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EXISTENCE AND UNIQUENESS OF SOLUTION FOR A
UNILATERAL PROBLEM IN SOBOLEV SPACES WITH
VARIABLE EXPONENT

Abstract. We study the existence and uniqueness of the obstacle problem
associated to the equation

—div(a(z,u, Vu) + ¢(u)) + g(z,u) = f —div F

in the framework of Sobolev spaces with variable exponent, where F' €
(L"O(2))N and f € LIO)(02) with

r(x) > ﬁ, r(z) > p'(z) VY € {2,

g(x) > max(505,1),  q(z) > p/(x) Ve 2,

for a log-Lipschitz function p : 2 — [1, +00).

1. Introduction. Let {2 be a bounded open subset of RN (N > 2),
and p(-) : £2 — [1,400) be a function satisfying the log-Lipschitz continuous
condition such that 1 < p_ < p; < oo (see Subsection 2.1).

The purpose of this paper is to study the obstacle and Dirichlet problem
associated to the nonlinear elliptic equation

(1.1) —div(a(z,u, Vu) + ¢(u)) + g(z,u) = f — div(F),
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when
(1.2) fe€ L‘I(')(Q), q(x) > max(pivw), 1), q(x) > p/(x), Vo € 02,
(1.3) Fe @O0, r@) > p(xj)v_l, r(z) > p'(z), Vo € £,

and

e a: 2 xRxRNY — R is a Carathéodory function,
e ¢ c COR,RY),
e g is a Carathéodory function satisfying a sign condition.

The motivation for studying problem comes from applications in
elasticity [25] and non-Newtonian fluid mechanics [5), 21].

The solvability of is very well understood in the case of p constant
(see [IT), 12} 15, [17, 20]). When p(-) is a variable exponent, the existence of
solutions to problem has been obtained [23] 27] under some restrictive
conditions on F' and f.

The novelty of this work is to refine and weaken the conditions on the
data F' and f and to show the existence and uniqueness of solution under
conditions and on f and F.

The main tool used is the result of Stampacchia [22] which yields the
boundedness of solutions; inspired by the idea of [7], we partition {2 into a
finite number of balls B; such that for all continuous functions f < g on {2,
we have sup(f) < inf(g) on each B;, and for which the conditions of [22]
Lemma 4] are satisfied.

This paper is organized as follows: in Section 2, we collect the necessary
preliminaries and specify some assumptions; in Section 3, the existence of
a bounded solution to problem ((1.1) is established; and in the last section,
the uniqueness of solution is proved.

2. Preliminaries and assumptions

2.1. Preliminaries. Let {2 be a bounded open subset of RV (N > 2).
We say that a real-valued continuous function p(+) is log-Lipschitz continuous
in 2 if

—log|z —y|Ip(z) —p(y)| < C Va,y € 2 with z # y and |z — y| < 1/2,
with a positive constant C'. We denote
C () = {log-Lipschitz continuous functions p : 2 — R with
1< b— < p+ < N}a

where
p_ =min{p(z):x € 2}, p; =max{p(z):z € N2}



A unilateral problem 177

For p € C(§2) we define the variable exponent Lebesgue space

LPO(02) = {u : 2 — R measurable : S |u(2)[P@ da < oo};
n

under the norm

u :E) p(x)
Iew

Hqu() = il’lf{)\ >0:
(9

dr < 1},

the space LP()(£2) is a uniformly convex Banach space, and therefore reflex-
ive. We denote by LP()(£2) the conjugate space of LP()(£2), where 1/p(z) +

1/p'(z) = 1.
PROPOSITION 2.1 (Generalized Hélder inequality [14, [24]).
(i) For any u € LPO)(2) and v € LP'0)(02), we have

1 1
wodz| < [ — + — Jlwll, vl .
Juvd] (5 + )l Bl

(ii) For all p1,p2 € C(12) such that p1(z) < pa(x) for all x € £2, we have
a continuous embedding
LPQ(')(Q) SN LPl(')(Q).
PROPOSITION 2.2 ([14, 24]). Denote
p(u) = S lu(z)[P® de Vu e LPO(0).
[0
Then the following assertions hold:

(1) [Jullpy <1 (resp. =1, > 1) if and only if p(u) <1 (resp. =1, > 1).
(i) Hqu(,) > 1 implies |Lu\|£6) < pu) < Hu||§{), while ||ull,.y < 1 implies
lull?%) < plw) < ull;,.
(iii) For a sequence (up ), in LPO)(£2), unllpy — 0 if and only if p(un) — 0,
and |[upllp.y — oo if and only if p(un) — oo,
Now, we define the variable exponent Sobolev space
WPO(2) = {u e LPO(Q) : |Vu| € LPD(02)},
with the norm

lullipey = lullpgy + [Vullyey  Vue WHO(0).

