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Summary. In set theory without the Axiom of Choice (AC), we investigate the deductive
strength and mutual relationships of the following statements:

(1) Every infinite set X has an almost disjoint family A of infinite subsets of X with
|A| 6≤ ℵ0.

(2) Every infinite set X has an almost disjoint family A of infinite subsets of X with
|A| > ℵ0.

(3) For every infinite set X, every almost disjoint family in X can be extended to a max-
imal almost disjoint family in X.

(4) For every infinite set X, no infinite maximal almost disjoint family in X has cardi-
nality ℵ0.

(5) For every infinite set A, there is a continuum sized almost disjoint family A ⊆ Aω.
(6) For every free ultrafilter U on ω and every infinite set A, the ultrapower Aω/U has

cardinality at least 2ℵ0 .

1. Introduction. It is part of the folklore that ω (the set of natural num-
bers) has a continuum sized (and thus uncountable) almost disjoint family
(complete definitions will be given in Section 2); no maximal almost disjoint
(MAD) family in ω is countable; and any almost disjoint family in ω can
be extended to a MAD family in ω. The first two of the above results are
provable in ZF, i.e. in Zermelo–Fraenkel set theory without AC, while the
third one follows easily from Zorn’s Lemma (which is equivalent to AC).
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Therefore, an immediate question that arises is whether AC is essential for
the proof of the latter result. It is a notable recent result (solving a long-
standing problem by Mathias [8]) due to Törnquist [11] that in Solovay’s
model (ModelM5(ℵ) in Howard and Rubin [5]) there are no infinite MAD
families in ω (recall also that Solovay’s model is constructed by starting
with a ground model with an inaccessible cardinal), and thus the extension
of almost disjoint families in ω to MAD families cannot be derived from the
ZF axioms alone. Further remarkable progress was made by Horowitz and
Shelah [4] who eliminated the large cardinal assumption from Törnquist’s
result by establishing that ZF + DC + “There are no MAD families in ω” is
equiconsistent with ZFC (where ZFC is ZF + AC and DC is the Principle of
Dependent Choices).

While the above focuses on the definability of MAD families in ω in cer-
tain models of ZF+¬AC, the research in this paper—motivated by the above
three results on ω—centers around the natural, and open so far, questions
which naturally arise on the set-theoretic strength of relative statements
about almost disjoint and MAD families in any infinite set in mild exten-
sions of ZF and ZFA (ZF with the Axiom of Extensionality modified in order
to allow atoms), that is, in ZF + Weak Choice and in ZFA + Weak Choice.

From this perspective, the current project fills an important gap in infor-
mation by providing a plethora of results which shed light on the problem of
the placement of statements such as: “Every infinite set has an uncountable
almost disjoint family”; “Every almost disjoint family in an infinite set X
can be extended to a MAD family in X”; “No infinite MAD family in an
infinite set has cardinality ℵ0”; and “For every every infinite set X, there is
a continuum sized almost disjoint family X ⊆ Xω” in the hierarchy of weak
choice principles, as well as of their mutual relationship.

As is probably expected (and taking into account the results by Törn-
quist, Horowitz and Shelah), none of those statements are provable in ZF.
This is indeed the case and our main purpose is to provide as much informa-
tion as possible about implications/non-implications that hold true between
the above principles and several consequences of AC. Besides the positive
results of this paper which depict the set-theoretic assumptions that are suf-
ficient for the proofs of the statements of discourse, there is a considerable
amount of central results which are ZFA independence results (see Theorems
2(ii, iii); 3(iii, iv, v); 4; 5(iii, iv); 6). The majority of these results can be trans-
ferred to ZF using the transfer theorems of Pincus [9] or the Jech–Sochor
First Embedding Theorem (see [6, Theorem 6.1]). For the independence in
ZFA, we employ renowned Fraenkel–Mostowski (FM) permutation models
and their techniques; two exceptions are the FM models of the proof of The-
orem 5(iii) and of Remark 2, which are introduced in this paper. Whenever
the transfer to ZF is possible, we will mention in the statement of the theo-
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rem that the independence is in ZF and we will provide within the relevant
proof a brief outline of the transfer as well as references to the literature. For
a detailed account of permutation models, the reader is referred to Jech’s
classical book [6, Chapter 4].

For the reader’s convenience, we highlight most of the core results of this
paper in the list below.

(1) “Every infinite set has an uncountable almost disjoint family” is de-
ducible from each of “Every Dedekind-finite set is finite” (DF = F) and the
Axiom of Multiple Choice (MC), but it is not deducible from the Boolean
Prime Ideal Theorem (BPI) or “For every infinite set X, P(X) is Dedekind-
infinite” (Theorems 2, 3).

(2) MC implies “For every infinite set X, every almost disjoint family
in X can be extended to a MAD family in X”, but the implication is not
reversible in ZFA (Theorems 5(i) and 6).

(3) “The power set of a well-ordered set can be well-ordered” does not
imply “For every infinite set X, every almost disjoint family in X can be
extended to a MAD family in X” in ZFA (Theorem 5(iii)).

(4) The Axiom of Countable Multiple Choice (MCℵ0) is equivalent to
“For every infinite set X, no infinite MAD family in X has cardinality ℵ0”
(Theorem 7).

(5) DF = F is equivalent to “For every every infinite set A, there is a con-
tinuum sized almost disjoint family A ⊆ Aω”, which in turn strictly implies
“For every free ultrafilter U on ω and every infinite set A, |Aω/U| ≥ 2ℵ0”
(Theorem 8, Corollary 1, and Theorem 10(iii)).

2. Notation, terminology, and known results. We start with the
definitions of almost disjoint family and maximal almost disjoint family of
infinite subsets of a given infinite set X. Our definition of almost disjoint
family differs from the usual one which states that a family A ⊆ [X]|X| =
{Y ⊆ X : |Y | = |X|} is almost disjoint in X if for any distinct A,B ∈ A,
|A∩B| < |X| (that is, there is a one-to-one mapping from A∩B into X but
no one-to-one mapping from X into A ∩ B); we shall only be interested in
the case where all elements of A are infinite sets and A ∩B is finite for any
distinct A,B ∈ A.

Definition 1. Let X be an infinite set. (That is, X 6= ∅ and for all
n ∈ ω \ {0}, there is no bijection f : n→ X; otherwise X is called finite.)

A family A of infinite subsets of X is called almost disjoint in X if for
all A,B ∈ A with A 6= B, the set A ∩B is finite. An almost disjoint family
A in X is called maximal almost disjoint (MAD) in X if for every almost
disjoint family B in X with A ⊆ B, we have A = B.
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Definition 2. Let A and X be non-empty sets and also let F be a filter
on X. For f, g ∈ AX (the set of all functions from X into A) define

f ∼F g ⇐⇒ {x ∈ X : f(x) = g(x)} ∈ F .

Since X ∈ F and F is closed with respect to finite intersections, it is easy
to see that ∼F is an equivalence relation on AX . Let

[f ] = {g ∈ AX : f ∼F g}

(i.e. [f ] is the equivalence class of f under ∼F ) and let

AX/F = {[f ] : f ∈ AX}.

Definition 3. A set X is called Dedekind-finite if ℵ0 6≤ |X|, i.e. there is
no one-to-one function f : ω → X. Otherwise, X is called Dedekind-infinite.

An infinite set X is called amorphous if X cannot be written as a disjoint
union of two infinite subsets. Clearly, every amorphous set is Dedekind-finite,
but the converse may fail; the set A of the countably many added Cohen
reals in the Basic Cohen Model, is Dedekind-finite but not amorphous—see
[5, ModelM1].

A set X is called uncountable if |X| 6≤ ℵ0 (that is, X is uncountable if
there is no one-to-one function f : X → ω).

Another possible definition of uncountable is the following: A set X is
uncountable if ℵ0 < |X|, i.e. if there is a one-to-one function f : ω → X, but
there is no one-to-one function g : X → ω. It is clear that the latter definition
implies the former (recall here that the Cantor–Bernstein Theorem, that if
|A| ≤ |B| and |B| ≤ |A| then |A| = |B|, is provable in ZF), and that
(∀X)(|X| 6≤ ℵ0 ⇔ ℵ0 < |X|) is equivalent to “Every Dedekind-finite set is
finite”.

