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Summary. We show a curious property of sequences given by the recurrence a0 = h1(0),
an = f(n)an−1 + h1(n)h2(n)

n, n > 0, where f, h1, h2 ∈ Z[X]. Namely, if the sequence
(akn+l)n∈N is constant for some k ∈ N+ and l ∈ N, then either (a2n+1)n∈N = (0)n∈N
and (a2n)n∈N is a geometric progression, or (an)n∈N is ultimately periodic with period
dividing 2.

1. Introduction. It is obvious that any ultimately periodic sequence
of integers is bounded. On the other hand, in general, boundedness of a
sequence does not imply its ultimate periodicity. Of course, boundedness
forces constancy for polynomial sequences or geometric progressions with
ratio 6∈ {0,−1} (for ratio 0 we can have an ultimately zero sequence with
nonzero initial term, and for ratio −1 we can have a sequence with basic
period 2).

In this paper we will focus on a special class of sequences, denoted by R
and defined as the set of all sequences a = a(f, h1, h2) = (an)n∈N satisfying
a recurrence of the form

a0 = h1(0), an = f(n)an−1 + h1(n)h2(n)n, n > 0,(1.1)

where f, h1, h2 ∈ Z[X] are given. Note that R contains the following well
known sequences:

• if f = h2 = 1, h1 = c ∈ Z, then (an)n∈N = (c(n+ 1))n∈N is an arithmetic
progression;
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• if f = q ∈ Z, h1 = c ∈ Z, h2 = 0, then (an)n∈N = (cqn)n∈N is a geometric
progression;
• if f = 1, h1 = c ∈ Z, h2 = q ∈ Z, then (an)n∈N = (

∑n
j=0 cq

j)n∈N is the
sequence of partial sums of a geometric progression;
• if f = X, h1 = 1, h2 = 0, then (an)n∈N = (n!)n∈N is the sequence of

factorials;
• if f = 2X + l, l ∈ {0, 1}, h1 = 1, h2 = 0, then (an)n∈N = ((2n + l)!!)n∈N

is the sequence of double factorials;
• if f = X, h1 = 1, h2 = −1, then (an)n∈N = (Dn)n∈N is the sequence

of numbers of derangements in Sn, i.e. permutations of an n-element set
without fixed points; its arithmetic properties were the subject of [2].

Arithmetic properties of sequences from the class R were studied in [4].
In Section 5 there, we showed an upper bound an = O(eCn lnn), where
C = max{deg f, deg h2, 1}. On the other hand, taking h1 = a(1− f), h2 = 1
we get a constant sequence a, while the degree of f can be arbitrarily large.

The aim of this paper is to show that if the sequence (akn+l)n∈N is con-
stant for some k ∈ N+ and l ∈ N, then h1 = 0, or h2 ∈ {−1, 0, 1}, or
max{deg f,deg h1, deg h2} ≤ 0 with h2 = −f , and we will give the form
of the corresponding sequence. In particular, such a sequence is ultimately
constant, or ultimately periodic with period 2, or contains a geometric pro-
gression as a subsequence.

The motivation to consider the above property is its application in an
elementary proof of infinitude of the set Pa = {p ∈ P : ∃n∈N an 6= 0 and
p | an}, where a = (an)n∈N is a given sequence of integers (not necessarily
in R). If we assume that a is unbounded with no constant subsequence of
the form (akn+l)n∈N for some k ∈ N+ and l ∈ N, and moreover the sequence
(an (mod d))n∈N is periodic for each d ∈ N+, then the set Pa is infinite.
Indeed, suppose that Pa = {p1, . . . , ps} and take the smallest l ∈ N such
that al 6= 0. Then al = pα1

1 · · · · · pαs
s for some α1, . . . , αs ∈ N. We know

that the sequence (an (mod pα1+2
1 · · · · · pαs+2

s ))n∈N is periodic with some
period k. Thus akn+l ≡ al (mod pα1+2

1 · · · · · pαs+2
s ) for each n ∈ N, which

together with the assumption Pa = {p1, . . . , ps} implies that akn+l = al,
n ∈ N—a contradiction. Notice that if a = (n)n∈N, then the above reasoning
is Euclid’s proof of infinitude of P. Knowing that for each sequence a ∈ R
and positive integer d the sequence (an (mod d))n∈N is ultimately periodic,
we may try to prove infinitude of Pa in a similar way (using some additional
assumptions, if necessary).