We denote by Wol’p(')(ﬂ) the closure of C$°(£2) in WHP()(£2), and we define
the Sobolev exponent by

_ _Npl@) for p(x) < N.
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ProposITION 2.3 ([14]).

(i) If 1 < p_ < py < oo, then the spaces WHPC)(02) and Wol’p(')(Q) are
separable and reflezive Banach spaces.
(i) If ¢ € C1(82) and q(z) < p*(z) for any x € 2, then the embedding
Wol’p(')(Q) e LIO)(£2) is continuous and compact.
(iii) Poincaré inequality: there exists a constant C' > 0 such that
1,p(-
lullpy < ClIVullyy  Yu € W?(2).
(vi) Sobolev—Poincaré inequality: there exists another constant C' > 0 such
that
1,p(-
lullpuy < ClIVullyey  Vu € Wo ™ (9).

REMARK 1. By Proposition (iii), the norms || Vul|,.) and [[ul]; 5.y are
equivalent in I/VO1 #() (£2).

LeMMA 2.4 ([6]). Let F: R — R be a uniformly Lipschitz function with
F(0) = 0 and let p € C4(2). Ifu € WyPY(0), then F(u) € WyPV(0).
Moreover, if the set D of discontinuity points of F' is finite, then
O(Fou) I*ﬂ’(vuL)(f?—;c‘Z a.e. in{x € 2:u(x) ¢ D},

dx; |0 a.e. in {z € 2:u(x) € D}.

LEMMA 2.5 ([6]). Under assumptions (H1)-(Hg) below, let (un), be a

sequence in Wo ()(Q) such that u, — u in Wol’p(')(Q) and

S [a(x, up, Vuy,) — a(z, uy, V)|V (u, —u) — 0.
2

Then u, — u in Wol’p(')((l).
2.2. Assumptions. Let

(H1) a: 2 xR xRN — RY is a Carathéodory function such that for some
o >0,

a(z,5,€) - £>algP®, VseR, ae xe 2,V eRY.

(H2) (1) [a(z,s,&) — a(z,s,&)][E — §] > 0 for a.e. z € 2, all s € R, and all
£, € RN with £ # ¢,

(2) there is an increasing function § : Rt — RT and a non-negative
function 8 € L) (02) with |a(z, s,&)| < B(|s])[|€[P@ 1 + B(z)] for
ae. €82, all s € Rand all £ € RV,

(H3) f e LiO(02), F e (L'O(0))N, where ¢(z) > 1 and r(z) > p/(z) for
all z € £2.
(H4) g: £2xR — Ris a Carathéodory function such that sup, <, |g9(-, s)| =

hn(-) € LY(£2) and g(z,s)s > 0 for a.e. x € £2 and all s € R.
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(Hs) ¢:R — RY is continuous.
(Hg) € L>®(2) and K(¢) = {v € Wol’p(')((z) :v > ae. in 2} # 0.

DEFINITION 2.6. For all k£ > 0 and s € R, the truncation function Tj(-)

is defined by
s if |s| <k,
Tis(s) = . . sl <
k- sign(s) if |s| >k,

and we set
Gr(s) = s — Ti(s).

DEFINITION 2.7. A measurable function v € K(v) is Called a weak
solution of the unilateral problem (1.1) if a(x,u, Vu) € (LP)(2))N and
g(z,u) € L1(£2), and for all v € K (1) N L*°(£2),

(2.1) S a(x,u, Vu)V(u —v) dr + S d(uw)V(u —v)de + S g(x,u)(u—v)de
2 17 17

< Sf(u—v)dx+SFV(u—v)da:.
9] (9}

THEOREM 2.8. Suppose that assumptions (H1)-(Hg) hold, and let q(x) >
max(%,p’(x)) and r(z) > #. Then any weak solution w to problem

(1.1)) (in the sense of definition (2.7)) is bounded.

