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When a constant subsequence implies ultimate periodicity
by

Piotr MISKA

Presented by Andrzej SCHINZEL

Summary. We show a curious property of sequences given by the recurrence ag = h1(0),
an = f(n)an—1 + h1(n)h2(n)", n > 0, where f,hi,hs € Z[X]. Namely, if the sequence
(akn+i)nen is constant for some k € Ny and I € N, then either (aznt+1)nen = (0)nen
and (a2n)nen is a geometric progression, or (an)nen is ultimately periodic with period
dividing 2.

1. Introduction. It is obvious that any ultimately periodic sequence
of integers is bounded. On the other hand, in general, boundedness of a
sequence does not imply its ultimate periodicity. Of course, boundedness
forces constancy for polynomial sequences or geometric progressions with
ratio ¢ {0, —1} (for ratio 0 we can have an ultimately zero sequence with
nonzero initial term, and for ratio —1 we can have a sequence with basic
period 2).

In this paper we will focus on a special class of sequences, denoted by R
and defined as the set of all sequences a = a(f, hi, h2) = (an)nen satisfying
a recurrence of the form

(1.1) ap = h1(0), an = f(n)an—1+ h1(n)ha(n)", n >0,
where f,h1,he € Z[X] are given. Note that R contains the following well

known sequences:

o if f="hya=1, h) =c€Z, then (an)nen = (c¢(n + 1))nen is an arithmetic
progression;
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o if f=q€Z, hy=c€Z, hy =0, then (ay)neny = (¢¢")nen is a geometric
progression;

o if f=1 hi=c€Z hy=gq€LZ, then (ap)nen = X7 cq’)nen is the
sequence of partial sums of a geometric progression;

o if f =X, h; =1, hg =0, then (ap)nen = (n!)pen is the sequence of
factorials;

o if f=2X+4+1[1¢€ {0, 1}, hi1 =1, hg = 0, then (an)neN = ((QTL + l)”)neN
is the sequence of double factorials;

o if f =X, hy =1, hg = —1, then (an)nen = (Dp)nen is the sequence
of numbers of derangements in S, i.e. permutations of an n-element set
without fixed points; its arithmetic properties were the subject of [2].

Arithmetic properties of sequences from the class R were studied in [4].
In Section 5 there, we showed an upper bound a, = O(e“"""), where
C' = max{deg f,deg ho, 1}. On the other hand, taking h; = a(1— f), ha =1
we get a constant sequence a, while the degree of f can be arbitrarily large.

The aim of this paper is to show that if the sequence (agnt1)nen is con-
stant for some k € Ni and [ € N, then hy = 0, or hg € {—1,0,1}, or
max{deg f,deghi,degha} < 0 with hy = —f, and we will give the form
of the corresponding sequence. In particular, such a sequence is ultimately
constant, or ultimately periodic with period 2, or contains a geometric pro-
gression as a subsequence.

The motivation to consider the above property is its application in an
elementary proof of infinitude of the set P, = {p € P : J,en a, # 0 and
plan}, where a = (an)nen is a given sequence of integers (not necessarily
in R). If we assume that a is unbounded with no constant subsequence of
the form (agp+i)nen for some k € N and [ € N, and moreover the sequence
(an, (mod d))nen is periodic for each d € Ni, then the set P, is infinite.
Indeed, suppose that Py = {p1,...,ps} and take the smallest [ € N such

that a; # 0. Then a; = p{"' - --- - p% for some aq,...,as € N. We know
that the sequence (a, (mod p‘f”” oo p2st2)), oy is periodic with some

period k. Thus agp+; = a; (mod p(f‘1+2 oo p2t2) for each n € N, which
together with the assumption P, = {p1,...,ps} implies that ag,+; = ay,
n € N—a contradiction. Notice that if a = (n),en, then the above reasoning
is Euclid’s proof of infinitude of P. Knowing that for each sequence a € R
and positive integer d the sequence (a, (mod d)),cy is ultimately periodic,
we may try to prove infinitude of P, in a similar way (using some additional
assumptions, if necessary).