2. Boundedness and periodicity of a ∈ R. First, we prove that if
there is a constant subsequence of the form (akn+l)n∈N for some k ∈ N+ and
l ∈ N then h1 = 0, or h2 ∈ {−1, 0, 1}, or f, h1, h2 are constant and h2 = −f .
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Then, assuming that h1 = 0 or h2 ∈ {−1, 0, 1}, we will show that (an)n∈N
is ultimately constant or ultimately periodic with period 2. Next, assuming
the boundedness of (an)n∈N, we will use the periodicity of (an (mod p))n∈N
for a sufficiently large prime number p to deduce the ultimate periodicity of
(an)n∈N.

Theorem 1. Let a = a(f, h1, h2), k ∈ N+ and l ∈ N. If the sequence
(akn+l)n∈N is constant then one of the following conditions holds:

• h1 = 0 (and then (an)n∈N is constantly 0),
• h2 ∈ {−1, 0, 1},
• h1 = c ∈ Z and h2 = −f = b ∈ Z (then a2n = b2nc and a2n+1 = 0 for all
n ∈ N).

Proof. Assume that h1 6= 0. If f = 0 then an = h1(n)h2(n)n for all n ∈ N
and thus the assumption can be satisfied only if h2 ∈ {−1, 0, 1}. Hence, we
can assume that f 6= 0.

Assume that deg h2 > 0. Let a be the value attained by (akn+l)n∈N. We
choose a nonnegative integer n so large that h2(kn+ l) 6= 0. Then, applying
the recurrence definition of a, we obtain

a = ak(n+1)+l(2.1)

= akn+l

k∏
i=1

f(kn+ l + i)

+

k∑
j=1

h1(kn+ l + j)h2(kn+ l + j)kn+l+j
k∏

i=j+1

f(kn+ l + i)

= a
k∏
i=1

f(kn+ l + i) + h2(kn+ l)kn+l
k∑
j=1

h1(kn+ l + j)

× h2(kn+ l + j)j
(
h2(kn+ l + j)

h2(kn+ l)

)kn+l k∏
i=j+1

f(kn+ l + i).

Let d = deg h2 > 0 and write h2 =
∑d

i=0wiX
i. Then for each j ∈ N,

h2(kn+ l + j)− h2(kn+ l)

=
d∑
i=0

wi(kn+ l + j)i −
d∑
i=0

wi(kn+ l)i

= wd(kn+ l)d + dwdj(kn+ l)d−1 + wd−1(kn+ l)d−1 +O((kn+ l)d−2)

− wd(kn+ l)d − wd−1(kn+ l)d−1 +O((kn+ l)d−2)

= dwdj(kn+ l)d−1 +O((kn+ l)d−2)



44 P. Miska

as n→ +∞. Since

lim
n→+∞

h2(kn+ l + j)− h2(kn+ l)

h2(kn+ l)
= 0,

lim
n→+∞

(kn+ l)d

h2(kn+ l)
=

1

wd
,

lim
n→+∞

O((kn+ l)d−1)

h2(kn+ l)
= 0,

we have

(2.2) lim
n→+∞

(
h2(kn+ l + j)

h2(kn+ l)

)kn+l
= edj .