In what follows, whenever we use the term ‘uncountable’ we will assume
the meaning of the first definition (i.e. |X| 6≤ ℵ0), and whenever we use the
second definition (i.e. ℵ0 < |X|), we will write ‘uncountable(>ℵ0)’.

Next, we list the choice principles to be used in this paper.

Definition 4.

1. The Axiom of Choice AC (Form 1 in [5]): Every set of non-empty sets
has a choice function.

2. The Axiom of Multiple Choice MC (Form 67 in [5]): For every set X of
non-empty sets there is a function F with domain X such that for all
x ∈ X, f(x) is a non-empty finite subset of x. The function F is called
a multiple choice function of X.

MC is equivalent to AC in ZF, but it is not equivalent to AC in ZFA (see
[5], [6, Theorems 9.1 and 9.2]).
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3. The Axiom of Countable Multiple Choice MCℵ0 (Form 126 in [5]): Ev-
ery denumerable (= countably infinite) family of non-empty sets has a
multiple choice function.

MCℵ0 is equivalent to its partial version PMCℵ0 : Every denumerable
family A of non-empty sets has a partial multiple choice function, that
is, A has an infinite subfamily with a multiple choice function (see [5]).

4. The Axiom of Countable Choice ACℵ0 (Form 8 in [5]): Every denumer-
able family of non-empty sets has a choice function.

ACℵ0 is equivalent to its partial version PACℵ0 (see [5]).

5. ACℵ0
fin (Form 10 in [5]): Every denumerable set of non-empty finite sets

has a choice function.

ACℵ0
fin is equivalent to its partial version PACℵ0

fin (see [5]).

6. PW (Form 91 in [5]): The power set of a well-ordered set can be well-
ordered.

PW is equivalent to AC in ZF, but it is not equivalent to AC in ZFA (see
[5], [6, Theorems 9.1 and 9.2]).

7. The Boolean Prime Ideal Theorem BPI (Form 14 in [5]): Every Boolean
algebra has a prime ideal. Equivalently, every proper filter on a set X
can be extended to an ultrafilter on X (Form [14 A] in [5]).

8. UF(ω) (Form 70 in [5]): There is a free ultrafilter on ω.
9. DF = F (Form 9 in [5]): Every Dedekind-finite set is finite.
10. LDF = F (Form 185 in [5]): Every linearly ordered Dedekind-finite set is

finite.
11. ACℵ0

DLO: Every denumerable family of defined linear orders has a choice
function (i.e. if A = {(Ai,≤i) : i ∈ ω} is a denumerable family of linearly
ordered sets, then there is a choice function of {Ai : i ∈ ω}). (The weak
choice principle ACℵ0

DLO is introduced here.)

The subsequent theorem is part of the folklore.

Theorem 1. The following hold:

(i) (ZF) There is a continuum sized almost disjoint family in ω.
(ii) (ZFC) For every infinite set X, every almost disjoint family in X can

be extended to a MAD family.

Next, we recall a characterization of MC by A. Lévy [7].

Lemma 1 (Lévy’s Lemma). MC if and only if every infinite set can be
written as a well-orderable disjoint union of non-empty finite sets.
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3. Main results. The following theorem provides information on the
deductive strength of the statement “Every infinite set has an uncountable
almost disjoint family”. As will be clarified, this statement cannot be proved
without using some form of choice.

Theorem 2. The following hold:

(i) DF = F implies “Every infinite set has an uncountable almost disjoint
family”, which in turn implies “There are no amorphous sets”. None of
the above implications are reversible in ZF.

(ii) In ZFA, MC implies “Every infinite set has an uncountable almost dis-
joint family”. Hence, the latter statement does not imply ACℵ0

fin (and hence
DF = F) in ZF, and does not imply MC in ZF either.

(iii) BPI does not imply “Every infinite set has an uncountable almost disjoint
family” in ZF.

Proof. (i) Assume that DF = F is true. Let X be an infinite set. By our
assumption, X has a countably infinite subset, say Y = {yn : n ∈ ω}. By
Theorem 1, it follows that Y has an uncountable almost disjoint family.
Hence, so does its superset X.

The second implication of (i) follows immediately from the facts that the
only subsets of an amorphous set are the finite and the co-finite ones and
that any two distinct members A and B of an almost disjoint family have
the property that A \B and B \A are both infinite.

For “There are no amorphous sets” 9 “Every infinite set has an uncount-
able almost disjoint family of infinite subsets” in ZF, see the forthcoming
proof of part (iii) (and note that BPI implies there are no amorphous sets).

For “Every infinite set has an uncountable almost disjoint family of infi-
nite subsets” 9 DF = F in ZF, see the proof of part (ii) below.

(ii) Assume that MC is true. Let X be an infinite set. By (Lévy’s)
Lemma 1, X has a well-ordered partition U = {Xα : α < κ} (κ an infinite
well-ordered cardinal number) into non-empty finite sets. By Theorem 1,
there exists a continuum sized almost disjoint family of V := {Xn : n ∈ ω},
say A. Then Z = {

⋃
A : A ∈ A} is clearly a continuum sized (and thus

uncountable) family of infinite subsets of X which is almost disjoint.
For the last assertion of (ii), we first note that in the Second Fraenkel

Model (Model N2 in [5]), MC is true but there is a countably infinite family
of pairwise disjoint sets of pairs of atoms which has no partial choice function
in N2 (see [5], [6]). Hence, Ψ = “Every infinite set has an uncountable almost
disjoint family of infinite subsets” is true in N2, whereas ACℵ0

fin is false. Fur-
thermore, Ψ is injectively boundable since by part (i) of the current theorem,
it follows that

Ψ ⇐⇒ (∀x)(|x|− ≤ ω → x has an uncountable almost disjoint family)
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(for the terms ‘injectively boundable’ and ‘injective cardinality |x|−’, see [5,
Note 103] or Pincus [9]). Since Φ = Ψ ∧¬ACℵ0

fin is a conjunction of injectively
boundable statements and has a ZFA model, it follows from Theorem 4 of
Pincus [9] that Φ has a ZF model.

The fact that Ψ does not imply MC in ZF follows from (i) and the fact
that DF = F is strictly weaker than AC in ZF.

(iii) We first prove independence in ZFA. Then the result can be trans-
ferred to ZF using Pincus’ transfer theorems. To this end, we will show that
in Mostowski’s Linearly Ordered Model (Model N3 in [5]), which satisfies
BPI (see [5]), there exists an infinite set which has no infinite almost dis-
joint families. Let us recall the description of N3: We start with a model
M of ZFA + AC with a countable set A of atoms using an ordering ≤ of A
chosen so that (A,≤) is order isomorphic to the set Q of rational numbers
with the usual ordering. Let G be the group of all order automorphisms of
(A,≤). For any element x of M , fixG(x) denotes the (pointwise stabilizer)
subgroup {φ ∈ G : (∀t ∈ x)(φ(t) = t)} of G and SymG(x) denotes the
(stabilizer) subgroup {φ ∈ G : φ(x) = x} of G. Let Γ be the finite support
normal filter, i.e. Γ is the filter of subgroups of G generated by the subgroups
{fixG(E) : E ∈ [A]<ω}, where [A]<ω is the set of finite subsets of A. An el-
ement x of M is called symmetric if SymG(x) ∈ Γ ; hence x is symmetric
if there is some finite set E ⊂ A such that fixG(E) ⊆ SymG(x). The set
E is then called a support of x. The element x of M is called hereditarily
symmetric if x and all elements in its transitive closure are symmetric. Then
N3 is the Fraenkel–Mostowski model determined by M , G and Γ , that is,
N3 consists exactly of all the hereditarily symmetric elements of M .

