
).

Proof. We use the idea of regularizer from [18, Sect. 3], where all esti-
mates are made in Hölder spaces. Performing the estimates in Sobolev spaces
with mixed norm (see [12, 13, 19, 20]) we get the assertion.
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From [6] we have
Lemma 2.4.

(i) Let p, p0 ∈ (1,∞), s ∈ R+, s > 2/p0, and u ∈W s,s/2
p,p0 (Ω × (0, T )). Then

u(x, t0) = u(x, t)|t=t0 for t0 ∈ [0, T ] belongs to Bs−2/p0
p,p0 (Ω) and

‖u(·, t0)‖Bs−2/p0
p,p0

(Ω)
≤ c‖u‖

W
s,s/2
p,p0

(Ω×(0,T )),

where the constant c does not depend on u.
(ii) For p, p0 ∈ (1,∞), s ∈ R+, s > 2/p0, and a given ũ ∈ Bs−2/p0

p,p0 (Ω), there
exists u ∈W s,s/2

p,p0 (Ω × (0, T )) such that u|t=t0 = ũ for t0 ∈ [0, T ] and

‖u‖
W
s,s/2
p,p0

(Ω×(0,T )) ≤ c‖ũ‖Bs−2/p0
p,p0

(Ω)
,

where the constant c does not depend on u.

3. Two-dimensional solutions. First we have
Lemma 3.1. Let T > 0 be given. Assume that

A2
1 :=

1

νcs1
sup
k∈N0

(k+1)T�

kT

‖f̄s(t)‖2L2
dt <∞,

A2
2 :=

A2
1

1− e−νcs1T
+ ‖v̄s(0)‖2L2

<∞,

where cs1 is introduced in (2.3). Then

(3.1) ‖v̄s(kT )‖2L2
≤ A2

2

and

(3.2) ‖v̄s(t)‖2L2
+ νcs1

t�

kT

‖v̄s(t′)‖2H1 dt
′ ≤ A2

1 +A2
2 =: A2

3

for all t ∈ (kT, (k + 1)T ].

Proof. Multiplying (1.8)1 by v̄s, integrating over Ω, using the periodic
boundary conditions, the Poincaré inequality (2.3) and applying the Young
inequality to the r.h.s. yields

(3.3)
d

dt
‖v̄s‖2L2

+ νcs1‖v̄s‖2H1 ≤
1

νcs1
‖f̄s‖2L2

.

Continuing, we obtain
d

dt
(‖v̄s‖2L2

eνcs1t) ≤ 1

νcs1
‖f̄s‖2L2

eνcs1t.

Integrating with respect to time from kT to t ∈ (kT, (k + 1)T ] implies

‖v̄s(t)‖2L2
≤ 1

νcs1

t�

kT

‖f̄s(t′)‖2L2
dt′ + e−νcs1(t−kT )‖v̄s(kT )‖2L2

.
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Setting t = (k + 1)T we get

‖v̄s((k + 1)T )‖2L2
≤ 1

νcs1

(k+1)T�

kT

‖f̄s(t)‖2L2
dt+ e−νcs1T ‖v̄s(kT )‖2L2

.

By iteration we have

‖v̄s(kT )‖2L2
≤ A2

1

1− e−νcs1T
+ e−νcs1kT ‖vs(0)‖2L2

≤ A2
2.

Hence (3.1) is proved. Integrating (3.3) with respect to time from kT to
t ∈ (kT, (k + 1)T ] and employing (3.1), we obtain (3.2).

Next we obtain an estimate for the second derivatives.

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Let v̄s(0) ∈ H1(Ω).
Then

(3.4) ‖v̄sx(kT )‖2L2
≤ cs1A

2
1

1− e−νcs1T
+ ‖v̄sx(0)‖2L2

=: A2
4

and

(3.5) ‖v̄sx(t)‖2L2
+ νcs1

t�

kT

‖v̄s(t′)‖2H2 dt
′ ≤ A2

1 +A2
4 =: A2

5

for all t ∈ (kT, (k + 1)T ].