Let us define

F (x, k, j) = h2(x)xh1(x+ j)h2(x+ j)j
(
h2(x+ j)

h2(x)

)x k∏
i=j+1

f(x+ i)

for x ∈ N, k ∈ N+ and j ∈ {1, . . . , k}, where we assume that 00 = 1 and∏k
i=k+1 f(x+ i) = 1.
If deg f > deg h2 and j > 1, then we can easily compute the following

limits:

lim
n→+∞

a
∏k
i=1 f(kn+ l+ i)

h2(kn+ l)kn+lh1(kn+ l+ 1)h2(kn+ l+ 1)ed
∏k
i=2 f(kn+ l+ i)

= 0,

lim
n→+∞

F (kn+ l, k, 1)

h2(kn+ l)kn+lh1(kn+ l+ 1)h2(kn+ l+ 1)ed
∏k
i=2 f(kn+ l+ i)

= 1,

lim
n→+∞

F (kn+ l, k, j)

h2(kn+ l)kn+lh1(kn+ l+ 1)h2(kn+ l+ 1)ed
∏k
i=2 f(kn+ l+ i)

= 0.

The first limit is 0 because the numerator grows polynomially while the
denominator grows exponentially. Adding these limits yields

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l+ 1)h2(kn+ l+ 1)ed
∏k
i=2 f(kn+ l+ i)

=

lim
n→+∞

a
∏k
i=1 f(kn+ l+ i) +

∑k
j=1 F (kn+ l, k, j)

h2(kn+ l)kn+lh1(kn+ l+ 1)h2(kn+ l+ 1)ed
∏k
i=2 f(kn+ l+ i)

= 1.

This is in contradiction with the fact that the left-hand limit is clearly zero.
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Similarly, if deg f < deg h2 and 1 ≤ j < k, then

lim
n→+∞

a
∏k
i=1 f(kn+ l + i)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk
= 0,

lim
n→+∞

F (kn+ l, k, k)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk
= 1,

lim
n→+∞

F (kn+ l, k, j)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk
= 0.

We add these limits to obtain

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk

= lim
n→+∞

a
∏k
i=1 f(kn+ l + i) +

∑k
j=1 F (kn+ l, k, j)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk
= 1.

This again contradicts the fact that the left-hand limit is zero.
Consider finally the case when deg f = deg h2. Let f =

∑d
i=0 uiX

i. Then

lim
n→+∞

a
∏k
i=1 f(kn+ l + i)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)k
= 0,

lim
n→+∞

F (kn+ l, k, j)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)k
=

(
ud
wd

)k−j
edj ,

as 1 ≤ j ≤ k. By adding these limits we obtain

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)k

= lim
n→+∞

a
∏k
i=1 f(kn+ l + i) +

∑k
j=1 F (kn+ l, k, j)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)k
=

k∑
j=1

(
ud
wd

)k−j
edj .

However, the left-hand limit is zero, while
∑k

j=1(ud/wd)
k−jedj 6= 0 because

e is a transcendental number (see [1]). This is a contradiction again.
We have proved that if the sequence (akn+l)n∈N is constant and h1 6= 0,

then h2 ∈ Z. When h2 = b the equality (2.1) takes the form

(2.3) a = a

k∏
i=1

f(kn+ l+ i) + bkn+l
k∑
j=1

h1(kn+ l+ j)bj
k∏

i=j+1

f(kn+ l+ i).

Assume that |b| > 1 and define the polynomial

G =
k∑
j=1

h1(kX + l + j)bj
k∏

i=j+1

f(kX + l + i) ∈ Z[X].
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If G 6= 0, then by (2.3) we have

a

bkn+lG(n)
=
a
∏k
i=1 f(kn+ l + i)

bkn+lG(n)
+ 1.

Since

lim
n→+∞

a
∏k
i=1 f(kn+ l + i)

bkn+l
= 0

we deduce that
lim

n→+∞

a

bkn+lG(n)
= 1.

