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EXTENSIONS OF KANTOROVICH-TYPE THEOREMS

FOR NEWTON’S METHOD

Abstract. We extend the applicability of Newton’s method, so we can
approximate a locally unique solution of a nonlinear equation in a Banach
space setting in cases not covered before. To achieve this, we find a more
precise set containing the Newton iterates than in earlier works.

1. Introduction. The most used iteration for generating a sequence
approximating a locally unique solution x? of a nonlinear equation

(1.1) F (x) = 0,

is undoubtedly Newton’s method defined for all n = 0, 1, 2, . . . by

(1.2) xn+1 = xn − F ′(xn)−1F (xn),

where x0 is an initial point and F : Ω ⊆ X → Y is a continuously Fréchet
differentiable operator between Banach spaces X and Y and Ω is a convex
set.

There is an extensive literature on local as well as semilocal Kantorovich-
type convergence results for Newton’s method [1–14]. However, the con-
vergence domain for Newton’s method is small in general. In the present
study, we show how to extend the convergence domain without adding hy-
potheses in the already existing works. To achieve this we provide a more
precise location, where the Newton iterates lie, leading to smaller Lipschitz
functions.
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The rest of the study is organized as follows: In Sections 2 and 3, we
present the semilocal convergence analysis of Newton’s method (1.2). Sec-
tion 4 contains numerical examples.

2. Convergence analysis for Newton’s method. In this section, we
present the semilocal convergence analysis of Newton’s method for Fréchet
differentiable operators.

Let L(X,Y ) stand for the space of all bounded linear operators from a
Banach space X to a Banach space Y. Define the balls U(x, ρ) = {y ∈ Ω :
‖x− y‖ < ρ} and U(x, ρ) = {y ∈ Ω : ‖x− y‖ ≤ ρ}.

Definition 2.1. Let F : Ω ⊆ X → Y be a continuously Fréchet dif-
ferentiable operator. Let x0 ∈ Ω be such that F ′(x0)

−1 ∈ L(Y,X). We say
that F ′ satisfies the L0-center Lipschitzian condition on Ω0 if

(2.1) ‖F ′(x0)−1(F ′(x)− F ′(x0))‖ ≤ L0(r)‖x− x0‖
for all r ∈ [0, R] and all x ∈ Ω0 := U(x0, r) ∩ Ω, where R > 0 and
L0 : [0, R] → R+ ∪ {0} is a continuous and non-decreasing function with
L0(0) = 0.

Define

r0 = sup{t ∈ [0, R) : L0(t) < 1},(2.2)

Ω1 = U(x0, r0) ∩Ω.(2.3)

Notice that

(2.4) r0 ≤ R and Ω1 ⊆ Ω0.

Definition 2.2. Let F : Ω ⊆ X → Y be a continuously Fréchet dif-
ferentiable operator. Let x0 ∈ Ω be such that F ′(x0)

−1 ∈ L(Y,X). We say
that F ′ satisfies the restricted L-Lipschitzian condition on Ω1 if

(2.5) ‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ L(r)‖x− y‖
for all r ∈ [0, r0] and all x, y ∈ Ω1, where L : [0, r0) → R+ ∪ {0} is a
continuous and non-decreasing function with L(0) = 0.

It is convenient for the semilocal convergence analysis that follows to
introduce functions ϕ0 : [0, R] → R+ ∪ {0} and ϕ : [0, r0] → R+ ∪ {0}
defined by

ϕ0(r) = b− r +

r�

0

L0(t)(r − t) dt,(2.6)

ϕ(r) = b− r +

r�

0

L(t)(r − t) dt(2.7)

for some b ≥ 0.
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We now give the semilocal convergence analysis of Newton’s method
using the preceding notation.

Theorem 2.3. Let F : Ω ⊆ X → Y be a continuously Fréchet differen-
tiable operator satisfying the L0-center Lipschitzian condition (2.1) on Ω0

and the restricted L-Lipschitz condition (2.5) on Ω1 for some x0 ∈ Ω such
that F ′(x0)

−1 ∈ L(Y,X) and ‖F ′(x0)−1F (x0)‖ ≤ b for some b ≥ 0. More-
over, suppose:

(i) The function ϕ defined by (2.7) has a unique zero r− in [0, r0) such
that ϕ(r0) ≤ 0.