Proof. Multiplying (1.8)1 by −∆v̄s, integrating over Ω and using the fact
that v̄s is divergence free yields

(3.6) −
�

Ω

v̄st ·∆v̄s dx+ ν
�

Ω

|∆v̄s|2 =
�

Ω

vs · ∇v̄s ·∆v̄s dx−
�

Ω

f̄s ·∆v̄s dx.

Integrating by parts shows that the first term on the l.h.s. equals
1

2

d

dt

�

Ω

|∇v̄s|2 dx.

To examine the first term on the r.h.s. of (3.6) we use the formula

∆v̄s =

(
−(rot v̄s),x2

(rot v̄s),x1

)
where rot v̄s = v̄s2,x1 − v̄s1,x2 .

Then�

Ω

vs · ∇v̄s ·∆v̄s dx =
�

Ω

(vs · ∇v̄s2 rot v̄s,x1 − vs · ∇v̄s1 rot v̄s,x2) dx =: I.

Integration by parts yields

I = −
�

Ω

(vs · ∇v̄s2,x1 − vs · ∇v̄s1,x2) rot v̄s dx

−
�

Ω

(v̄s,x1 · ∇v̄s2 − v̄s,x2 · ∇v̄s1) rot v̄s dx =: I1 + I2,
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where
I1 := −

�

Ω

vs · ∇ rot v̄s rot v̄s dx = 0

and

I2 := −
�

Ω

(v̄s1,x1 v̄s2,x1 + v̄s2,x1 v̄s2,x2 − v̄s1,x2 v̄s1,x1 − v̄s2,x2 v̄s1,x2) rot v̄s dx

= −
�

Ω

div v̄s |rot v̄s|2 dx = 0.

In view of the above considerations and the Hölder and Young inequalities
applied to the last term on the r.h.s. of (3.6), we obtain from (3.6) the relation

(3.7)
d

dt
‖v̄sx‖2L2

+ ν‖∆v̄s‖2L2
≤ 1

ν
‖f̄s‖2L2

.

Applying the Poincaré inequality (see (2.3)) yields
d

dt
‖v̄sx‖2L2

+ νcs1‖v̄sx‖2L2
≤ 1

ν
‖f̄s‖2L2

Hence
d

dt
(‖v̄sx‖2L2

eνcs1t) ≤ 1

ν
‖f̄s‖2L2

eνcs1t.

Integrating with respect to time from kT to (k + 1)T implies

‖v̄sx((k + 1)T )‖2L2
≤ 1

ν

(k+1)T�

kT

‖f̄s‖2L2
dt+ e−νcs1T ‖vsx(kT )‖2L2

.

Then iteration yields

‖v̄sx(kT )‖2L2
≤ cs1A

2
1

1− e−νcs1T
+ e−νcs1T ‖v̄sx(0)‖2L2

≤ A2
4.

Hence (3.4) is proved. Integrating (3.7) with respect to time from kT to
t ∈ (kT, (k + 1)T ] and using Lemma 2.3 yields (3.5).

To show stability of the two-dimensional solutions we need higher reg-
ularity of these solutions than the one proved in Lemma 3.2: we need vs ∈
C(R+;W 1

σ (Ω)) for all σ > 3. Moreover, we want to show that

(3.8) ‖vs(t)‖W 1
σ (Ω) ≤ c,

where c is a constant independent of time.
Finally, we do not want to apply the energy type method for higher

derivatives (see [21]), because it puts stronger restrictions on the external
force. Instead, we are going to apply the increasing regularity technique. This
is possible because in view of Lemma 3.2 the term v̄s·∇v̄s is in L2(R+;Lσ(Ω))
for all σ ∈ (1,∞). As will be seen in Section 4, we will only need to show
that v̄s ∈ C(R+;W 1

σ (Ω)) for all σ > 3 (see (4.17)).



Some stability problem for the Navier–Stokes equations 165

Lemma 3.3. Let the assumptions of Lemmas 3.1 and 3.2 hold. Assume
that for all k ∈ N0 and σ > 3, vs(0) ∈ B1

σ,2(Ω) and f̄s ∈ L2(kT, (k + 1)T ;

Lσ(Ω)). Then vs ∈ C(R+;W 1
σ (Ω)) for all σ > 3 and (3.8) holds.