We will prove that A has no infinite almost disjoint family in N3. Assume
the contrary, so let A be an infinite almost disjoint family of infinite subsets
of A. Let E = {e1, . . . , ek} ⊂ A, where e1 < · · · < ek, be a finite support
of A. Consider the following intervals in the ordering ≤ of A: I0 = (−∞, e1),
Ii = (ei, ei+1) where i = 1, . . . , k − 1, Ik = (ek+1,+∞). Since A is infinite
and every member of A is infinite, it follows that there exists an element
B ∈ A such that for some i < k + 1, B ∩ Ii is infinite and Ii \ B is infinite.
It is fairly straightforward now to construct an order automorphism φ of A
such that φ ∈ fixG(E), φ(B) 6= B and φ(B) ∩ B is infinite. Since E is a
support of A, it follows that φ(A) = A and hence φ(B) ∈ A. Since φ(B)∩B
is infinite, we obtain a contradiction to the fact that A is almost disjoint.
Therefore, in N3, there is no infinite almost disjoint family in A, finishing
the proof.

Now, since the statement Ψ = “There exists an infinite set which has no
infinite almost disjoint family” is injectively boundable (for it is boundable),
and Φ = BPI ∧ Ψ is a conjunction of BPI and an injectively boundable
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statement which has a ZFA model, it follows from Theorem 4 of Pincus [9]
that Φ also has a ZF model (see also [5, Note 103, p. 286]). This completes
the proof of (iii) and of the theorem.

From Theorem 2 and its proof, we immediately obtain most of the results
of the following theorem.

Theorem 3. The following hold:

(i) Assume that DF = F is true. Then “Every infinite set has an uncount-
able almost disjoint family” is equivalent to “Every infinite set has an
uncountable(>ℵ0) almost disjoint family”.

(ii) DF = F implies “Every infinite set has an uncountable(>ℵ0) almost dis-
joint family”, which in turn implies “For every infinite set X, P(X) is
Dedekind-infinite”, which implies “There are no amorphous sets”.

(iii) “For every infinite set X, P(X) is Dedekind-infinite” does not imply
“Every infinite set has an uncountable almost disjoint family” in ZF,
and thus it does not imply “Every infinite set has an uncountable(>ℵ0)
almost disjoint family” in ZF either.

(iv) In ZFA, MC implies “Every infinite set has an uncountable(>ℵ0) almost
disjoint family”. Hence, the latter statement does not imply ACℵ0

fin (and
hence DF = F) in ZF, and does not imply MC in ZF either.

(v) BPI does not imply “Every infinite set has an uncountable(>ℵ0) almost
disjoint family” in ZF.

Proof. We shall only discuss the proofs of (i) and (iii) (see the paragraph
prior to the current theorem).

(i) This follows from the fact that under the assumption of DF = F, un-
countable is equivalent to uncountable(>ℵ0).

(iii) We first show independence in ZFA. The permutation model to be
used is the Höft/Howard Model N46 in [5], whose description is as follows:
We begin with a model M of ZFA + AC with a countable set A of atoms
and an ordering ≤ of A such that (A,≤) has the same order type as that of
the rational numbers. We assume that A is the disjoint union of three dense
subsets D1, D2 and D3. We let G be the group of all order automorphisms φ
of (A,≤) such that φ(Di) = Di, i = 1, 2, 3. A subset E of A will be called a
support if it satisfies the following conditions:

1. E ∩D1 is finite.
2. E ∩D2 is well-ordered by ≤.
3. If b : α → E ∩ D2 is an order preserving bijection from an ordinal α

onto E ∩D2 and λ ≤ α is a limit ordinal, then the least upper bound of
{b(γ) : γ < λ} in (A,≤) exists and is in D3.

4. E ∩D3 = ∅.
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Γ is the normal filter of subgroups of G, which is generated by the filter
base {fixG(E) : E ⊂ A is a support}. Then N46 is the Fraenkel–Mostowski
model of ZFA which is determined by M , G and Γ .

In [3, Theorem 3.6], Höft and Howard proved that if X is an infinite set
in N46, then P(X) is Dedekind-infinite.

Now almost identically to the proof that in Mostowski’s Linearly Ordered
Model N3, the set A of atoms has no infinite almost disjoint families, it can
be shown (by taking into account condition 1 satisfied by a support) that in
N46, the subset D1 has no infinite almost disjoint families in N46.

To end the proof, we note that “For every infinite set X, P(X) is Dede-
kind-infinite” is injectively boundable for it is equivalent to

“(∀x)(|x|− ≤ ω → P(x) is Dedekind-infinite)”.

Since Φ = “For every infinite set X, P(X) is Dedekind-infinite” ∧ “There ex-
ists an infinite set which has no infinite almost disjoint family” is a conjunc-
tion of injectively boundable statements, which has a ZFA model, it follows
from Pincus’ transfer theorems that Φ has a ZF model. This completes the
proof of (iii) and of the theorem.

Remark 1. One can think that the statement “Every infinite set has an
uncountable(>ℵ0) almost disjoint family” is related to the principle LDF = F,
i.e. “Every linearly ordered Dedekind-finite set is finite” (note that the latter
follows from each of MC and DF = F). The reason is the following: Assume
that every infinite set has an uncountable(>ℵ0) almost disjoint family, and
also there exists an infinite linearly ordered Dedekind-finite set, say (A,≤).
By our assumption, there is an uncountable(>ℵ0) almost disjoint family F
in A. Let F∗ = {Fn : n ∈ ω} be a denumerable subset of F . There are two
possibilities:

(i) There exists an infinite subset D of F∗ which forms a ∆-system, that
is, there exists a set r such that for any distinct Y,Z ∈ D we have Y ∩Z = r
(r is called the root of the ∆-system D). Note that r is finite since F is
almost disjoint. Then E = {D \ r : D ∈ D} is a disjoint denumerable family
of infinite sets each of which is equipped with the linear order ≤ inherited
by A. Now, if our assumption implies ACℵ0

DLO, then any choice set of E is
a denumerable subset of the linearly ordered set A, contrary to A’s being
Dedekind-finite.

(ii) There does not exist an infinite subset of F∗ which forms a ∆-system.
In this case, we consider the family G = {Fn ∩ Fm : n < m < ω} and for
(n,m) ∈ ω × ω with n < m, we let c(n,m) be the least element of (the finite
set) Fn ∩ Fm. Clearly, C = {c(n,m) : n < m < ω} is a denumerable subset
of A, contrary again to A’s being Dedekind-finite.

However, we note that if ACℵ0
DLO is assumed in order to prove the above

result, then the additional assumption of the statement “Every infinite set has
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an uncountable(>ℵ0) almost disjoint family” is redundant, that is, ACℵ0
DLO

→ LDF = F. Indeed, let (A,≤) be an infinite linearly ordered set, and for
each n ∈ ω, let Sn = {f ∈ An : f is one-to-one}. Since ≤ is a linear
order on A, each Sn has a definable linear ordering, for example take the
lexicographic order on Sn, for all n ∈ ω. Then (by ACℵ0

DLO) any choice function
in S = {Sn : n ∈ ω} easily yields a denumerable subset of A.

In view of the above discussion, it is reasonable to inquire whether “Every
infinite set has an uncountable(>ℵ0) almost disjoint family” implies LDF = F

or whether it implies ACℵ0
DLO in ZF. The answer to the first question eludes us,

but we are able to answer the second one; in particular, we show next that
“Every infinite set has an uncountable(>ℵ0) almost disjoint family” does not
imply ACℵ0

DLO in ZF.

Theorem 4. DF = F does not imply ACℵ0
DLO in ZF. Thus, by Theorem 3,

“Every infinite set has an uncountable(>ℵ0) almost disjoint family” does not
imply ACℵ0

DLO in ZF either.

Proof. We first establish the independence result in ZFA, and the Fraen-
kel–Mostowski model that we will use is N41 of [5]. The description of the
model is as follows: We start with a ground modelM of ZFA + AC with a set
A of atoms which is a denumerable disjoint union A =

⋃
{An : n ∈ ω}, where

each An is denumerable and ordered like the rationals by ≤n. Thus, for each
n ∈ ω, (Bn,≤n) ' (Q,≤). Let G be the group of all permutations of A such
that for each n ∈ ω and for each φ ∈ G, φ�An is an order automorphism of
(An,≤n). Let Γ be the normal filter of subgroups of G which is generated
by the pointwise stabilizers fixG(E), where E is a finite union of An’s. Then
N41 is the permutation model which is determined by M , G and Γ .