We get a contradiction because this limit is 0.
If G = 0, then h1 = 0 or f ∈ Z. Indeed, if h1 6= 0 and deg f > 0, then

deg
[
h1(kX + l + j)bj

k∏
i=j+1

f(kX + l + i)
]

= (k − j) deg f + deg h1

for j ∈ {1, . . . , k} and as a result degG = k deg f + deg h1 > 0. Assume that
f = c ∈ Z. Then

0 = lim
n→+∞

G(n)

bh1(kn+ l)
= lim

n→+∞

∑k
j=1 h1(kn+ l + j)bj−1ck−j

h1(kn+ l)

=

k∑
j=1

bj−1ck−j =

{
bk−ck
b−c if b 6= c,

kbk−1 if b = c,

which means that either b = c = 0, or c = −b and 2 | k. The case b = c = 0
contradicts the assumption that |b| > 1. If c = −b, then by induction we
obtain

al+n = (−b)nal+
n∑
j=1

(−1)n−jbnh1(l+j) = (−b)nal+(−b)n
n∑
j=1

(−1)jh1(l+j)

for n ∈ N.
Define

H(n) =

2n∑
j=1

(−1)jh1(l + j) =

n∑
j=1

(
h1(l + 2j)− h1(l + 2j − 1)

)
=

n∑
j=1

∆h1(l + 2j − 1), n ∈ N,

where ∆h1 = h1(X+1)−h1(X). The functionH can be seen as a polynomial
in n and its degree is equal to

degH(X) = 1 + deg ∆h1(l + 2X − 1) = 1 + deg ∆h1(X) = deg h1(X).
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Since

a = al = al+kn = (−b)kna+ (−b)knH
(
k

2
n

)
= (−b)kn

(
a+H

(
k

2
n

))
for all n ∈ N and |b| > 1, we deduce that the polynomialH must be constant.
This implies that h1 is constant.

Summing up: we have shown that either h1 = 0, or h2 ∈ {−1, 0, 1}, or
f, h1, h2 are constant and f = −h2.

Theorem 2. Let a = a(f, h1, 1), k ∈ N+ and l ∈ N. If the sequence
(akn+l)n∈N is constant, then (an)n∈N is either ultimately constant or of the
form (c, 0, c, 0, c, 0, . . .) for some integer c.

Proof. For k = 1 the statement is obvious. Hence, assume that k ≥ 2.
Let a be the value attained by (akn+l)n∈N. Then

(2.4) ak(n+1)+l

= akn+l

k∏
i=1

f(kn+ l + i) +
k∑
j=1

h1(kn+ l + j)
k∏

i=j+1

f(kn+ l + i)

= a
k∏
i=1

f(kn+ l + i) +
k∑
j=1

h1(kn+ l + j)
k∏

i=j+1

f(kn+ l + i).

Let

G(X) = a

k∏
i=1

f(kX + l+ i) +

k∑
j=1

h1(kX + l+ j)

k∏
i=j+1

f(kX + l+ i) ∈ Z[X].

From (2.4) we know that G = a. If h1 = 0, then an = 0 for all n ∈ N, so we
can assume that h1 6= 0.

If deg f > 0, then deg
∏k
i=1 f(kX + l + i) = k deg f and

deg h1(kX + l + j)
k∏

i=j+1

f(kX + l + i) = (k − j) deg f + deg h1

for j ∈ {1, . . . , k}. Since degG ≤ 0 we get

deg
k∏
i=1

f(kX + l + i) = deg h1(kX + l + 1)
k∏
i=2

f(kX + l + i),

which implies that deg f = deg h1. Moreover, we have the following chain of
equivalences:
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deg
(
a

k∏
i=1

f(kX + l + i) + h1(kX + l + 1)

k∏
i=2

f(kX + l + i)
)

= deg h1(kX + l + 2)

k∏
i=3

f(kX + l + i)

⇐⇒ deg(af(kX + l + 1) + h1(kX + l + 1))
k∏
i=2

f(kX + l + i)

= deg h1(kX + l + 2)
k∏
i=3

f(kX + l + i)

⇐⇒ deg(af(kX + l + 1) + h1(kX + l + 1)) + (k − 1) deg f

= deg h1 + (k − 2) deg f

⇐⇒ deg(af(kX + l + 1) + h1(kX + l + 1)) = 0.