Proof. Since vs · ∇v̄s ∈ L2(kT, (k + 1)T ;Lσ(Ω)) for all σ ∈ (1,∞), and
f̄s ∈ L2(kT, (k + 1)T ;Lσ(Ω)) and v̄s(0) ∈ B1

σ,2(Ω), the theory from [12, 13,
18, 19, 20] and Lemma 3.2 imply the existence of solutions to (1.8) such that
vs ∈W 2,1

σ,2 (Ω × R+) and

(3.9) ‖v̄s‖W 2,1
σ,2 (Ω×(0,T ))

≤ c(A2
5 + ‖f̄s‖L2(0,T ;Lσ(Ω)) + ‖vs(0)‖B1

σ,2(Ω)).

However, we do not know how the constant c depends on time. Therefore,
we cannot yet claim that (3.8) holds. We have to prove (3.8) step by step in
time. Let us consider the interval (kT, (k + 1)T ). Let ζ = ζ(t) be a smooth
cut-off function such that ζ(t) = 0 for t ∈ [kT, kT + δ/2] and ζ(t) = 1 for
t ≥ kT + δ, for some δ ∈ (T/2, T ). Introducing the new functions

ṽs = v̄sζ, p̃s = p̄sζ, f̃s = f̄sζ, ζ̇ = ζ,t

we see that (ṽs, p̃s) is a solution to the problem

ṽst − ν∆ṽs +∇p̃s = v̄sζ̇ − vs · ∇ṽs + f̃s in Ω × (kT, (k + 1)T ),

div ṽs = 0 in Ω × (kT, (k + 1)T ),(3.10)
ṽs|t=kT = 0.

In view of Lemma 3.2 and [12, 13, 18, 19, 20] we have the existence of
solutions to (3.10) such that

ṽs ∈W 2,1
σ,2 (kT + δ, (k + 1)T ;Ω), ∇p̃s ∈ Lσ,2(kT + δ, (k + 1)T ;Ω)

and

(3.11) ‖ṽs‖W 2,1
σ,2 (kT+δ,(k+1)T ;Ω)

≤ c
(

1

δ
A5 +A2

5 + ‖f̃s‖L2(kT+δ/2,(k+1)T ;Ω)

)
,

where c may depend on T but it does not depend on k. Hence by imbedding
for σ > 3 estimate (3.11) implies (3.8).

To get (3.8) we only need an estimate for the interval (kT, kT+δ), k ∈ N,
because for k = 0 we have (3.9). From (3.11) with k replaced by k − 1 we
obtain

‖ṽs‖W 2,1
σ,2 ((k−1)T+δ,kT ;Ω)

≤ c
(

1

δ
A5 +A2

5 + ‖f̃s‖L2((k−1)T+δ/2,kT ;Ω)

)
,

so by the trace theorem (see Lemma 2.3) we derive

(3.12) ‖ṽs(kT )‖B1
σ,2(Ω) ≤ c‖v̄s‖W 2,1

σ,2 ((k−1)T+δ,kT ;Ω)
.

Hence, repeating the considerations leading to (3.9) for the time interval
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(kT, kT + δ) we find that ṽs ∈W 2,1
σ,2 (Ω × (kT, kT + δ)) and

(3.13) ‖ṽs‖W 2,1
σ,2 (Ω×(kT,kT+δ))

≤ c(A2
5 + ‖f̄s‖Lσ,2(Ω×(kT,kT+δ)) + ‖v̄s(kT )‖B1

σ,2(Ω)).

Hence (3.8) holds for all t ∈ R+ and Lemma 3.3 is proved.

4. Stability. In this section we examine problem (1.4). First we derive
a global estimate for the L2 norm of u. We show how the restriction from as-
sumption (2) of Lemma 4.1 appears (it is much more restrictive than in [21]).
Fortunately, we do not need Lemma 4.1 to prove stability.