Note that for each n ∈ ω, ≤ ∈ N41 since any permutation of A in G
fixes (An and) ≤n. Furthermore, A = {(An,≤n) : n ∈ ω} is a denumerable
family of defined linear orders in N41, and using standard techniques in
permutation models, one may easily verify that A has no multiple choice
function in N41. Thus, ACℵ0

DLO is false in N41.
Now in [5, Note 112], it is shown that DF = F is true in N41. For the

reader’s convenience and to make our paper self-contained, we present an
argument which is fairly similar to the one given in [5], but instead uses the
following result of Truss (see [12, Theorem 3.5], and also Remark 2 below):

Lemma 2. Let A(Q) be the group of all order automorphisms of (Q,≤).
If H is a subgroup of A(Q) of index less than 2ℵ0 , then for some finite A ⊂ Q,
fix(A) = H (i.e. H = {φ ∈ A(Q) : (∀a ∈ A)(φ(a) = a)}). Thus, every proper
subgroup of A(Q) has infinite index in A(Q).

Let X ∈ N41 be an infinite set. If X is well-orderable in N41, then we
have nothing to show. So assume that X is not well-orderable in the model
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and let E =
⋃
{An : n < k + 1} (where k ∈ ω) be a support of X. Then

there exists an element z of X and a permutation φ ∈ fixG(E) such that
φ(z) 6= z. Let Ez be a support of z. Without loss of generality, assume that
Ez = E∪Ak+1 and φ ∈ fixG(A\Ak+1). Note that fixG(A\Ak+1) is isomorphic
to A(Ak+1) (i.e. the group of all order automorphisms of (Ak+1,≤k+1)). We
denote fixG(A \Ak+1) by G.

Let Y = {ψ(z) : ψ ∈ G}. Then Y ⊆ X and Y is well-orderable since
fixG(Ez) ⊂ fixG(Y ). [Let π ∈ fixG(Ez). Then for all ψ ∈ G and all a ∈ Ez we
have πψ(a) = π(ψ(a)) = ψ(a), since ψ(a) ∈ Ez. Since Ez is a support of z,
and πψ, ψ agree on Ez, it follows that π(ψ(z)) = ψ(z); hence π ∈ fixG(y).]

We assert that Y is infinite. By way of contradiction, assume that Y is
finite, say Y = {z, ψ1(z), . . . , ψm(z)} (so that |Y | = m+1). Note that Y has
at least two elements, since both z and φ(z) are elements of y and φ(z) 6= z.
It follows that the group

H = {η ∈ G : η(z) = z}

is a proper subgroup of G. Furthermore, the quotient group G/H is
{H,ψ1H, . . . , ψmH}; hence the index |G : H| is m + 1, and thus is finite.
Since G is isomorphic to A(Ak+1), it follows from Lemma 2 that there is a
finite subset U = {u1, . . . , ur} of Ak+1 such that H = fixG(U). It is now
fairly straightforward to construct a permutation π ∈ G such that for all
i < m + 1, π−1ψi does not fix U pointwise (ψ0 is the identity mapping);
hence π−1ψi 6∈ H for all i < m + 1. It follows that |G : H| > m + 1, which
is a contradiction. Thus, Y is infinite, and hence X is Dedekind-infinite as
required. Therefore, DF = F is true in N41, and hence (by Theorem 3) so is
“Every infinite set has an uncountable(>ℵ0) almost disjoint family”.

Now since DF = F is injectively boundable (see [5, Note 103]) and
¬ACℵ0

DLO is boundable, and hence injectively boundable, and Φ = DF = F ∧
¬ACℵ0

DLO has a ZFA model, it follows from Pincus’ transfer Theorem 4 in [9]
that Φ has a ZF model in which “Every infinite set has an uncountable(>ℵ0)
almost disjoint family” is true. This completes the proof of the theorem.

Remark 2. In [5, Note 112], it is shown that every element ψ ∈ A(Q)
has an nth root for all n ∈ ω \ {0}, that is, there is an element ψ′ ∈ A(Q)
such that (ψ′)n = ψ (see [5, p. 294]). Using the above fact and essentially
the same ideas as in the proof of the Lemma in [5, pp. 294–295] stating that
DF = F is true in N41, one easily obtains the key point for the proof, namely
that every proper subgroup of A(Q) has infinite index in A(Q).

A variant of the model N41 which could also be used in order to establish
Theorem 4 is as follows: The set A of atoms is a denumerable disjoint union
A =

⋃
{An : n ∈ ω}, where each An is ordered like the reals by ≤n. The

group G and the normal filter Γ of supports are defined as in the construction
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of N41. In the resulting model, say N , ACℵ0
DLO is false, whereas DF = F is

true. The proof of the latter fact is almost identical to the corresponding
one for N41; this time, one uses the result that the only subgroup of A(R)
(the group of order automorphisms of R with the usual ordering ≤) having
index < 2ℵ0 is A(R) itself ; thus, no proper subgroup of A(R) can have index
< 2ℵ0 (see Truss [12] and Droste and Truss [2]).

Theorem 5. The following hold:

(i) In ZFA, MC implies “For every infinite set X, every almost disjoint
family in X can be extended to a MAD family in X”. Hence, the latter
statement does not imply ACℵ0

fin in ZFA.
(ii) In ZF, PW implies “For every infinite set X, every almost disjoint family

in X can be extended to a MAD family in X”.
(iii) PW does not imply “For every infinite set X, every almost disjoint fam-

ily in X can be extended to a MAD family in X” in ZFA.
(iv) “For every infinite set X, every almost disjoint family in X can be

extended to a MAD family in X” is not provable in ZF.

Proof. (i) Assume that MC is true. Let X be an infinite set and also let A
be an infinite almost disjoint family of infinite subsets of X. Assume that A
is not a MAD family. Let f be a multiple choice function of P(P(X)) \ {∅}.

By transfinite recursion we define a MAD family of X which contains A.
Let

R0 = {Z ⊆ X : Z is infinite and |Z ∩A| < ω for all A ∈ A}.
Since A is not maximal, it follows that R0 6= ∅. Let

R0 =
⋃
f(R0).

By the definition of R0, we see that R0 is infinite, and we assert that R0∩A
is finite for all A ∈ A. If not, then for some A ∈ A, R0 ∩A is infinite. Now,
R0 ∩ A =

⋃
{Z ∩ A : Z ∈ f(R0)} and since R0 ∩ A is infinite and f(R0) is

finite, it follows that for some Z ∈ f(R0), Z ∩ A is infinite. Furthermore,
since f(R0) ⊆ R0, we have Z ∈ R0, and hence Z ∩ A is finite, which is a
contradiction. Let

A0 = A ∪ {R0}.
Then A0 is almost disjoint. Now, assume that for some ordinal number α we
have constructed an ⊆-increasing sequence (Aβ)β<α (where A0 = A∪{R0})
of almost disjoint families of infinite subsets of X. Let Bα =

⋃
{Aβ : β < α}.

Clearly, Bα is an almost disjoint family of infinite subsets of X which con-
tains A. If Bα is maximal, then we are done. Otherwise, we may work as in
the first step of the recursion, letting first

Rα = {Z ⊆ X : Z is infinite and |Z ∩B| < ω for all B ∈ Bα}
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(which is non-empty), and then letting

Aα = Bα ∪ {Rα},
where Rα =

⋃
f(Rα). Since the class of all ordinal numbers is a proper one,

it follows that the recursion must terminate at some ordinal stage, say γ. By
the above construction, this means that we have obtained a maximal almost
disjoint family Aγ of infinite subsets of X which contains A.

The second assertion of (i) follows from the first one and the fact that in
the Second Fraenkel Model, MC is true whereas ACℵ0

fin is false. This completes
the proof of (i).

(ii) Assume that PW is true. Let X be an infinite set and let A be an
almost disjoint family in X. Since in ZF, PW is equivalent to AC, we know
that X is well-orderable, and hence by PW, P(P(X)) is also well-orderable.
Using the latter fact and following the proof of (i), we conclude that A can
be extended to a MAD family in X. This completes the proof of (ii).