Hence, af + h1 = b for some integer b. Therefore,

G = (af(kX + l + 1) + h1(kX + l + 1))
k∏
i=2

f(kX + l + i)

+

k∑
j=2

h1(kX + l + j)

k∏
i=j+1

f(kX + l + i)

= b

k∏
i=2

f(kX + l + i) +

k∑
j=2

h1(kX + l + j)

k∏
i=j+1

f(kX + l + i)

=
(
bf(kX + l + 2) + h1(kX + l + 2)

) k∏
i=3

f(kX + l + i)

+

k∑
j=3

h1(kX + l + j)

k∏
i=j+1

f(kX + l + i).

Similarly, from degG ≤ 0 we get the equivalences

deg
(
bf(kX + l + 2) + h1(kX + l + 2)

) k∏
i=3

f(kX + l + i)

= deg h1(kX + l + 3)

k∏
i=4

f(kX + l + i)

⇐⇒ deg
(
bf(kX + l + 2) + h1(kX + l + 2)

)
+ (k − 2) deg f

= deg h1 + (k − 3) deg f

⇐⇒ deg(bf(kX + l + 2) + h1(kX + l + 2)) = 0
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provided that k ≥ 3. If k = 2, then deg(bf(kX+ l+ 2) +h1(kX+ l+ 2) ≤ 0.
Since

deg
(
af(kX+l+2)+h1(kX+l+2)

)
,deg

(
bf(kX+l+2)+h1(kX+l+2)

)
≤ 0,

we also have

deg(a− b)f(kX + l + 2) = deg
[(
af(kX + l + 2) + h1(kX + l + 2)

)
−
(
bf(kX + l + 2) + h1(kX + l + 2)

)]
≤ 0.

From the assumption deg f > 0 we get a = b. From this we obtain the
equality af+h1 = a, which by a simple induction yields an = a for all n ≥ l.

Assume now that f = b for some integer b. Then

(2.5) G = a = abk +
k∑
j=1

bk−jh1(kX + l + j) ∈ Z[X].

If deg h1 = d > 0 and h1 =
∑d

i=0wiX
i, then the coefficient of Xd in G

is 0 (since degG ≤ 0). On the other hand, this coefficient is equal to

kdwd

k∑
j=1

bk−j =

{
kdwd

bk−1
b−1 if b 6= 1,

kd+1wd if b = 1,

which means that 2 | k and b = −1. Write k′ = k/2 and ∆h1 = h1(X + 1)−
h1(X). It is clear that deg ∆h1 = deg h1 − 1. Now (2.5) takes the form

0 =
k′∑
j=1

h1(kn+ l + 2j)− h1(kn+ l + 2j − 1) =
k′∑
j=1

∆h1(kn+ l + 2j − 1).

Let H =
∑k′

j=1 ∆h1(kX + l + 2j − 1) ∈ Z[X]. Then H = 0. However, the
coefficient of Xd−1 in H is equal to k′ times the leading coefficient of ∆h1,
which is clearly a contradiction.

We are left with the case h1 = c ∈ Z \ {0}. By (2.5), we have

0 = a(bk − 1) + c

k∑
j=1

bk−j =

{
a(bk − 1) + c b

k−1
b−1 if b 6= 1,

kc if b = 1.

Since c 6= 0, we have b 6= 1 and
(
a + c

b−1
)
(bk − 1) = 0. Thus, b = −1 and

(an)n∈N = (c, 0, c, 0, c, 0, . . .), or c = a(1 − b) which implies that ba + c = a
and (an)n∈N is ultimately constant.

Example 1. Consider the sequence a(X−3, 28−7X, 1). Then a1 = −35,
a2 = 49 and an = 7 for n ≥ 3. This means that a sequence a satisfying the
assumptions of Theorem 2 can be ultimately constant, but not constant.
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Corollary 1. Let a = a(f, h1,−1). If the sequence (akn+l)n∈N is con-
stant, then there is an integer c such that either an = (−1)nc for almost all
n ∈ N, or a2n = c, a2n+1 = 0 for all n ∈ N.