Proof. For fixed k, h,0 > 0, define w,, = %Th(Gk(Tn(u)) and w, = w,,
where k = 0 + ||| ()
Note that v = T, (u) — @, € K(¢) N L>(§2). Taking v as a test function

in (2.1), we obtain

22)  Va(@,u,Vu) - V@, +u—Tp(w) dz + | ¢(u) - V(@n + v — Tn(w))
02 k0]

+ | gz, w) (@n + v — Ty (w))
2

< g f@n+u—Ty(w)dz+ | FV (@, + u— Ty (u)) da.
Q
Setting @ = 2Ty, (u — Gi(u)), we have
Wp, — W strongly in W(}'p(‘)((z)
and

0 .
Vw = EVX{k§|u|§k+h} a.e. in {2.
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Passing to the limit in (2.2)), we get

1 1
(2.3) 7 S a(x,u, Vu) - Vudx + 7 S ¢(u) - Vudz
{k<|u|<k+h} {k<|u|<k+h}
1
+ 2 | g(a, w)Th(u — Gy(u)) dz

!

< 3 | @)D~ Gutw)) o+ 1 [ gl )T — Gi(w) do

(0] (0]
+ S F -Vudx.
{k<|u|]<k+h}

S| =

By (Hs), we may assume that ¢ = (¢1,...,0n), where ¢; € C(R) for
1<i <N

Let ¢i(t) = §o Xghely<hin@i(n)dn and set ¢ = (¢1,...,dx). Then it
is easy to see that ¢ € (Wol’p(')((l))N. Thus, for the second term of the
left-hand side in ([2.3)), using Lemma we have

(2.4) S o(u) - Vudx = S X{k<|u|<k+h}P(w) - Vudz
{k<|u|<k+h} N
= S div ¢(u) dz = 0.
2
Combining (2.3) with (2.4), it follows from (H;) and (Hy) that
(2.5)
o | VuP@de < | |f(@)]|Ge(u)| dz + | |F| |Vu| da.
{k<|u|<k+h} {|u|>k} {k<|u|<k+h}

Letting h tend to infinity in (2.5)), we obtain
(2.6) a | [VuP@de < | |f@)|Ge(w)dz+ | |F||Vulda,
A(K) A(K) A(k)

where A(k) = {z € 2 |u(x)| > k}.
By using the Young inequality in the second term on the right hand side

of (2.6 we have

S F-VGg(u)dz < o S |F|P"®) da 4 ¢y S VG (u) [P d.
2 A(k) n

Now combining the last two formulas, using Proposition and taking
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d=a—cy >0, we get

d S VG (u)|P®) de < ¢ S |F|P'®) dz + S lf| - |Gr(u)| dx

2 A(k)
<c | IFP@ do+ esl| Fxa e - 1GR@p.
A(k)
<c | IFP® do + el fxally e - IVGr@) e
A(k)

<e S PP @) dz + cs| fxap (S VG (u)[P®) d.’IT)l/’Yl

A(k)
with
if |[VGg(u N> 1,
- {p || k( )Hp() =

ptif ”va(u)”p(~) < 1.

Using Young’s inequality, we obtain

¢\ VG PW dw < e | |FIP@ da + Allfxaclly
[0 A(k)

l
g VG (w)|P®) d.
Q

By Holder’s inequality and Proposition we get

~

’ / 1/
(2.7) % S VG (u)[P@) da < ¢ S |FP"®) da: + c’l( S ’f‘P*(x)) Y e
2 A(k) A(K)
Ser §FP @ do+ QI o g el ™
A(k) L520)-P%() ()
/ 'Yi
<c S |FP'®) da + (k) 7275
Ak)
1 o
<all[ PO, oywey - (@F) 7 + (D)7

with s1(x) > r(x) and sa(z) > g(z) for x € 2, &(k) = meas(A(k)), and

o = pi if HfXAka’*(-) > 1,
Pt it | fxag ey <1,

(ﬁ%)f if Ixall o =1,
v = o) At 520)—P50)
(oerm) Hlhxadl_wo <L

so()—pk ()
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G Sm) ifIxall oo =1,

s1()=p"(")

76 = s1(x + .
@%@ Hlxad_so <L
s1()—p'()
In view of the Sobolev inequality and Proposition [2.2] we have
/
(2.8) S |va(u)|p(w) dx > 04(S |Gk(u)|p*(m))'y4 ¥3 iz,
N 0N
where
s = (p)” i Ge(u)llpy 2 1, _ W IVGR@)p = 1,
(p)™ i | Gr(u)lp.) < L. pt A VG < 1.