(iii) For the required independence result, we introduce an FM model,
whose description is as follows: We start with a ground model M of ZFA
+ AC with a set A of atoms which is a denumerable disjoint union A =⋃
{An : n ∈ ω}, where |An| = ℵ0 for each n ∈ ω. Let G be the group of all

permutations φ of A such that φ(An) = An for each n ∈ ω. Let F be the
normal filter on G which is generated by the pointwise stabilizers fixG(E),
where E ⊂ A and |E ∩ An| < ℵ0 for all n ∈ ω. Let N be the permutation
model which is determined by M , G and F .

Note that PW is true in every FM model (see [5]), and hence PW is
true in N . Now, let A = {An : n ∈ ω}. Then A is denumerable in N since
any permutation of A in G fixes An for all n ∈ ω, and any partial multiple
choice function of A in the ground model M is an element of N (since if
f is a partial multiple choice function of A in M , then ran(f) is a support
of f). Furthermore, A is not a MAD family in A, since if C is a choice set
of A, then C ∈ N , C 6∈ A and A ∪ {C} ∈ N is an almost disjoint family
in A. However, A cannot be extended to a MAD family in the model N .
Indeed, by way of contradiction assume that in N , A can be extended to
a MAD family in A, say D. Then A ( D. Furthermore, D \ A consists of
partial multiple choice sets of A (i.e. multiple choice sets of infinite subsets
of A). Let E ⊂ A be a support of D. Note that E cannot be finite. Indeed,
otherwise, let D be any element of D \ A and also let n ∈ ω be such that
E ∩An = ∅ and D ∩An 6= ∅. Let a ∈ D ∩An and also let b ∈ An \D (recall
that An ∩D is finite). We consider the transposition η = (a, b), i.e. η swaps
a and b and fixes all other atoms. Then η ∈ fixG(E), and hence η(D) = D.
It follows that η(D) ∈ D. However, η(D) 6= D (since b = η(a) ∈ η(D) \D)
and η(D)∩D is infinite, contrary to D’s being almost disjoint. Therefore, E
is infinite as required.
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Using a similar argument to the one of the previous paragraph (and based
on the fact that D is almost disjoint), we may conclude that for all D ∈ D\A
we have D ⊂ E. But then, let C be a choice set of A such that C ∩ E = ∅.
Clearly, D∪{C} is in N and is an almost disjoint family in A which properly
contains D, contrary to D’s being a MAD family in A. Thus, in N , A cannot
be extended to a MAD family, finishing the proof of (iii).

(iv) Note first that Ψ = “There exists an infinite set X and an almost
disjoint family in X which cannot be extended to a MAD family in X”
is a boundable statement (see Jech [6, Chapter 6] for the definition of the
above term). By (iii), Ψ has a permutation model of ZFA, and hence from
the Jech–Sochor First Embedding Theorem (see [6, Theorem 6.1]), it follows
that Ψ has a symmetric model of ZF (see also [6, Problem 1 of Section 6.3]),
finishing the proof of (iv) and of the theorem.

Recall that Törnquist [11] has shown that in Solovay’s model (Model
M5(ℵ) in [5]), there are no infinite MAD families in ω. This powerful result
implies that “Every almost disjoint family in ω can be extended to a MAD
family in ω” is not provable in ZF (and hence “For every infinite set X,
every almost disjoint family in X can be extended to a MAD family in X”
is not provable in ZF either). We should note here that the above statement
is true in every Fraenkel–Mostowski permutation model of ZFA since ω is
well-ordered and PW is true in every permutation model (see [5]).

Now in Theorem 5, we showed that in ZFA, MC implies “For every infi-
nite set X, every almost disjoint family of infinite subsets of X can be ex-
tended to a MAD family in X”. Therefore, a natural question that emerges
at this point is whether the above implication is reversible in ZFA. We will
show that the answer is negative. Firstly, we need to prove the following
lemma.

Lemma 3. The following statements are equivalent:

(i) For every infinite set X, every almost disjoint family in X can be ex-
tended to a MAD family in X.

(ii) For every infinite set X, every almost disjoint family A in X can be
extended to a MAD family in

⋃
A.

Proof. (i)→(ii) Assume (i) holds. Let X be an infinite set and let A
be an almost disjoint family in X. By our hypothesis, let C be a MAD
family in X which contains A. Let C′ be the trace of C in

⋃
A, that is,

C′ = {C ∩
⋃
A : C ∈ C}. Then C′ is a MAD family in

⋃
A which contains

A. If C′ is not MAD in
⋃
A, then let Z ⊂

⋃
A be such that Z 6∈ C′ and

C′ ∪ {Z} is almost disjoint. Clearly, Z 6∈ C, C ∪ {Z} is almost disjoint in X
and contains A, contrary to C’s being MAD in X. Thus, C′ is MAD in

⋃
A

as required.
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(ii)→(i) Assume (ii) holds. Let X be an infinite set and let A be an
almost disjoint family inX. Let C be a MAD family in

⋃
A which containsA.

Two cases are possible:

Case A: X \
⋃
A is finite. Then

C′ =
{
C ∪ F : C ∈ C, F ⊆ X \

⋃
A
}

is a MAD family in X which contains A.
Case B: X \

⋃
A is infinite. Then

C′′ =
{
C ∪ F : C ∈ C, F ∈

[
X \

⋃
A
]<ω}

∪
{
X \

⋃
A
}

is a MAD family in X which contains A. This completes the proof of (ii)→(i)
and of the lemma.

Theorem 6. “For every infinite set X, every almost disjoint family in
X can be extended to a MAD family in X” does not imply MC in ZFA.
In particular, the above statement is true in Mostowski’s Linearly Ordered
Model (Model N3 in [5]), in which MC is false.

Proof. (For the description of N3, see the proof of Theorem 2.) It is
known that (BPI is true in N3, whereas) MC is false in N3 (see [5]). We
also recall the following facts about the model N3 (see Jech [6, Section 4.5,
pp. 49–51] for the details):

(1) P(A) is Dedekind-finite in N3.
(2) Every element x ∈ N3 has a least support, which we denote by

supp(x). Furthermore, for each x ∈ N3 and each φ ∈ G, φ(supp(x)) =
supp(φ(x)) and φ(x) = x ⇔ φ ∈ fixG(supp(x)). Yet, if E ⊂ A is finite and
φ ∈ G, then φ(E) = E ⇔ φ ∈ fixG(E).

(3) For every x ∈ N3, there is an ordinal number γ and a one-to-one
function F : x → γ × [A]<ω which is in N3, and thus any x ∈ N3 can be
written as a well-ordered disjoint union of Dedekind-finite sets. [If x ∈ N3,
then we let E ⊂ A be a finite support of x. For each y ∈ x, let OrbE(y) be
the orbit of y under the action of the subgroup fixG(E) of G, i.e. OrbE(y) =
{φ(y) : φ ∈ fixG(E)}. Then the familyO = {OrbE(y) : y ∈ x} is well-ordered
in N3 (since E supports OrbE(y) for all y ∈ x), and so we may let γ be a
well-ordered cardinal number and f : O → γ be a bijection in N3. Define a
function F on x by F (y) = (f(OrbE(y)), supp(y)) for all y ∈ x; then F is a
one-to-one function from x into γ × [A]<ω which is in N3 since it has E as
a support; see also [6, Lemma 4.6].]

Now we turn to the proof that “For every infinite set X, every almost
disjoint family of infinite subsets of X can be extended to a MAD family
in X” is true in N3. To this end, let X be an infinite set in N3 and let
A ∈ N3 be an almost disjoint family in X. We first note that if X is well-
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orderable in N3, then by PW (which is true in every FM model), A can be
extended to a MAD family in X (see Theorem 5(ii)). So assume that X is
not well-orderable in N3. Our plan is to construct a MAD family (in N3) in⋃
A which contains A; then the required result will follow from Lemma 3.
Let E ⊂ A be a finite support of X and A. By fact (3) above, we may

view X as a disjoint union
⋃
{Xi : i < γ} (where γ is a well-ordered cardinal

number) such that for all i < γ, Xi ⊆ [A]<ω (and hence—by fact (1)—Xi is
Dedekind-finite for all i < γ). Essentially, each Xi corresponds to OrbE(x)
for some x ∈ X, and for that x, every element of Xi is the least support
supp(φ(x)) of φ(x) for some φ ∈ fixG(E). (Thus for each i < γ, there is
n(i) ∈ ω such that Xi ⊆ [A]n(i).) By fact (1) and our assumption on X, we
may assume (without loss of generality) that Xi is infinite for all i < γ. We
also make the following observations:

(a) Let Z ∈ A. Since P(A) is Dedekind-finite (in N3) and Z is infinite,
it follows that Z ∩Xi is non-empty and finite for only finitely many i < γ.