2. Boundedness and periodicity of a € R. First, we prove that if
there is a constant subsequence of the form (axy,1;)nen for some k& € N4 and
l € Nthen hy =0, or hg € {—1,0,1}, or f, hy, he are constant and hg = —f.
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Then, assuming that hy = 0 or hy € {—1,0,1}, we will show that (ay)nen
is ultimately constant or ultimately periodic with period 2. Next, assuming
the boundedness of (ay,)nen, we will use the periodicity of (a, (mod p))nen
for a sufficiently large prime number p to deduce the ultimate periodicity of

(an)n€N~

THEOREM 1. Let a = a(f,hi,h2), k € Ny and | € N. If the sequence
(akn+i)nen is constant then one of the following conditions holds:

e hy =0 (and then (an)nen is constantly 0),

e hg € {—1,0, 1},

e hy=c€Z and hg = —f = b € Z (then ag, = b?"¢ and aon+1 = 0 for all
n € N).

Proof. Assume that hy # 0. If f = 0 then a,, = hi1(n)ha(n)" for alln € N
and thus the assumption can be satisfied only if he € {—1,0,1}. Hence, we
can assume that f # 0.

Assume that deg ha > 0. Let a be the value attained by (agnti)nen. We
choose a nonnegative integer n so large that ho(kn + 1) # 0. Then, applying
the recurrence definition of a, we obtain

(21)  a=agmi1)+

k
= Akn+l] H f(kn +1+ Z)
=1
k 4 k
+ 3 ha(kn 41+ j)ho(kn + 1+ )0 T flkn+1+1)
j=1 i=j+1
k k
=a [ f(kn+1+1d)+ ha(kn+ D> " hy(kn+1+ j)
i=1 =1
. n k
i [ ha(kn + 14 5)\ " .
ho(kn + 1+ j)7 [ —————27 kn +1+1).
X ha(kn + +j)< haUen £ 1) H f(kn +1+1)

i=j+1
Let d = deg hy > 0 and write hy = ZLO w; X*. Then for each j € N,

hg(kn + l +]) — hg(kjn + l)
d

d

= Zwl(lm +1+35) — sz(lm + 1)

=0 =0

= wy(kn 4+ )+ dwgj(kn + D +wy_1(kn 4+ D) + O((kn + 1)*2)
—wa(kn +1)% —wg_q1(kn + 1% 4+ O((kn + 1)472)

= dwgj(kn + 1D 4+ O((kn + 1)47?)
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as n — —+o00. Since

lim hg(k‘n +1 +]) - hg(k‘n + l)
n——+o0 ho(kn +1)
(kn 4 1)¢ 1
im —— = —
n—-+o0o hg(k:n + l) wq
O((kn + 1))

=0,

li =0
n—rtoo  ha(kn + 1) ’
we have
- (ha(kn 1+ N\,
2.2 1 —_ =e%.
( ) n—lgil-loo( hg(kn + l) ¢

Let us define
) ha(x +
Flo.h,3) = hafo) (o + ot + ) (P20 220 ) H Fla+i)

forz € N, k € Ny and j € {1,...,k}, where we assume that 0° = 1 and
k .
[[icpy f@+i) =1

If deg f > deghsy and j > 1, then we can easily compute the following

limits:
. allE, f(kn+1+1)

n=+00 hy(kn + 1)+ hy (kn 4 1+ 1) ha(kn + 1+ 1)ed [T5_, f(kn + 1+ i)
lim F(kn+1,k,1)

n=+00 Ry (kn + 1)kt hy (kn 41+ 1) ha(kn + 1+ 1)ed [T, f(kn + 1 + i)
lim F(kn+1,k,7)

oo o (kn + D)+ by (kn + 1+ Dhg(kn+ 1+ Ded [T, f(kn+1+14)

The first limit is 0 because the numerator grows polynomially while the
denominator grows exponentially. Adding these limits yields

a
lim

n=+00 ho(kn + 1)k Ry (kn 41+ 1 ha(kn 414+ 1)ed [T5, f(kn+141)
i aHl L flkn+1+1 )+Zj 1 Fkn+1k,j5)
1m

n=+00 Ry (kn + D)k hy (kn + 1+ 1) ha(kn+1+ 1)ed TT%, f(kn+1+1)