So by (2.7) and , we obtain
(2.9) | 1Gr(w)

n

Choose h such that h —k > 1 and in Ay, = {x € 2 : |u| > h} we have
h —k < Gi(u). Then in view of (2.9) we get

B(h) <

First, let p* be a constant satisfying p™ < min_ (1 4+ 1/N)p(z), which
implies that

71-73 73
P0) d < cmax((@(k)) 2707 (B(K)) 01 ).

o (8007 (201 5 ).

Np(z)
p < min ————.
z€N N — p( )
Then 73/v4 > 1 and 7{/v2 > 1. By a suitable choice of s1(-) and sa(-),

we have 3 = ,&% > 1. By Lemma 4 of Stampacchia [22], there exists a

constant C' such that ||ul|e. < C.

Now let p € C(£2) be such that p(z) < = (:(E)) and p(z) < (1+1/N)p(x).

By the continuity of p(-) on {2 there exist constants 61,2 > 0 such that

N _
(2.10) max p(y) < min _Noly) for all x € (2,
yEB(x,61)N 02 yeBlwsne N —p(y)
1 _
(2.11) max _ p(y) < inf (1 + )p(y) for all z € (2.
yEB(z,62)NSN2 yEB(z,62)NSN2 N

Since (2 is compact, we can cover it with a finite number of balls (Bj);?:1
and there exists a constant A > 0 such that

(2.12) min(dy,02) > [ >\, 2,=B,NQ, fori=1,... k.
We denote by p;r and p*] the local maxima of p and p, = ]\J,V on (2;
respectively (and by Py and p, i the respective local minima). By (2.9)) and
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the fact that p,; < p. = Z\va—zgk)')

(2.13)

on (2;, we have

. ()74 il
[ 1GH () do <  max((@i(k)) 375705 (@4(k)) 60 ) for i =1,....k,
£2;

with @;(k) = meas({x € §2; : |u| > k}), and ’yji- the restriction of v; to £2;.
Choose h such that h —k > 1 and in A} = {z € {2 : |u| > h} we have

h —k < Gg(u). Then in view of (2.13)) we obtain

C ODg 3
B(h) < ———— max((@(k)) 7 (Bi(k)) W8 fori=1,....k.
(h — k)=

It follows from ([2.11]) that

J Jy/
l{;>1 and @

>1 forallzePandj=1,...,k,

Y4 72
which gives 1—;‘(1—{])/ > 1 and by a suitable choice of s1(+) and s2(-) we have
4 2
P\ A -
%1731 >1 forallzePandi=1,..., k.
Y2 V5 V4

By [22, Lemma 4] we get |[uljoo < C.

3. Existence of solution for the unilateral problem (|1.1))

THEOREM 3.1. Suppose that assumptions (Hy)-(Hg) hold, and let q(x) >

max(z%,p’(x)) and r(zx) > pi for all x € 2. Then there exists a weak

(z)—1

solution u to problem (1.1)) (in the sense of definition (2.7))).
Proof. We divide the proof into three steps.

STEP 1: A priori estimate. Let us define
(3.1) an(z,5,8) = a(z,Ty(s),&), ae xc2,VscR, VEeRY,
and
(32)  ouls) = 0(Tn(s)),  gnlx,s) =Ti/mlg(z,s)),
ae. x €, VseR, Ve eRY.