(b) For each i < γ, let

Wi = {Z ∩Xi : Z ∈ A}.
Then for all i < γ, Wi ∈ N3 since it has E as a support (recall that E
is a support of A and of Xi for all i < γ). Furthermore, since A is almost
disjoint, we have

(∀i < γ)(∀Z ∈ Wi)(∀Z ′ ∈ Wi)(Z 6= Z ′ → |Z ∩ Z ′| < ω).

Without loss of generality, we assume that Wi 6= ∅ for all i < γ. Since
P(A) is Dedekind-finite, it follows that for only finitely many i < γ is the
set W∗i = {W ∈ Wi : W is finite} non-empty and finite. Without loss
of generality, we may assume that W∗i = ∅ for all i < γ (note that for
each i < γ such that W∗i is non-empty and finite, we may readily augment
W∗i to a maximal family in Xi such that any two distinct elements have
finite intersection). Therefore, for all i < γ and all W ∈ Wi, W is infinite.
Moreover, it is not hard to verify that if for some i < γ, Wi is finite, then
Wi can be (effectively) extended to a MAD family in Xi. Thus we further
assume that for all i < γ, Wi is infinite and not MAD in

⋃
Wi.

For each i < γ, by transfinite recursion on ordinals we will construct
(in N3) a MAD family Bi in

⋃
Wi. Then A∪

⋃
{Bi : i < γ} will be (in N3)

the required MAD family in
⋃
A which contains A. Fix i < γ. Since Wi is

not MAD in
⋃
Wi, there exists—in N3—an infinite subset B of

⋃
Wi such

that Wi ∪ {B} is an almost disjoint family which properly contains Wi. In
the ground model M , we let Zi be the collection of all such infinite sets
B ∈ N3. Since Zi ⊆ P(Xi) and Xi is Dedekind-finite in N3, so is every
B ∈ Zi (and thus no element of Zi is well-orderable in N3). Furthermore, it
is easy to see that for every B ∈ Zi, ψ(B) ∩W is finite for all ψ ∈ fixG(E)
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and all W ∈ Wi (since for any B ∈ Zi, Wi ∪ {B} is almost disjoint and E
is a support of Wi).

In M (which satisfies AC), we let � be a well-ordering on P(X) (which
clearly induces a well-ordering on X). Recall also that ≤ is a linear order on
A in N3, and thus [A]<ω \ {∅} has a choice function.

For the base step of the induction, consider any B0 ∈ Zi. Let E0 =
supp(B0). Then E ∪ E0 is also a support of B0, and since B0 is not well-
orderable in N3, there is a �-least t∗ ∈ B0 such that supp(t∗) \ (E ∪ E0)
6= ∅ (1). Let a∗ be the ≤-least element of supp(t∗) \ (E ∪ E0), and also let
I = E∪ (supp(t∗)\{a∗}) and assume I = {a1, . . . , an}, where a1 < · · · < an.
If we let a0 = −∞ and an+1 = +∞, then the atom a∗ occurs in one of the
intervals (aj , aj+1) where 0 ≤ j ≤ n. Note that there is exactly one element
of supp(t∗) in (aj , aj+1) (namely a∗) and (aj , aj+1) ∩ E = ∅. Now we let

f = {(φ(a∗), φ(t∗)) : φ ∈ fixG(I)}.
Working exactly as in the proof of the following known fact about N3: “If a
set in N3 is not well-orderable, then it contains an infinite subset which has
the same cardinality as some open interval (a, b) ⊂ A (in the linear ordering
of A in N3)” (see Brunner [1]), we may conclude that f ∈ N3 (since I is a
support of f); f is a function with domain the open interval (aj , aj+1); f is
one-to-one (this uses fact (2)); and the range of f , C0 = {φ(t∗) : φ ∈ fixG(I)},
is in N3 (since I is a support of C0), and is infinite since |C0| = |(aj , aj+1)|.
Furthermore, C0 ⊆

⋃
Wi since t∗ ∈ B0 ⊆

⋃
Wi and I contains the support

E of Wi (specifically, t∗ ∈ B0 implies that t∗ ∈ W for some W ∈ Wi (since
B0 ⊆

⋃
Wi), hence for each φ ∈ fixG(I), we have φ(t∗) ∈ φ(W ) and φ(W )

is in φ(Wi) =Wi, since E ⊂ I). We also note that for any φ ∈ fixG(I),

supp(φ(t∗)) = φ(supp(t∗)) = φ((supp(t∗) \ {a∗}) ∪ {a∗})(1)
= supp(t∗) \ {a∗} ∪ {φ(a∗)}.

By (1), for any ρ ∈ G and φ(t∗) ∈ C0, if ρ(supp(t∗) \ {a∗}) 6= supp(t∗) \ {a∗}
then ρ(φ(t∗)) /∈ C0, and thus ρ(C0) ∩ C0 = ∅. Now if ρ ∈ fixG(E) and
ρ(I) 6= I, then (since ρ(E) = E) ρ(supp(t∗) \ {a∗}) 6= supp(t∗) \ {a∗}. As
noted above, this yields ρ(C0) ∩ C0 = ∅. Thus, we have shown that for all ρ
in fixG(E) either ρ(C0) = C0 or C0∩ρ(C0) = ∅. Hence {ρ(C0) : ρ ∈ fixG(E)}
is disjoint and belongs to N3 (since it is supported by E). Now we prove
that Wi ∪ {ρ(C0) : ρ ∈ fixG(E)} is almost disjoint. In view of the above
observations, it suffices to show that Wi ∪ {C0} is almost disjoint. Assume
on the contrary that for some W ∈ Wi, W ∩ C0 is infinite. Then for some
d, d′ ∈ (aj , aj+1) with d < d′ we have f((d, d′)) ⊆ W ∩ C0. Indeed, since

(1) If V is an FM model which is determined by a ground model M , a group G of
permutations of the set A of atoms, and a normal filter F of subgroups of G, then an
element x of V can be well-ordered in V if and only if fixG(x) ∈ F (see [6, p. 47]).
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W ∩ C0 is infinite, there is a φ ∈ fixG(I) such that φ(a∗) 6∈ supp(W ) and
φ(t∗) ∈ W ∩ C0. Let d, d′ with aj < d < d′ < aj+1, φ(a∗) ∈ (d, d′), and
(d, d′) ∩ supp(W ) = ∅. Then

g = {(π(φa∗), π(φt∗)) : π ∈ fixG(I ∪ supp(W ) ∪ {d, d′})} ⊆ f,
and so f((d, d′)) = ran(g) ⊆W ∩ C0.

A similar argument shows that C0 contains an infinite subset of B0.
Indeed, since a∗ /∈ E0, there is a subinterval (s, s′) ⊆ (aj , aj+1) such that
a∗ ∈ (s, s′) and (s, s′) ∩ E0 = ∅. Then

h = {(ψ(a∗), ψ(t∗)) : ψ ∈ fixG(I ∪ E0 ∪ {s, s′})} ⊆ f,
and so f((s, s′)) = ran(h) ⊆ B0.

Now we consider an order automorphism γ of A such that γ ∈ fixG(E)
and γ(s) < d < d′ < γ(s′) (which is possible since s, s′, d and d′ are all in
(aj , aj+1), s < s′, d < d′ and (aj , aj+1) ∩ E = ∅). Then we have f((d, d′)) ⊆
f((γ(s), γ(s′))) = f(γ((s, s′))) = γ(f((s, s′))) ⊆ γ(B0), and thus γ(B0) ∩W
is infinite, which is a contradiction (see the discussion before the beginning
of the induction). Thus W ∩ C0 is finite as required.