(ii) L0(r) ≤ L(r) for all [0, r0).
(iii) U(x0, r−) ⊆ Ω.
Then the following statements hold:

(a) The Newton sequence {sn} generated by

s0 = 0, sn+1 = sn −
ϕ(sn)

ϕ′(sn)
, n = 0, 1, . . . ,

is well defined in [0, r−] and converges monotonically to r−.
(b) The Newton sequence {xn} generated by (1.2) is also well defined, re-

mains in U(x0, r−) and converges to a unique zero of F in U(x0, r0).
Moreover,

‖xn − x∗‖ ≤ r− − sn, ‖xn+1 − xn‖ ≤ sn+1 − sn,
‖xn − x∗‖ ≤ µ2

n
(r0 − sn),

where µ = ‖xn − x∗‖/r0.

Proof. Simply repeat the corresponding proofs in [14], but use the esti-
mate (see (2.1))

‖F ′(x)−1F (x0)‖ ≤ −
1

ϕ′(‖x− x0‖)
instead of the less precise estimate

‖F ′(x)−1F (x0)‖ ≤ −
1

ψ′(‖x− x0‖)
(see [14, (2.8) and (ii)]). Moreover notice that the iterates {xn} lie in Ω1,
which is a more precise location than Ω0 (see (2.8)) used for the proof in
[14, Proposition 4, p. 677].

We have the following useful alternative for the uniqueness part.

Proposition 2.4. Under the hypothesis of Theorem 2.3, further suppose
that there exists γ ∈ [r−1, r0) such that

1
2L(r0)(γ + r−1) < 1.

Then x∗ is the only zero of F in Ω2 = Ω ∩ U(x0, γ).
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Proof. The proof uses the standard arguments [3] and condition (2.1)
instead of condition (2.8) of [14].

Remark 2.5. (a) In order for us to compare the preceding results with
the corresponding ones in [8–14], let us consider the L1-Lipschitzian con-
dition on Ω0 (not on Ω1) with L1(0) = 0 and the corresponding majorant
function ψ (used in [14]). That is, we have

(2.8) ‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ L1(r)‖x− y‖
for all r ∈ [0, R] and all x, y ∈ Ω0, where

(2.9) ψ(r) = b− r +

r�

0

L1(t)(r − t) dt.

In view of (2.1), (2.5)–(2.9), for each r ∈ [0, r0) we have

L0(r) ≤ L1(r),(2.10)

L(r) ≤ L1(r),(2.11)

ϕ0(r) ≤ ψ(r),(2.12)

ϕ(r) ≤ ψ(r).(2.13)

Define also the Newton iteration corresponding to ψ by

s0 = 0, sn+1 = sn −
ψ(sn)

ψ′(sn)
, n = 0, 1, . . . .

Let s− be the unique zero of the function ψ in [0, R) such that ψ(R) ≤ 0.
These conditions imply the corresponding conditions of Theorem 2.3, but
not necessarily vice versa. Hence, the new sufficient semilocal convergence
conditions are at least just as weak.

Concerning the comparison between the majorizing sequences {rn} and
{sn}, further suppose that for all u, v ∈ [0, R] with u ≤ v,

(2.14) − ϕ(u)

ϕ′(u)
≤ − ψ(v)

ψ′(v)
.

Then a simple inductive argument using (2.10)–(2.13) shows, for n= 0, 1, . . . ,

rn ≤ sn,(2.15)

rn+1 − rn ≤ sn+1 − sn,(2.16)

r− ≤ s−.(2.17)

Moreover, strict inequality may hold in (2.15) (for n = 2, 3, . . .) and in (2.16)
(for n = 1, 2, . . .) if it does in (2.11) or (2.10).

(b) It follows from the proof of Theorem 2.3 that the sequence {qn}
defined by

q0 = 0, q1 = q0 −
ϕ(q0)

ϕ′(q0)
, qn+1 = qn −

ϕ(qn)

ϕ′(qn)
, n = 1, 2, . . . ,
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is a more precise majorizing sequence than {rn} which converges under the
same hypotheses such that

qn ≤ rn,(2.18)

qn+1 − qn ≤ rn+1 − rn,(2.19)

q− = lim
n→∞

qn = r−.(2.20)

(c) If condition (ii) of Theorem 2.3 is not satisfied, i.e.

(2.21) L(r) < L0(r),

then ϕ0 can replace ϕ in Theorem 2.3.

(d) The uniqueness given in Proposition 2.4 also improves the corre-
sponding one in [14], where L1 was used instead of the more precise L0 (see
(2.10)).