This is in contradiction with the fact that the left-hand limit is clearly zero.
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Similarly, if deg f < deghy and 1 < j < k, then

lim aHl L flkn+1+1) 0
n—+oo ho(kn + )+t hy (kn + 1 + k)ho(kn + 1 + k)kedt

i F(kn+1,k k) _
n—-+oo ho(kn + )kt hy (kn + 1+ k)ho(kn + 1 + k)kedt
lim F(kn+1,k,j)

n—to0 hg(kn + D)FHhy (kn + 1 + k)ho(kn + L+ k)Fed®
We add these limits to obtain
lim a
n—+oo ha(kn + 1)k +hy (kn + 1 + k)ha(kn + | + k)kedk
~ al_[zlf(kn+l+z)+zj1F(k;n+lkj) .
n—+oo ho(kn + 1)+ hy (kn + 1+ k)ho(kn + | + k)kedk

This again contradicts the fact that the left-hand limit is zero.
Consider finally the case when deg f = deg hs. Let f = Z?:o u; X*. Then

lim aHz L flkn+141) _0
n—+oo ho(kn + 1)k thy (kn + 1 + k)ha(kn + 1 + k)k ’

- F(kn +1,k,5) ua\" g
ns oo g (ke + DR+l (ki + 1+ k)ha(km 4 1 4 F)F !

as 1 < j < k. By adding these limits we obtain
lim a

n—-+oo ho(kn + 1)k +hy (kn + 1+ k)ho(kn + 1 + k)F
. a]_[l 1f(/~m—|—l—|—2)+zj L F(kn+1,k,7) _z’“: ua k—jedj
= ntoo ho(kn + DEH Ry (kn + 1+ k)ho(kn + L+ k)F '

However, the left-hand limit is zero, while Z?Zl(ud Jwa)¥Ted #£ 0 because
e is a transcendental number (see [1]). This is a contradiction again.

We have proved that if the sequence (agyt1)nen is constant and hy # 0,
then hg € Z. When hy = b the equality (2.1) takes the form

k k k
(23) a=a[[fEn+i+i)+" " hy(kn+14+ )0 [] flkn+1+1i).
i=1 j=1 i=j+1
Assume that |b| > 1 and define the polynomial

k k
G=> mEX+1+)0 [[ fX +1+1i) € Z[X).
j=1 i=j+1
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If G # 0, then by (2.3) we have

o _olli flhn+141)
bk"HG(n) - b"mHG(n) '
Since
k .
. aHizlf(k:n—l-l—l-z)_

nEr—ir-loo bk”Jrl =0

we deduce that
a

o G ()

We get a contradiction because this limit is 0.

If G =0, then hy =0 or f € Z. Indeed, if h; # 0 and deg f > 0, then

k
deg[hl(kXJrlJrj)bj I1 f(kX+l+i)] = (k — j)deg f + deg b
i=j+1
for j € {1,...,k} and as a result deg G = kdeg f + degh; > 0. Assume that
f=c€Z. Then

hi(kn 41+ j)bi—1ch=
0= lim 76*(11) lim Z] 1 J)

n—-+00 bhl(lm + l) n—+o00 hl(lm + l)
k_ck .
- Z Ylch=i = bb—c ifb# c,
i kb1 if b= c,

which means that either b =c¢ =0, or ¢ = —b and 2| k. The case b=c¢ =0

contradicts the assumption that |b] > 1. If ¢ = —b, then by induction we
obtain
Ain = al—i—z )" I+ 5) = (=b) ar+ (=b)™ > _(=1) ha(I+)
j=1
for n € N.
Define
2n n
H(n) =Y (=1)/ha(l+4) = (ha(l+ 2j) — ha(l + 2§ — 1))
j=1 j=1

n
=> Am(l+2j—1), neN,
j=1
where Ahy = h1(X+1)—h1(X). The function H can be seen as a polynomial
in n and its degree is equal to

deg H(X) =1+degAhi(I +2X — 1) =1+ deg Ah1(X) = deg h1(X).
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Since
0= a; = agpm = (—b)"a + (—b)k”H<I;n> — (—p)k <a + H(§n>>

for allm € Nand |b| > 1, we deduce that the polynomial H must be constant.
This implies that h; is constant.

Summing up: we have shown that either hy = 0, or hy € {—1,0,1}, or
f,h1, ho are constant and f = —ho. =

THEOREM 2. Let a = a(f,h1,1), k € Ny and | € N. If the sequence
(@knt1)nen 18 constant, then (ap)nen is either ultimately constant or of the
form (¢,0,¢,0,¢,0,...) for some integer c.