Let Vi,0 = Wi ∪ {ρ(C0) : ρ ∈ fixG(E)}. Note that for each ρ ∈ fixG(E),
ρ(C0) ⊆

⋃
Wi, and Vi,0 ∈ N3 since it is supported by E. Furthermore, Vi,0

is almost disjoint.
Assume that for some ordinal number α, we have defined a strictly ⊆-

increasing sequence (Vi,β)β<α of almost disjoint families in
⋃
Wi, each having

E as a support (and properly extending Wi). Let Ri,α =
⋃
{Vi,β : β < α}.

(Clearly Ri,α is almost disjoint in
⋃
Wi and has E as a support). If Ri,α is

MAD in
⋃
Wi, then the induction terminates. Otherwise, we may let Bα be

the �-least element of Zi such that Bα 6∈ Ri,α and Ri,α ∪ {Bα} is almost
disjoint in

⋃
Wi. Then working as in the base step of the induction, we may

properly extend Ri,α to a family Vi,α = Ri,α ∪ {ρ(Cα) : ρ ∈ fixG(E)} which
is almost disjoint in

⋃
Wi and has E as a support.

Since the class Ord of all ordinal numbers is a proper one, it follows that
the recursion must terminate at some ordinal stage. By the above construc-
tion, this means that at this stage we have ended up with a MAD family Bi
in

⋃
Wi, which has E as a support.

Now we let B = A ∪
⋃
{Bi : i < γ}. Then B ∈ N3 (E is a support of B)

and is a MAD family in
⋃
A which contains A. By Lemma 3, we conclude

now that A can be extended to a MAD family in X as required.

Remark 3. Let X be an infinite set and let P∞(X) be the set of infinite
subsets of X. Let ⊆∗ be the binary relation on P∞(X) defined by

A ⊆∗ B ⇐⇒ A \B is finite and B \A is infinite.

Then ⊆∗ is a partial order order on P∞(X). Furthermore, if A ⊆ P∞(X),
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then A is almost disjoint in X if and only if A is an antichain in P∞(X)
(i.e. any two distinct elements of A are incompatible with respect to ⊆∗;
if A,B ∈ A with A 6= B, then there exists no D ∈ P∞(X) such that
D ⊆∗ A and D ⊆∗ B). Thus, the statement “For every infinite set X, every
almost disjoint family in X can be extended to a MAD family in X” can be
reformulated as

“For every infinite set X, every antichain in the poset (P∞(X),⊆∗) can
be extended to a maximal antichain.”

By Theorems 5 and 6, the latter statement is strictly weaker thanMC in ZFA.
Furthermore, we note that

“Every poset has a maximal antichain” is equivalent to AC in ZFA.

Indeed, let A be a family of pairwise disjoint non-empty sets. Let P =⋃
{R×X : X ∈ A} and let ≺ be the following binary relation on P :

(r, x) ≺ (s, y) ⇐⇒ r < s and there exists X ∈ A such that x, y ∈ X,
where < is the usual order on R. Then ≺∪{((r, x), (r, x)) : r ∈ R, x ∈

⋃
A}

is a partial order on P , and hence there exists a maximal set A ⊆ P of
pairwise incompatible elements. By the definition of ≺, it easily follows that
A ∩ (R×X) 6= ∅ for all X ∈ A. We assert that A ∩ (R×X) is a singleton,
for each X ∈ A. Towards a contradiction, assume that for some X ∈ A,
(r, x), (s, y) ∈ A ∩ (R ×X) with (r, x) 6= (s, y). Since the elements of A are
pairwise incompatible, we must have r = s, and thus x 6= y. Let t ∈ R with
t < r. Then (t, x) ≺ (r, x) and (t, x) ≺ (s, y). This is a contradiction; hence
x = y. It follows that the function f on A defined by

f(X) = the second coordinate of the unique ordered pair in A ∩ (R×X)

is a choice function of A.
We also recall that the statement “Every poset has a maximal set of

pairwise incomparable elements” is equivalent to AC in ZF (see [6, Theorem
9.1]), but not equivalent to AC in ZFA; in particular, the above statement is
true in the Basic Fraenkel Model N1 of [5] (see [6, Theorem 9.2]).

It is a well-known ZF-result that no MAD family in ω is countable. How-
ever, in the general case where ω is replaced by any infinite set X, the
situation is strikingly different, so that the resulting statement is actually
equivalent to a weak form of AC, as the following theorem clarifies.

Theorem 7. The following statements are equivalent:

(i) MCℵ0.
(ii) For every infinite set X, no infinite MAD family in X has cardinality ℵ0.

Proof. (i)→(ii) Assume that MCℵ0 is true. Let X be an infinite set. By
way of contradiction, assume that X has a MAD family A = {An : n ∈ ω}
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of cardinality ℵ0 (the mapping n 7→ An, n ∈ ω, is a bijection). Let B0 = A0

and for n ∈ ω \ {0}, let Bn = An \
⋃
{Am : m < n}. Since A is almost

disjoint, Bn is infinite for all n ∈ ω. By MCℵ0 , let f be a multiple choice
function of the family B = {Bn : n ∈ ω}. Then C =

⋃
{f(n) : n ∈ ω} is

an infinite subset of X such that C 6∈ A and C ∩ An is finite for all n ∈ ω,
contrary to A’s being a MAD family.

(ii)→(i) Assume that (ii) is true. Since MCℵ0 is equivalent to PMCℵ0

(“Every countably infinite set of non-empty sets has a partial multiple choice
function”), it suffices to prove that PMCℵ0 is true. Towards a contradiction,
assume that there exists a denumerable family A = {An : n ∈ ω} of non-
empty sets without a partial multiple choice function. Without loss of gen-
erality, we assume that A is disjoint and each An is infinite. Let X =

⋃
A.

Since A has no partial multiple choice function, it readily follows that A
is a MAD family in X of cardinality ℵ0, contrary to our assumption. This
completes the proof of the implication and of the theorem.

Remark 4. It is known (see [5]) that MCℵ0 is false in the Basic Fraenkel
Model (Model N1 in [5]). To illustrate this, using the result of Theorem 7
above, let A be the set of atoms of N1. It is known that A is amorphous
in N1 (see [5], [6]). Let X = [A]<ω (the set of finite subsets of A) and also
let A = {[A]n : n ∈ ω \ {0}} (where [A]n is the set of n-element subsets
of A). Then A is a disjoint family of infinite subsets of X and is countably
infinite in N1 (∅ is a support of each element of A). Furthermore, A is a
MAD family in X. (Otherwise there is an infinite set z ⊆ X in N1 such that
z ∩ [A]n is finite for all n ∈ ω \ {∅}; however, z cannot be supported by any
finite subset of A, as can be easily checked.)

Next, we provide a characterization of DF = F in the language of almost
disjoint families of functions.

Theorem 8. The following statements are equivalent:

(i) DF = F.
(ii) For every infinite set A, there is a continuum sized almost disjoint family
A ⊆ Aω (i.e. for any distinct f, g ∈ A, the set {n ∈ ω : f(n) = g(n)} is
finite).

Proof. (i)→(ii) Assume that DF = F is true. Let A be an infinite set. By
DF = F, let D be a countably infinite subset of A, which we identify with Q.
For every a ∈ R, choose a function fa ∈ Qω such that limn→∞ fa(n) = a.
Then letting A = {fa : a ∈ R}, we have A ⊆ Aω, |A| = 2ℵ0 and for any
distinct reals a and a′, the set {n ∈ ω : fa(n) = fa′(n)} is finite; thus A is
almost disjoint.

(ii)→(i) We first prove the following auxiliary result.
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Lemma 4. “For every infinite set A, there is a continuum sized almost
disjoint family A ⊆ Aω” implies ACℵ0

fin.

Proof. Assume the hypothesis holds. Let Z = {Zn : n ∈ ω} be a count-
ably infinite disjoint family of non-empty finite sets. Towards a contradiction,
assume that Z has no partial choice function. (Recall that ACℵ0

fin is equiva-
lent to its partial version PACℵ0

fin.) Let A =
⋃
Z. By our hypothesis, there

is a continuum sized almost disjoint family A = {fr : r ∈ R} ⊆ Aω. Let
T = {fn : n ∈ ω}; then T is almost disjoint. Since Z has no partial choice
function, for every n ∈ ω there exists a finite set Mn ⊂ ω such that

m ∈Mn ⇐⇒ ran(fn) ∩ Zm 6= ∅.
Furthermore, since T is almost disjoint and |Zn| < ω for all n ∈ ω, the set
M = {Mn : n ∈ ω} is infinite.