Lemma 4.1. Let the assumptions of Lemmas 3.1 and 3.2 hold.

(1) Set

B2
1 := sup

k∈N0

(k+1)T�

kT

(
νc1
2c3

∣∣∣t�
0

�

Ω

g(t′) dx dt′ +
�

Ω

u(0) dx
∣∣∣2 +

2c3
νc1
‖ḡ(t)‖2L6/5

)
dt,

where c1 comes from the Poincaré inequality (2.4) and c3 from the imbed-
ding (4.3).

(2) Assume
−νc1

2
T +

4c3
νc1

A2
3 ≤ 0.

(3) Set

B2
2 := exp

(
4c3
νc1

A2
3

)
B2

1 .

Then

(4.1)
‖ū(kT )‖2L2

≤ B2
2

1− exp(−νc1T/2)
+ ‖ū(0)‖2L2

=: B2
3 ,

‖ū(t)‖2L2
≤ B2

2 +B2
3 =: B2

4 ,

for t ∈ [kT, (k + 1)T ] and any k ∈ N0.

Proof. Multiplying (1.9)1 by ū and integrating over Ω gives

(4.2)
1

2

d

dt
‖ū‖2L2

+ νc1‖ūx‖2L2
≤
∣∣∣ �
Ω

u · ∇v̄s · ū dx
∣∣∣+
∣∣∣ �
Ω

ḡ · ū dx
∣∣∣

≤
∣∣∣ �
Ω

ū · ∇v̄s · ū dx
∣∣∣+
∣∣∣ �
Ω

udx ·
�

Ω

∇v̄s · ū dx
∣∣∣+
∣∣∣ �
Ω

ḡ · ū dx
∣∣∣.

Employing the estimates∣∣∣ �
Ω

ū · ∇v̄s · ū dx
∣∣∣ ≤ ε1

2
‖ū‖2L6

+
1

2ε1
‖v̄sx‖2L3

‖ū‖2L2
,
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Ω

∇v̄s · ū dx
∣∣∣ =

1

2ε2
‖∇v̄s‖2L2

‖ū‖2L2
+
ε2
2

∣∣∣�u dx∣∣∣2,∣∣∣�
ω

ḡ · ū dx
∣∣∣ ≤ ε3

2
‖ū‖2L6

+
1

2ε3
‖ḡ‖2L6/5

,

for all ε1, ε2, ε3 > 0, together with (2.4) and the imbedding

(4.3) ‖ū‖2L6
≤ c3‖ū‖2H1 ,

and assuming that (εi/2)c3 ≤ νc1/4, i = 1, 3, we obtain from (4.2) the
inequality

1

2

d

dt
‖ū‖2L2

+
νc1
2
‖ū‖2H1 ≤

c3
νc1

(‖v̄sx‖2L3
+ ‖v̄sx‖2L2

)‖ū‖2L2
(4.4)

+
νc1
4c3

∣∣∣�u dx∣∣∣2 +
c3
νc1
‖ḡ‖2L6/5

,

where we have set ε2 := νc1
2c3

. Employing (2.2) in (4.4) yields

(4.5)
d

dt
‖ū‖2L2

+ νc1‖ū‖2H1 ≤
2c3
νc1

(‖v̄sx‖2L3
+ ‖v̄sx‖2L2

)‖ū‖2L2

+
νc1
2c3

∣∣∣t�
0

�

Ω

g(t′) dx dt′ +
�

Ω

u(0) dx

∣∣∣∣∣
2

+
2c3
νc1
‖ḡ‖2L6/5

.

Considering (4.5) for t ∈ (kT, (k + 1)T ) we have

(4.6)
d

dt

[
‖ū(t)‖2L2

exp

(
νc1t−

2c3
νc1

t�

kT

(‖v̄sx(t′)‖2L3
+ ‖v̄sx(t′)‖2L2

) dt′
)]

≤
(
νc1
2c3

∣∣∣t�
0

�

Ω

g(t′) dx dt′ +
�

Ω

u(0) dx

∣∣∣∣∣
2

+
2c3
νc1
‖ḡ(t)‖2L6/5

)

· exp

(
νc1t−

2c3
νc1

t�

kT

(‖v̄sx(t′)‖2L3
+ ‖v̄sx(t′)‖2L2

) dt′
)
.