Proof. For k = 1 the statement is obvious. Hence, assume that k£ > 2.
Let a be the value attained by (agp+i)nen. Then

(2.4)  apgny4

k k k
= @t [ [FRn+14+0)+ D ha(kn+144) [] fOn+1+1)
i=1 Jj=1 i=j+1
k k k
=a[[fEn+1+0)+> halkn+1+5) [ fln+1+9).
=1 j=1 i=j+1
Let
k k k
GX)=a[fX+1+0)+Y mkX+1+5) [[ fkX +1+i) € Z[X].
=1 j=1 i=j+1

From (2.4) we know that G = a. If h; = 0, then a,, = 0 for all n € N, so we
can assume that h; # 0.

If deg f > 0, then deg [TF_, f(kX +1+i) = kdeg f and

k
deghi (kX +1+j) [ f(X +1+i) = (k—j)deg f+degh
i=j+1
for j € {1,...,k}. Since deg G < 0 we get

k k

deg [T £(kX +1+1) = degha (kX + 1+ 1) [ f(RX + 1 +1),
=1 i=2

which implies that deg f = deg hj. Moreover, we have the following chain of
equivalences:
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k k
deg(aHf(kX+l+i)+h1(kX+l+1)Hf(kX—|—l+z'))

i=1 =2
k

=deghy (kX +1+2) [] f(EX +1+1)
1=3
k

= deg(af (kX +1+1) + ha(kX + 1+ 1) [ f(kX +1+1)
=2
k
= deghy (kX +1+2) [ f(kX +1+1)
=3
— deglaf(kX +14+1)+h (kX +141)) + (k—1)deg f
=deghy + (k—2)deg f
<= deglaf(kX +1+1)+h(kX+1+1)) =0.

Hence, af 4+ h1 = b for some integer b. Therefore,
k

G=(af(kX +1+1)+h (kX +1+ 1) [[ (X +1+14)

k k =
+) kX +1+5) [ FEX +1+9)

j=2 i=j+1

k k k

=b[[FEX +1+0)+ ) kX +1+5) [ FEX +1+1)
i=2 j=2 i=j+1
k

= (bf (kX +14+2) +h (kX +1+2)) [[ F(EX +1+14)
=3

k k
+) kX +1+5) [ FEX +1+9).
=3 i=j+1
Similarly, from deg G < 0 we get the equivalences

k
deg(bf (kX +1+2) + h(kX +1+2)) [[ F(X +1+1)
=3

k
= deghy (kX +1+3) [ f(kX +1 +1)
=4

< deg(bf(kX +1+2)+hi(kX +1+2)) + (k—2)deg f
=deghy + (k — 3)deg f
— deg(bf (kX +14+2)+h (kX +1+2))=0
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provided that £ > 3. If k = 2, then deg(bf (kX +1+4+2)+hi (kX +1+2) <0.
Since

deg(af (kX +142)+hi (kX +1+2)),deg(bf (kX +1+2)+h (kX +1+2)) <0,
we also have

deg(a—b)f(kX +1+2) = deg[(af (kX +1+2) + hi(kX + 1+ 2))
— (bf(kX +1+42)+ (kX +1+2)] <0.

From the assumption deg f > 0 we get a = b. From this we obtain the
equality af + h1 = a, which by a simple induction yields a,, = a for all n > I.
Assume now that f = b for some integer b. Then

k
(2.5) G=a=ab"+> V" In(kX +1+j) € Z[X].
j=1

If deghy =d > 0 and hy = Zf‘l:o w; X, then the coefficient of X% in G
is 0 (since deg G < 0). On the other hand, this coefficient is equal to
k k .
, khwgso=L if b#£1
kd bk*j — b—1 ’
de Ky, b =1,
7j=1
which means that 2|k and b = —1. Write ¥’ = k/2 and Ah; = by (X +1) —
hi(X). It is clear that deg Ahy = degh; — 1. Now ([2.5) takes the form
K/ K
0=> M(kn+1+2j)—hi(kn+14+2j—1)=> Ahy(kn+1+2j—1).
j=1 Jj=1

Let H = ¥ Ahy(kX +1+2j — 1) € Z[X]. Then H = 0. However, the
coefficient of X%~! in H is equal to &’ times the leading coefficient of Ahy,
which is clearly a contradiction.

We are left with the case hy = ¢ € Z\ {0}. By (2.5)), we have

k k .
: VP —1)+cb =L ifb£1
0=a(d" —1)+¢) v = al b1 ’
o~ 1) = ke ifh=1.