We consider the following approximate problem: find u, € K (1) such that
(3.3)  (—div(ap(z,un, Vuy)), un — v) + (— div(epn(u)), u, — v)

+ (gn(xaun)v Up — U) S (f7 Up — U) + <_ le(F)>un - ’U> V’U € K(w)

By the classical result by Leray and Lions [16], for each n € N, there exists
a weak solution u, € K(1¢) N L>®(2) of (3.3). By the same argument as
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before, we derive that

(3.4) tnll iy < M,

and thus

(3.5) an (T, Up, V) = a(x, up, Vu,) and ¢ (un) = ¢(uy).

As ¢ € K(¢)NL>®(£2), taking v = 1 as a test function in , by we

obtain

| a(@, un, Vun)V (un — ¥) dz+ § ¢ (un) V(un — ) do + | g, 1) (un — ) da
(9} 2 2
<\ flun — ) dz+ | FV (up — 1) da.
2 2

Noting that {, ¢(un)Vu, dz = 0, by Young’s inequality, (3.5) and (Hy)—(Hy)
we obtain

| IVun P da < €.

Q
By Proposition 2.2 and the last inequality,

(3.6) [Vun o) () < Co.

Then it follows from the results of [10] that there exists a subsequence of
(uy) (still denoted by (u,)) such that

(3.7) Vu, — Vu  weakly in (LPO)(02))V,
(3.8) Up — U strongly in LP0)(£2) and a.e. in £2,
(3.9) Up — U weakly™ in L>(£2).

By (3.8), we obtain

gn(xaun) — g(x,u) a.e. in 2.
By assumption (Hy) and (3.4]), for any measurable set E C 2,

{19 (@, un)| do < | har(z) da.
E E

Using Vitali’s theorem, we conclude that

(3.10) gn(z,un) = g(z,u) strongly in L'(£2).

STEP 2: Almost everywhere convergence of the gradient. By (Hsz), to
obtain the convergence of the gradient, it suffices to prove

(3.11) lim sup S[a(m,un, Vuy,) — a(z, up, Vu)|(Vu, — Vu) dz < 0.

n—00
2
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The left-hand side of (3.11]) can be written as

(3.12) S [a(x, upn, Vuy) — a(z,u, Vu)|(Vu, — Vu) dz
Q
= S a(x, Up, Vuy)(Vuy, — Vu) dr — S a(x, up, Vu)(Vu, — Vu) dx
Q Q

= A, — B,.
The term B, goes to zero as n — oo. Indeed, by (Ha2), (3.4)), (3.8), and
Lebesgue’s dominated convergence theorem, we have
(3.13) a(x, tn, Vu) — a(z,u, Vu)  strongly in (L7 ) (02))V;

this convergence together with (3.7)) implies lim,,_,~ B, = 0.
Next, we claim that limsup, ,., A, < 0. Indeed, as u, € K(v¢), and

uy, — u almost everywhere, we deduce that u > 1 a.e. in 2 and u € L>(£2).
Thus we can take u as a test function in (3.3)). By (3.5]), we obtain

[ (), e, V) ¥ (s — 0) A+ | $010) ¥ 1t — 0) i + | (2, 1) (0 — ) it
2 2 2
< S flup —u)de + S FV(u, —u)dx.
2 2
Letting n — oo we get

(3.14) limsup 4,, < 0.

n—oo

By (3.13), and (3.14)) and using Lemma we conclude that
(3.15) Vu, — Vu a.e. in (2.

STEP 3: Passage to the limit. Let us take v € K(¢) N L>°({2) as a test

function in (3.3)):
(3.16) S a(x, Up, Vi)V (uy —v) dr + S ¢(un)V(u, —v)de

n 0
+ S g(x, up)(up —v) dz
0
< Sf(un —v)dr + S FV(u, —v)dz.
0 n
By (H3) and the assumptions of the theorem it is easy to get
(3.17) Sf(un—v)d:c—> Sf(u—v)d:c,
N 0
(3.18) | FY(un —v)dz = | FV(u - v) da.
Q Q
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Also by (Hy), (Hs) and .,

(3.19) | ¢(un)V(n — v)dz — | p(u)V(u - v) da
N N
and
(3.20) S g(x, up)(up —v) de — S g(z,u)(u —v)de.
2 N
For the first term in (3.16)), by (3.15) and (Hs) we obtain
(3.21) a(x, U, V) — a(z,u, Vu)  strongly in (LPO)(2))V.
According to (3.7)), we have
(3.22) S a(x, Up, Vi)V (uy —v) de — S a(x,u, Vu)V(u — v) dz.
n 2