Integrating (4.6) with respect to time from kT to t ∈ (kT, (k + 1)T ] implies

(4.7) ‖ū(t)‖2L2
≤ exp

[
2c3
νc1

t�

kT

(‖vsx(t′)‖2L3
+ ‖vsx(t′)‖2L2

) dt′
]
·

·
t�

kT

(
νc1
2c3

∣∣∣t′�
0

�

Ω

g(t′′) dx dt′′ +
�

Ω

u(0) dx
∣∣∣2 +

2c3
νc1
‖ḡ(t′)‖2L6/5

)
dt′

+ ‖ū(kT )‖2L2
exp

[
−νc1(t− kT ) +

2c3
νc1

t�

kT

(‖v̄sx(t′)‖2L3
+ ‖v̄sx(t′)‖2L2

) dt′
]
.
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Setting t = (k + 1)T in (4.7) and using (3.2) yields

(4.8) ‖ū((k + 1)T )‖2L2
≤ exp

(
4c3
νc1

A2
3

)

×
(k+1)T�

kT

[
νc1
2c3

∣∣∣t�
0

�

Ω

g(t′) dx dt′ +
�

Ω

u(0) dx
∣∣∣2 +

2c3
c1
‖ḡ(t)‖2L6/5

]
dt

+ ‖ū(kT )‖2L2
exp

(
−νc1T +

4c3
νc1

A2
3

)
.

In view of assumptions (1)–(3) of the lemma we have

(4.9) ‖ū((k + 1)T )‖2L2
≤ B2

2 + exp

(
−νc1

2
T

)
‖ū(kT )‖2L2

.

Iteration implies

(4.10) ‖ū(kT )‖2L2
≤ B2

2

1− exp(−νc1T/2)
+ exp

(
−νc1

2
kT

)
‖ū(0)‖2L2

.

Hence (4.1)1 is proved. Employing the assumptions of the lemma and (4.1)1
in (4.7) gives (4.1)2.

Remark 4.2. Assumption (2) of Lemma 4.1 has the explicit form

(4.11)
2− exp(−νcs1T )

cs1ν(1− exp(−νcs1T ))
sup
k∈N0

(k+1)T�

kT

‖f̄s(t)‖2L2
dt+ ‖v̄sx(0)‖2L2

≤ ν2c21
8c3

T.

Assuming that ‖v̄sx(0)‖L2 is given we see that (4.11) holds for

T >
8c3
ν2c21
‖v̄sx(0)‖2L2

.

For such large T we have a strong restriction on supk∈N0

	(k+1)T
kT ‖f̄s(t)‖2L2

dt.
Physically, this means that the energy introduced to the region under con-
sideration should not be too large compared with the dissipation.

Finally, we show that 3d solutions to (1.1) remain close to 2d solutions to
(1.2) for all time if their initial data and the external forces are sufficiently
close. In this proof we omit the heavy restriction (4.11).

Lemma 4.3. Assume v̄s ∈ C(R+;W 1
3 ), ḡ ∈ C(R+;L2) and ū(0) ∈ H1.

Let γ ∈ (0, γ∗], where νc4− c5
ν3
γ2∗ ≥ c∗

2 , c∗ < νc4 and c4, c5 are introduced in
(4.16). Assume that

(4.12)

‖ū(0)‖2H1 ≤ γ,

G2(t) :=
c5
ν

[
‖v̄sx‖2L3

∣∣∣t�
0

�

Ω

g(x, t′) dx dt′ +
�

Ω

u(0) dx
∣∣∣2 + ‖ḡ‖2L2

]
≤ c∗

γ

4
.
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Let T > 0 be given and k ∈ N0. Assume that

c5
ν

(k+1)T�

kT

‖v̄sx‖2L3
dt ≤ c∗

4
T,

(k+1)T�

kT

G2(t) dt ≤ αγ,

α exp

(
c∗
4
T

)
+ exp

(
−c∗

4
T

)
≤ 1.