Since ¢ # 0, we have b # 1 and (a + 7% )(b* — 1) = 0. Thus, b = —1 and

(an)neny = (¢,0,¢,0,¢,0,...), or ¢ = a(l — b) which implies that ba + ¢ = a
and (ap)nen is ultimately constant. m

EXAMPLE 1. Consider the sequence a(X —3,28—7X,1). Then a; = —35,
as = 49 and a, = 7 for n > 3. This means that a sequence a satisfying the
assumptions of Theorem [2| can be ultimately constant, but not constant.
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COROLLARY 1. Let a = a(f,hy,—1). If the sequence (agp+i)nen 1S con-
stant, then there is an integer ¢ such that either a, = (—1)"c for almost all
n €N, orag, =c, agp+1 =0 for alln € N.

Proof. Consider the sequence (ay,)nen = a(—f, h1,1). Since a, =(—1)"a,
for n € N, the sequence (agknt1)nen is constant, and by Theorem [2| there
is an integer ¢ such that either a, = c for almost all n € N, or a9, = c,
62n+1 =0forallneN. u

PROPOSITION 1. Consider a sequence a(f,h1,0). Let k € Ny and | € N.
If the sequence (agp+i)nen 1S constant then one of the following conditions

holds:

e a, =0 for almost all n € N,
e a, = hi(0) for alln € N,
e a, = (—1)"h1(0) for alln € N.

Proof. If an, = 0 for some ng € N then (ay)nen is ultimately constant
and equal to 0, so we may assume that a,, # 0 for any n € N. Write a = agp4y,
n € N. Then

k k
@ = a1yl = Gt | [ FOn+1+0) = a ] flln +1+1),
i=1 i=1
and since a # 0, we get Hle f(kn+1+41i) = 1for alln € N. Hence, |f(n)| =1
for all but finitely many n € N, which implies that f =1or f=—1. =

THEOREM 3. Let (an)nen be a bounded sequence given by the relation
ap = h1(0), an = f(n)an—1 + hi(n)ha(n)”, n > 0. Then one of the following
conditions is true:

e h1 =0 (and then the sequence (ap)neN is constantly 0),
o hy € {—1,0,1}.

Moreover,

e if ho =1, then there is an integer ¢ such that either a,, = c¢ for almost all
n € N or as, = ¢, asms1 =0 for alln € N,

e if hg = —1, then there is an integer ¢ such that either a, = (—1)"c for
almost alln € N, or agp, = ¢, agpy1 =0 for alln € N,

e if ho = 0, then either a, = 0 for almost all n € N, or a, = h1(0) for all
n €N, or a, = (—1)"h1(0) for alln € N.

Proof. By Theorems [I] and [2] Corollary [I] and Proposition [1} it suffices
to show that there are k € N1 and [ € N such that the sequence (agp+1)nen
is constant.

Let p be a prime number greater than max,,cy a, — min,cy a,. Then the
sequence of remainders (a, (mod p)),en is periodic (see [3, Section 4.1]).
Moreover, the values of this sequence and min, ¢y a,, uniquely determine the
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values of (an)nen. Indeed, if a,, = an, (mod p) then a,, — min,eya, =
ap, — Min,ey an (mod p) and since a,, — MinyeN Ay, Gp, — MiNyeyN @y < P,
we have a,, = ap,. Therefore (ay)nen is periodic. This implies the existence
of k € Ny and [ € N such that the sequence (agp1i)nen is constant. =

3. Concluding remarks. An analysis of the proofs shows that in fact
the statements of our results are true if we assume there exists an increasing
sequence (N, )men such that liminf,, oo (Mm41 — nm) < +00 (equivalently,
there exists a positive integer k such that n,, 11 —n., = k for infinitely many
m € N) and the sequence (an,, )men is constant. Moreover, the statement of
Proposition |1]is also true without the assumption liminf,, oo (npm+1 — 1)
< 400.

On the other hand, we do not know if the statements of Theorems
and [2| remain true if the sequence (an,, )men is constant and the increasing
sequence (N, )men is arbitrary.

QUESTION 1. Is there an unbounded sequence a € R such that the
sequence (ap,, )meN is constant for some increasing sequence (ny,)men and
moreover (a2p+1)neN # (0)nen or (a2 )nen is not a geometric progression?

We expect that the answer to the above question is negative.
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