AsM is infinite, via an easy induction we may construct a partial choice
function of Z, contrary to our assumption on Z. We leave the easy details
to the reader.

Now we return to the proof of (ii)→(i) in Theorem 8. Assume (ii) holds.
For contradiction, assume that there exists an infinite Dedekind-finite set,
say D. For each n ∈ ω, let

Dn = {f ∈ Dn : f is one-to-one}.
Then each Dn is Dedekind-finite, and hence so is A =

⋃
{Dn : n ∈ ω}.

Let A = {fr : r ∈ R} ⊆ Aω be a continuum sized almost disjoint family.
Since A is Dedekind-finite, it follows that for all r ∈ R, ran(fr) is finite,
and since A is almost disjoint, {ran(fr) : r ∈ R} is infinite; in particular,
the set {ran(fn) : n ∈ ω} is infinite. By Lemma 4, ACℵ0

fin is true, and thus
W =

⋃
{ran(fn) : n ∈ ω} is a countably infinite subset of A, contrary to A’s

being Dedekind-finite. Thus, D is Dedekind-infinite as required. The proof
of the implication and of the theorem is complete.

Corollary 1. DF = F implies “For every free ultrafilter U on ω and
every infinite set A, |Aω/U| ≥ 2ℵ0”.

Proof. Assume that DF = F is true. Let U be a free ultrafilter on ω and
let A be an infinite set. By Theorem 8, there exists a continuum sized almost
disjoint family A = {fr : r ∈ R} ⊆ Aω. Therefore, for any distinct r, r′ ∈ R
the set {n ∈ ω : fr(n) = fr′(n)} is finite. Since U is a free ultrafilter, for
distinct reals r, r′ we have {n ∈ ω : fr(n) = fr′(n)} 6∈ U , and thus fr �U fr′
(recall that f ∼U g ⇔ {n ∈ ω : f(n) = g(n)} ∈ U), so [fr]∩ [fr′ ] = ∅. Hence,
|{[fr] : r ∈ R}| = 2ℵ0 , and consequently |Aω/U| ≥ 2ℵ0 .

Theorem 9. Let U be a free ultrafilter on ω and let A be an infinite set.
If |Aω/U| ≥ 2ℵ0, then A is Dedekind-infinite.
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Proof. Towards a contradiction, assume that A is Dedekind-finite. Then
|ran(f)|<ℵ0 for all f ∈Aω. Fix temporarily f in Aω. Since ω =

⋃
{f−1({a}) :

a ∈ ran(f)} ∈ U and U is an ultrafilter on ω, there is a unique a ∈ ran(f)
such that f−1({a}) ∈ U . Let g ∈ [f ] (= the ∼U equivalence class of f). We
assert that g−1({a}) ∈ U . If not, then {n ∈ ω : g(n) 6= a} = (g−1({a}))c ∈ U
(since U is an ultrafilter). Let

Z = f−1({a}) ∩ {n ∈ ω : f(n) = g(n)}.

Then Z ∈ U , since f−1({a}) ∈ U , {n ∈ ω : f(n) = g(n)} ∈ U (since g ∈ [f ])
and U is a filter. Since Z ⊆ g−1({a}), it follows that g−1({a}) ∈ U , which is
a contradiction. Thus, g−1({a}) ∈ U as asserted.

From the above arguments, it follows that

(2) (∀Y ∈ Aω/U)(∃! aY ∈ A)(∀f ∈ Y )(f−1({aY }) ∈ U).

Furthermore, if Y, Y ′ ∈ Aω/U with Y 6= Y ′ (and thus Y ∩ Y ′ = ∅), then
aY 6=aY ′ . Indeed, assume the contrary; then there exist distinct elements
Y = [f ] and Y ′ = [f ′] of Aω/U such that aY = aY ′ . Since Y 6= Y ′, we
have f �U f ′, and thus {n ∈ ω : f(n) = f ′(n)} 6∈ U . By (2), we have
f−1({aY }) ∈ U and (f ′)−1({aY ′}) = (f ′)−1({aY }) ∈ U , and since U is a fil-
ter, it follows thatW := f−1({aY })∩(f ′)−1({aY }) ∈ U . SinceW ⊆ {n ∈ ω :
f(n) = f ′(n)}, we conclude that {n ∈ ω : f(n) = f ′(n)} ∈ U . This is a con-
tradiction; thus aY 6= aY ′ as required.

Therefore, the mapping F : Aω/U → A defined by F (Y ) = aY is (well-
defined and) one-to-one, and thus |Aω/U| ≤ |A|. By our hypothesis, we have
2ℵ0 ≤ |Aω/U|, and so 2ℵ0 ≤ |A|. But then A is Dedekind-infinite, which is a
contradiction. This completes the proof of the theorem.

Theorem 10. The following hold:

(i) UF(ω) + “For every free ultrafilter U on ω and every infinite set A,
|Aω/U| ≥ 2ℵ0” implies DF = F. It follows that “There exists a free ultra-
filter U on ω and an infinite set A such that |Aω/U| 6≥ 2ℵ0” is relatively
consistent with ZF.

(ii) UF(ω) + “For every free ultrafilter U on ω and every infinite set A,
|Aω/U| ≥ 2ℵ0” is equivalent to UF(ω) + DF = F. Hence, in every Fraen-
kel–Mostowski model of ZFA, “For every free ultrafilter U on ω and every
infinite set A, |Aω/U| ≥ 2ℵ0” is equivalent to DF = F.

(iii) “For every free ultrafilter U on ω and every infinite set A, |Aω/U| ≥ 2ℵ0”
does not imply DF = F in ZF.

(iv) MC does not imply “For every ultrafilter U on ω and every infinite set A,
|Aω/U| ≥ 2ℵ0” in ZFA.

(v) BPI does not imply “For every free ultrafilter U on ω and every infinite
set A, |Aω/U| ≥ 2ℵ0” in ZF.
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Proof. (i) The first assertion follows from Theorem 9. For the second
assertion, it is known that in the Basic Cohen Model (Model M1 in [5]),
BPI (and thus UF(ω)) is true, whereas DF = F is false; hence, “For every
ultrafilter U on ω and for every infinite set A, |Aω/U| ≥ 2ℵ0” is also false.

(ii) The first equivalence follows from Corollary 1 and Theorem 9. The
second assertion follows from the first and the fact that in every permutation
model, UF(ω) is true (see [5]).

(iii) The statement “For every ultrafilter U on ω and every infinite set
A, |Aω/U| ≥ 2ℵ0” is vacuously true in Blass’ model M15 of [5], since all
ultrafilters (on any set) are principal in M15. On the other hand, Tachtsis
[10] has shown that inM15 there exists a countably infinite family of pairs
which has no partial choice function, and thus DF = F is false inM15.

(iv) In the Second Fraenkel Model (Model N2 in [5]), MC is true but
DF = F is false (see [5]). It follows from part (ii) that “For every ultrafilter
U on ω and every infinite set A, |Aω/U| ≥ 2ℵ0” is also false in N2.

(v) From the proof of (i), the Basic Cohen Model witnesses the required
independence result.

4. Open questions. Below, we list some open questions which naturally
arise from the research in this paper.

Question 1. Does BPI imply “For every infinite set X, every almost dis-
joint family inX can be extended to a MAD family inX”? Equivalently, does
BPI imply “For every infinite setX, every antichain in the poset (P∞(X),⊆∗)
can be extended to a maximal antichain”? (See Remark 3.)

Question 2. Is there a model of ZFA or ZF in which “Every infinite set
X has an uncountable almost disjoint family” is true, but “Every infinite set
X has an uncountable(>ℵ0) almost disjoint family” is false? (Note that the
second statement clearly implies the first one.)

Question 3. Does “Every infinite setX has an uncountable(>ℵ0) almost
disjoint family” imply “Every linearly ordered Dedekind-finite set is finite”?

Question 4. What is the set-theoretic strength of the statement “Every
infinite subset of R has an uncountable almost disjoint family”?
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