Then

(4.13) ‖ū(t)‖2H1 ≤ γ for t ∈ R+.

Proof. Differentiating (1.9)1 with respect to x, multiplying the result
by ūx, integrating over Ω and employing the periodic boundary conditions
yields

1

2

d

dt
‖ūx‖2L2

+ ν‖ūxx‖2L2
≤ ‖ūx‖3L3

+
∣∣∣ �
Ω

v̄sx · ∇ū · ūx dx
∣∣∣(4.14)

+
∣∣∣ �
Ω

u · ∇v̄s · ūxx dx
∣∣∣+
∣∣∣ �
Ω

ḡ · ūxx dx
∣∣∣.

Adding (4.2) and (4.14), and applying the Hölder, Young and Poincaré in-
equalities, we derive

d

dt
‖ū‖2H1 + νc‖ū‖2H2

≤ c
(
‖ūx‖3L3

+
1

ν
‖v̄sx‖2L3

‖ūx‖2L2
+

1

ν
‖u‖2L6

‖v̄sx‖2L3
+

1

ν
‖ḡ‖2L2

)
.

Using ‖u‖2L6
≤ c(‖ū‖2L6

+ |
�
Ω u dx|

2) and ‖ū‖L6 ≤ c‖ū‖H1 ≤ c‖ūx‖L2 , which
holds in view of the Poincaré inequality, we get

(4.15)
d

dt
‖ū‖2H1 + νc‖ū‖2H2

≤ c
[
‖ūx‖3L3

+
1

ν
‖v̄sx‖2L3

(
‖ūx‖2L2

+
∣∣∣ �
Ω

u dx
∣∣∣2)+

1

ν
‖ḡ‖2L2

]
.

In view of (2.2) and the interpolation inequality (see [5, Ch. 3, Sect. 15])

‖ūx‖L3 ≤ c‖ūxx‖
1/2
L2
‖ūx‖1/2L2

(which holds without the lower order term because
	
Ω ūx dx = 0), we obtain

from (4.15) the inequality

(4.16)
d

dt
‖ū‖2H1 + νc4‖ū‖2H2 ≤

c5
ν3
‖ūx‖6L2

+
c5
ν
‖v̄sx‖2L3

‖ūx‖2L2

+
c5
ν
‖v̄sx‖2L3

∣∣∣t�
0

�

Ω

g(x, t′) dx dt′ +
�

Ω

u(0) dx
∣∣∣2 +

c5
ν
‖ḡ‖2L2

.
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To prove the lemma we need to know that the r.h.s. of (4.16) is bounded.
We consider (4.16) in the time interval (kT, (k + 1)T ), k ∈ N0. Assume
that we have proved that u(kT ) ∈ H1(Ω) and ‖u(kT )‖2H1 ≤ γ, where γ is
sufficiently small. Using that ḡ ∈ L2(Ω× (kT, (k+ 1)T )) is sufficiently small
we have existence of solutions to problem (1.9) in W 2,1

2 (Ω × (kT, (k+ 1)T ))
because the other terms on the r.h.s. of (1.9) also belong to L2(Ω × (kT,

(k+1)T )) in view of imbeddings and the assumption that vs ∈W 2,1
2 (Ω×(kT,

(k+1)T )). The last assertion holds in view of the assumptions of Lemma 3.2
and the restriction that vs is a two-dimensional solution to the Navier–Stokes
equations. However, to have the r.h.s. of (4.16) bounded we need that vs ∈
L∞(kT, (k+1)T ;W 1

3+(Ω)), where 3+ > 3 but is close to 3. This follows from
Lemma 3.3, where it is proved that vs ∈ W 2,1

σ,2 (Ω × (kT, (k + 1)T )) for any
σ > 3 if the data are sufficiently smooth.