It is worth noticing that in practice the computation of the original
function L1 requires the computation of the functions L0 and L as special
cases. That is, no hypotheses additional to [14] are needed to obtain these
improvements.

3. Semilocal convergence II. In this section, we study the conver-
gence of Newton’s method for operators F that are p ≥ 2 (p an integer)
times Fréchet differentiable.

Proposition 3.1. Let F : Ω ⊆ X → Y be a p ≥ 2 times contin-
uously Fréchet differentiable operator satisfying the L0-center Lipschitzian
condition on Ω0 for some x0 ∈ Ω such that F ′(x0)

−1 ∈ L(Y,X). Moreover,
suppose:

(i) ‖F ′(x0)−1F (x0)‖ ≤ b and ‖F ′(x0)−1F (i)(x0)‖ ≤ ci, i = 2, . . . , p, for
some b, ci ≥ 0.

(ii) There exists a continuous non-decreasing function L(p) : [0, r0) → R+

∪ {0} such that

‖F ′(x0)−1(F (p)(y)− F (p)(x))‖ ≤ L(p)(r)‖y − x‖

for all r ∈ [0, r0] and all x, y ∈ Ω1.
(iii) The function ϕ : [0, r0]→ R+ ∪ {0} defined by

ϕ(r) = b− r + c2
r2

2!
+ · · ·+ cp

rp

p!
+

r�

0

L(p)(t)
(r − t)p

p!
dt

has a unique zero r− in [0, r0) and ϕ(r0) ≤ 0, where

L(r) = ϕ′′(r) = c2 + · · ·+ cp
rp−2

(p− 2)!
+

r�

0

L(p)(t)
(r − t)p−2

(p− 2)!
dt.
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(iv) L0(r) ≤ L(r) for all r ∈ [0, r0),
(v) U(x0, r−) ⊆ Ω.

Then the conclusions of Theorem 2.3 hold.

Proof. Let rx = ‖x−x0‖. It is a straightforward application of Taylor’s
theorem to show that in both cases p = 2 and p ≥ 3 we have

‖F ′(x0)−1F ′′(x)‖ ≤ L(rx).

Hence, L satisfies the hypotheses of Theorem 2.3.

Proposition 3.2. Let F : Ω ⊆ X → Y be an infinitely many times
continuously Fréchet differentiable operator satisfying the L0-center Lip-
schitzian condition on Ω0 for some x0 ∈ Ω such that F ′(x0)

−1 ∈ L(Y,X).
Moreover, suppose:

(i) ‖F ′(x0)−1F (x0)‖ ≤ b and ‖F ′(x0)−1F i(x0)‖ ≤ ci, i ≥ 2, for some
b, ci ≥ 0.

(ii) The function ϕ : [0, r0]→ R+ ∪ {0} is defined by

ϕ(r) = b− r +
∑
p≥2

cp
rp

p!

assuming that the series converges and has a unique zero r− in [0, r0).
(iii) L0(r) ≤ L(r) for all r ∈ [0, r0), where

L(r) = ϕ′′(r) =
∑
p≥2

cp
rp−2

(p− 2)!
.

(iv) U(x0, r−) ⊂ Ω.
Then the conclusions of Theorem 2.3 hold.

Proof. By the expansion of F ′′ at x0, we again get

‖F ′(x0)−1F ′′(x)‖ ≤ L(‖x− x0‖)
for all x ∈ Ω1. Hence L satisfies the hypotheses of Theorem 2.3.

4. Numerical examples. We present two numerical examples, where
the function ψ in (2.9) has no real zero. Hence the older results do not apply
[5–14], but the function ϕ has solutions, so the new results apply to solve
equations.

In both examples, L0, L and L1 are constant functions. Notice that in
this case the functions ϕ0, ϕ and ψ are reduced to

ϕ0(r) =
L0

2
r2 − r + b, ϕ(r) =

L

2
r2 − r + b, ψ(r) =

L1

2
r2 − r + n.

Therefore, the equations

ϕ0(r) = 0, ϕ(r) = 0, ψ(r) = 0
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each have real solutions provided that the respective Newton–Kantorovich-
type conditions [8]

2L0b ≤ 1,(4.1)

2Lb ≤ 1,(4.2)

2L1b ≤ 1(4.3)

hold.

Example 4.1. Let X = Y = R, x0 = 1, Ω = {x : |x − x0| ≤ 1 − β},
β ∈ [0, 1/2), R = 1− β, r0 = 1/L0. Define a function F on Ω by

(4.4) F (x) = x3 − β.