Proof. Consider the sequence (ãn)n∈N = a(−f, h1, 1). Since ãn=(−1)nan
for n ∈ N, the sequence (ã2kn+l)n∈N is constant, and by Theorem 2 there
is an integer c such that either ãn = c for almost all n ∈ N, or ã2n = c,
ã2n+1 = 0 for all n ∈ N.

Proposition 1. Consider a sequence a(f, h1, 0). Let k ∈ N+ and l ∈ N.
If the sequence (akn+l)n∈N is constant then one of the following conditions
holds:

• an = 0 for almost all n ∈ N,
• an = h1(0) for all n ∈ N,
• an = (−1)nh1(0) for all n ∈ N.

Proof. If an0 = 0 for some n0 ∈ N then (an)n∈N is ultimately constant
and equal to 0, so we may assume that an 6= 0 for any n ∈ N. Write a = akn+l,
n ∈ N. Then

a = ak(n+1)+l = akn+l

k∏
i=1

f(kn+ l + i) = a
k∏
i=1

f(kn+ l + i),

and since a 6= 0, we get
∏k
i=1 f(kn+l+i) = 1 for all n ∈ N. Hence, |f(n)| = 1

for all but finitely many n ∈ N, which implies that f = 1 or f = −1.
Theorem 3. Let (an)n∈N be a bounded sequence given by the relation

a0 = h1(0), an = f(n)an−1 + h1(n)h2(n)n, n > 0. Then one of the following
conditions is true:

• h1 = 0 (and then the sequence (an)n∈N is constantly 0),
• h2 ∈ {−1, 0, 1}.
Moreover,

• if h2 = 1, then there is an integer c such that either an = c for almost all
n ∈ N or a2n = c, a2n+1 = 0 for all n ∈ N,
• if h2 = −1, then there is an integer c such that either an = (−1)nc for

almost all n ∈ N, or a2n = c, a2n+1 = 0 for all n ∈ N,
• if h2 = 0, then either an = 0 for almost all n ∈ N, or an = h1(0) for all
n ∈ N, or an = (−1)nh1(0) for all n ∈ N.

Proof. By Theorems 1 and 2, Corollary 1 and Proposition 1, it suffices
to show that there are k ∈ N+ and l ∈ N such that the sequence (akn+l)n∈N
is constant.

Let p be a prime number greater than maxn∈N an−minn∈N an. Then the
sequence of remainders (an (mod p))n∈N is periodic (see [3, Section 4.1]).
Moreover, the values of this sequence and minn∈N an uniquely determine the
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values of (an)n∈N. Indeed, if an1 ≡ an2 (mod p) then an1 − minn∈N an ≡
an2 −minn∈N an (mod p) and since an1 −minn∈N an, an2 −minn∈N an < p,
we have an1 = an2 . Therefore (an)n∈N is periodic. This implies the existence
of k ∈ N+ and l ∈ N such that the sequence (akn+l)n∈N is constant.

3. Concluding remarks. An analysis of the proofs shows that in fact
the statements of our results are true if we assume there exists an increasing
sequence (nm)m∈N such that lim infm→+∞(nm+1−nm) < +∞ (equivalently,
there exists a positive integer k such that nm+1−nm = k for infinitely many
m ∈ N) and the sequence (anm)m∈N is constant. Moreover, the statement of
Proposition 1 is also true without the assumption lim infm→+∞(nm+1−nm)
< +∞.

On the other hand, we do not know if the statements of Theorems 1
and 2 remain true if the sequence (anm)m∈N is constant and the increasing
sequence (nm)m∈N is arbitrary.

Question 1. Is there an unbounded sequence a ∈ R such that the
sequence (anm)m∈N is constant for some increasing sequence (nm)m∈N and
moreover (a2n+1)n∈N 6= (0)n∈N or (a2n)n∈N is not a geometric progression?

We expect that the answer to the above question is negative.
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