In view of the above remarks we can introduce the quantities

(4.17)

G2(t) :=
c5
ν

(
‖v̄sx‖2L3

∣∣∣t�
0

�

Ω

g(x, t′) dx dt′ +
�

Ω

u(0) dx
∣∣∣2 +

1‖ḡ‖2L2

)
,

A2(t) :=
c5
ν
‖v̄sx‖2L3

,

X(t) := ‖ū(t)‖H1 , Y (t) = ‖ū(t)‖H2 .

Then (4.16) takes the form

d

dt
X2 + νc4Y

2 ≤ c5
ν3
X4X2 +A2X2 +G2.

Since X ≤ Y we have

(4.18)
d

dt
X2 ≤ −X2

(
νc4 −

c5
ν3
X4

)
+A2X2 +G2.

Let γ ∈ (0, γ∗], where γ∗ is so small that

(4.19) νc4 −
c5
ν3
γ2∗ ≥ c∗/2, c∗ < νc4.

Since the coefficients of (4.18) depend on the two-dimensional solution deter-
mined step by step in time, we consider (4.18) in the interval [kT, (k+ 1)T ],
k ∈ N0, with the assumptions

X2(kT ) ≤ γ, G2(t) ≤ c∗γ/4 for all t ∈ [kT, (k + 1)T ].

Let us introduce the quantity

Z2(t) := exp
(
−

t�

kT

A2(t′) dt′
)
X2(t), t ∈ [kT, (k + 1)T ].
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Then (4.18) takes the form

(4.20)
d

dt
Z2 ≤ −

(
νc4 −

c5
ν3
X4

)
Z2 + Ḡ2,

where Ḡ2 := G2 exp(−
	t
kT A

2(t′) dt′).
Suppose that

t∗ := inf{t ∈ (kT, (k + 1)T ] : X2(t) > γ}

= inf
{
t ∈ (kT, (k + 1)T ] : Z2(t) > γ exp

(
−

t�

kT

A2(t′) dt′
)}

> kT.

By (4.19) for t ∈ (0, t∗] inequality (4.20) takes the form

(4.21)
d

dt
Z2 ≤ −c∗

2
Z2 + Ḡ2(t).

Clearly, we have

(4.22)

Z2(t∗) = γ exp
(
−

t∗�

kT

A2(t′) dt′
)
,

Z2(t) > γ exp
(
−

t∗�

kT

A2(t′) dt′
)

for t > t∗.

Then (4.21) yields

d

dt
Z2

∣∣∣∣
t=t∗

≤ c∗
(
−γ

2
+
γ

4

)
exp
(
−

t∗�

kT

A2(t′) dt′
)
< 0,

contradicting (4.22). Therefore

(4.23) Z2(t) < γ exp
(
−

t∗�

kT

A2(t′) dt′
)

for t > t∗.

The definition of Z2(t) implies

X2(t) ≤ γ exp
( t�
t∗

A2(t′) dt′
)

for t > t∗.

For sufficiently small γ inequality (4.18) takes the form

(4.24)
d

dt
X2 +

c∗
2
X2 ≤ A2X2 +G2.

Integrating (4.24) with respect to time from t = kT to t = (k + 1)T gives
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X2((k + 1)T ) ≤ exp
((k+1)T�

kT

A2(t) dt
) (k+1)T�

kT

G2(t) dt(4.25)

+ exp

(
−c∗

2
T +

(k+1)T�

kT

A2(t) dt

)
X2(kT ).

In view of the assumptions

(4.26)
c∗
4
T ≥

(k+1)T�

kT

A2(t) dt,

(k+1)T�

kT

G2(t) dt ≤ αγ,

where α is so small and T so large that

(4.27) α exp
((k+1)T�

kT

A2(t) dt
)

+ exp

(
−c∗

4
T

)
≤ 1,

we find that X2((k + 1)T ) < γ. Then by induction we obtain the lemma.
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and Imbedding Theorems, Nauka, Moscow, 1975 (in Russian).

[6] Ya. S. Bugrov, Function spaces with mixed norm, Math. USSR-Izv. 5 (1971), 1145–
1167.

[7] J. I. Chemin and I. Gallagher, Wellposedness and stability results for the Navier–
Stokes equations in R3, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 599–624.