Using the hypotheses of Theorem 2.3, we get

b =
1− β

3
,

and

|F ′(x0)−1(F ′(x)− F ′(x0))| = |x2 − x20| = |x+ x0| |x− x0|
= |(x− x0) + 2|x0|)|x− x0|
≤ (|x− x0|+ 2|x0|)|x− x0|
≤ (1− β + 2)|x− x0| = (3− β)|x− x0|

for each x ∈ Ω0. So, we can choose L0 = 3− β. Moreover, we have

|F ′(x0)−1(F ′(x)− F ′(y))| = |x2 − y2| = |x+ y| |x− y|
= |(x− x0) + (y − x0) + 2x0| |x− y|
≤ (|x− x0|+ |y − x0|+ 2|x0|)|x− y|
≤ (2(1− β) + 2)|x− y| = 2(1− β)|x− y|

for all x, y ∈ Ω0, so we can choose L1 = 2(2 − β). Furthermore, for each
x, y ∈ Ω1 = U(x, r̄0)∩U(x0, 1− β) = U(x0, r̄0) (since r̄0 < 1− β) we obtain

|F ′(x0)−1(F ′(x)− F ′(y))| ≤ (|x− x0|+ |y − x0|+ 2|x0|)|x− y|

≤ (2 + 2r̄0)|x− y| = 2

(
1 +

1

3− β

)
|x− y|,

so we can choose L(r) = 2
(
1 + 1

3−β
)
. Notice that

L0 < L < L1 and r0 < R for all β ∈ [0, 1/2).

The Newton–Kantorovich condition (4.3) is not satisfied, since

(4.5) 4
3(1− β)(2− β) > 1 for all β ∈ [0, 1/2).

Hence, there is no guarantee that Newton’s method (1.2) converges to



152 I. K. Argyros et al.

x∗ = 3
√
β, starting at x0 = 1. However, our corresponding condition (4.2)

is true for all β ∈ I = [0.4619832, 1/2). Hence, the conclusions of our
Theorem 2.3 can be applied to solve the equation F (x) = 0 for all β ∈ I.

Example 4.2. Let X = Y = C[0, 1], the space of continuous real-valued
functions defined on [0, 1]. We shall use the max-norm. Let Ω = {x ∈ X :
‖x‖ ≤ R} such that R > 0. Define F on Ω by [7, 10]

(4.6) F (x)(s) = x(s)− f(s)− δ
1�

0

K(s, t)x(t)3 dt, x ∈ X, s ∈ [0, 1],

where f ∈ X is a given function, δ is a real constant and the kernel K is
the Green’s function defined by

K(s, t) =

{
(1− s)t if t ≤ s,
s(1− t) if s ≤ t.

It follows from (4.6) that, for each x∈Ω, F ′(x) is a linear operator defined
by

[F ′(x)(v)](s) = v(s)− 3δ

1�

0

K(s, t)x(t)2v(t) dt, v ∈ X, s ∈ [0, 1].

Let us choose x0(s) = f(s) = 1. It follows that ‖I − F ′(x0)‖ ≤ 3|δ|/8. If
|δ| < 8/3, then F ′(x0)

−1 exists and

‖F ′(x0)−1‖ ≤
8

8− 3|δ|
.

We also get ‖F (x0)‖ ≤ |δ|/8, so

b = ‖F ′(x0)−1F (x0)‖ ≤
|δ|

8− 3|δ|
.

Moreover, for x, y ∈ Ω, we obtain

‖F ′(x)− F ′(y)‖ ≤ 1 + 3|δ| ‖x+ y‖
8

‖x− y‖ ≤ 1 + 6R|δ|
8

‖x− y‖

and

‖F ′(x)− F ′(1)‖ ≤ 1 + 3|δ|(‖x‖+ 1)

8
‖x− 1‖ ≤ 1 + 3|δ|(1 +R)

8
‖x− 1‖.

Choosing δ = 1.175 and R = 2, we have b = 0.26257 . . . , L1 = 2.76875 . . . ,
L0 = 1.8875 . . . , 1/L0 = 0.529801 . . . and L = 1.47314 . . . .

Using these values, we find that condition (4.3) is not satisfied, since

1.4539813 > 1.

However, our condition (4.2) is satisfied, since

0.7736047 < 1.

Hence, the convergence of Newton’s method is guaranteed by Theorem 2.3.
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