Finally, by (3.17), (3.19), (3.22) we conclude that u is a weak solution to
problem (1.1). =

4. Uniqueness of solution for (1.1]). In this section, we discuss the
uniqueness of weak solutions to problem ((1.1). We make the following as-
sumptions:

(Hg) ¢ is a locally Lipschitz continuous function.
(H7) For every k > 0, there exists &, € LP()(£2) and a constant f; > 0
such that

(4.1) |a(z, s1,8)—a(z, s2,8)| < |s1—s9|[Brl€ P+ (z)]  for ae. z € 2
for all ¢ € RY and s1, s with |s1], |s2] < k.

(Hg) g: 2xR — Ris strictly increasing with respect to the second variable.

THEOREM 4.1. Suppose that 1 < p(-) < N. Assume that (H1)-(Hg) hold.
Then problem (1.1)) admits a unique weak solution uw € K (¢) N L*(42).

Proof. The existence is proved in Theorem 3.1. Now, to prove unique-
ness, assume that uy,us € K(30) N L*({2) are two weak solutions to (|1.1)),
SO

(4.2) S a(x,ur, Vu)V(uy —v)de + S d(u1)V(ug —v) de
n 2
+ng up)(up —v) de
(9

< | flw—v)yde+ | FV(uy —v)dz, Vo€ K(3) N L®(12),
(0] 2
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and
(43)  {a(z,u, Vup)V(ug — v) dx + | ¢(up)V(up — v) da
02 2
+Sg (z,u2)(ug —v)dzx
2
< g flug —v)dz + | FV(ug —v)dz, Yo € K(¢b) N L®(R2).
(0]
Denote

(4.4) vie =up — Te((ug —u2)™),  voe = ug + To((ug —u2)™).

It is is easy to check that vi.,ve. € K(¢) N L*°(§2). Thus, we can choose
v =1 and v = vy as test functions in (4.2)) and (4.3)) to obtain

(4.5) é S [a(z,u1, Vuy) — a(z, ug, Vue)|V(u1 — ug) dx

2
1
+ = | e )]V (ug — ug) da
€ 5.
1
+ - | To((ur = u2) M) (g(@, 1) — g(, u2)) dz <0,
2
where 2. = {z € 2 : 0 < u; —ug < ¢}. Denote the three terms on the
left-hand side by J1( ) 2(€), J3(¢). Then
(4.6) J1(e) S [a(x,ur, Vur) — a(z,u1, Vug)|V(up — ug) dx
Qe
1
+E S [a(x,u1, Vug) — a(z, ug, Vua)|V(u; — ug) dx.
2

By Theorem 3.1, [[u1l[zec (), [|uzllzc(2) < M. Therefore, using (Hr), we
have

1
z S la(x,u1, Vua) — a(x, ua, Vua)|V(u1 — uz) dz
2

< S (B | Vua PP+ ()] V (u1 — ug) da.
02
It follows that
1
(4.7) lim — S [a(x,u1, Vua) — a(x, us, Vug)|V(u1 — ug) dx = 0.

£—00 €
£

Combining (4.6)—(4.7) with (H2) yields
(4.8) limsup Jy(g) > 0.

E—00
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For the term J; we have, in view of (H7),

1
=V [p(w1) — 6(ua)]V (w1 — uz) d| < kar | [V(u1 — ug)| de,
0. 2
where kjs is the Lipschitz constant of ¢ on [—M, M], and thus
(4.9) Elggo Ja(e) = 0.
By (Hy), it is easy to see that
(4.10) Elgrolo J3(e) = S (9(x,u1) — g(x,u2)) dz
{u1>u2}
= S (9(x,u1) — g(z,u2)) dz.
{ur1>uz}
Letting ¢ — oo, it follows from (4.8)—(4.10|) that
(4.11) S (9(z,u1) — g(x,u9)) dx < 0.
{u1>u2}

Hence, [{u1 > ug}| =0, that is, u; < ug a.e. in {2 and changing the roles of
u1 and ug, we obtain ug < uq a.e. in {2, which gives u1 = uo a.e. in 2. =
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