[8] I. Gallagher, The tridimensional Navier–Stokes equations with almost bidimensional
data: stability, uniqueness and life span, Int. Mat. Res. Notices 1997, 919–935.

[9] I. Gallagher, D. Iftimie and F. Planchon, Asymptotics and stability for global solutions
to the Navier–Stokes equations, Ann. Inst. Fourier (Grenoble) 53 (2003), 1387–1424.

http://dx.doi.org/10.1016/j.matpur.2004.01.003
http://dx.doi.org/10.1137/120862569
http://dx.doi.org/10.1007/BF00279962
http://dx.doi.org/10.1070/IM1971v005n05ABEH001213
http://dx.doi.org/10.1016/j.anihpc.2007.05.008
http://dx.doi.org/10.5802/aif.1983


Some stability problem for the Navier–Stokes equations 173

[10] D. Iftimie, The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–
Stokes equations, Bull. Soc. Math. France 127 (1999), 473–517.

[11] G. Karch and D. Pilarczyk, Asymptotic stability of Landau solutions to Navier–Stokes
system, Arch. Ration. Mech. Anal. 202 (2011), 115–131.

[12] N. V. Krylov, The heat equation in Lq((0, T );Lp)-spaces with weights, SIAM J. Math.
Anal. 32 (2001), 1117–1141.

[13] N. V. Krylov, The Calderón–Zygmund theorem and its applications to parabolic equa-
tions, Algebra i Analiz 13 (2001), no. 4, 1–25 (in Russian).

[14] P. B. Mucha, Stability of nontrivial solutions of the Navier–Stokes system on the three
dimensional torus, J. Differential Equations 172 (2001), 359–375.

[15] P. B. Mucha, Stability of constant solutions to the Navier–Stokes system in R3, Appl.
Math. (Warsaw) 28 (2001), 301–310.

[16] P. B. Mucha, Stability of 2D incompressible flows in R3, J. Differential Equations 245
(2008), 2355–2367.

[17] G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to
the 3d Navier–Stokes equations, Comm. Math. Phys. 159 (1994), 329–341.

[18] V. A. Solonnikov, On the solvability of generalized Stokes equations in the spaces of
periodic functions, Ann. Univ. Ferrara Sez. VII 46 (2000), 219–249.

[19] V. A. Solonnikov, Estimates of solutions of the Stokes equations in Sobolev spaces
with a mixed norm, Zap. Nauchn. Sem. POMI 288 (2002), 204–231 (in Russian).

[20] V. A. Solonnikov, Estimates of solutions of the nonstationary Stokes problem in
anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator,
Uspekhi Mat. Nauk 58 (2003), no. 2, 123–156 (in Russian).

[21] E. Zadrzyńska and W. M. Zajączkowski, Stability of two-dimensional Navier–Stokes
motions in the periodic case, J. Math. Anal. Appl. 423 (2015), 956–974.

[22] Y. Zhou, Asymptotic stability for the Navier–Stokes equations in the marginal class,
Proc. Roy. Soc. Edinburgh 136 (2006), 1099–1109.

W. M. Zajączkowski
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-656 Warszawa, Poland
and
Institute of Mathematics and Cryptology
Cybernetics Faculty
Military University of Technology
Kaliskiego 2
00-908 Warszawa, Poland
E-mail: wz@impan.pl

http://dx.doi.org/10.24033/bsmf.2358
http://dx.doi.org/10.1007/s00205-011-0409-z
http://dx.doi.org/10.1137/S0036141000372039
http://dx.doi.org/10.1006/jdeq.2000.3863
http://dx.doi.org/10.4064/am28-3-6
http://dx.doi.org/10.1016/j.jde.2008.07.033
http://dx.doi.org/10.1007/BF02102642
http://dx.doi.org/10.4213/rm613
http://dx.doi.org/10.1016/j.jmaa.2014.10.026
http://dx.doi.org/10.1017/S0308210500004893



	1 Introduction
	2 Notation and auxiliary results
	3 Two-dimensional solutions
	4 Stability
	References

