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Summary. We give several results concerning suprema of canonical processes. The main
theorem concerns a contraction property of Bernoulli canonical processes which generalizes
the one proved by Talagrand (1993). It states that for independent Rademacher random
variables (εi)i≥1 we can compare E supt∈T

∑
i≥1 ϕi(t)εi with E supt∈T

∑∞
i=1 tiεi, where

the function ϕ = (ϕi)i≥1 : T → `2, T ⊂ `2, satisfies certain conditions. Originally, it
was assumed that each ϕi is a contraction. We relax this assumption to comparability of
Gaussian parts of increments: for all s, t ∈ T and p ≥ 0,

inf
|Ic|≤Cp

∑
i∈I

|ϕi(t)− ϕi(s)|2 ≤ C2 inf
|Ic|≤p

∑
i∈I

|ti − si|2,

where C ≥ 1 is an absolute constant and I ⊂ N, Ic = N \ I.

1. Introduction and notation. Throughout this paper we will use
the following notation. For a set A the number of elements in A will be
denoted as |A|. If t = (ti)i≥1 is a sequence of real numbers and p ≥ 1 then
‖t‖p = (

∑∞
i=1 |ti|p)1/p, and `p is the space of all sequences t with ‖t‖p <∞.

If S, T ⊂ `p then S + T = {s + t : s ∈ S, t ∈ T}. For a random variable ξ
and p > 0 we put ‖ξ‖p = (E|ξ|p)1/p. If (ξi)i≥1 is a sequence of independent,
identically distributed random variables such that Eξi = 0, Eξ2i = 1 and
t = (ti)i≥1 ∈ `2 then the random variable

(1) Xt =
∞∑
i=1

tiξi
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is well-defined. For each T ⊂ `2 with 0 ∈ T the process XT = (Xt)t∈T is
called canonical. The above series converges in ‖ · ‖2, i.e.

lim
n→∞

∥∥∥ n∑
i=1

tiξi −Xt

∥∥∥
2

= 0.

Clearly,
‖Xt −Xs‖2 = ‖t− s‖2 for s, t ∈ T.

Remark 1. The almost sure convergence in (1) might be guaranteed also
when the independence assumption on ξi’s is skipped. In that case we may
consider a finite-dimensional version of (1), where T ⊂ Rd. The most studied
example is when ξi’s have log-concave tails, i.e. P(|ξi| > t) = exp(−Ni(t))
for Ni : [0,∞]→ [0,∞] convex, and may be dependent.

We want to distinguish two types of canonical processes which will be
of special interest. If (ξi) = (εi) and P(εi = 1) = P(εi = −1) = 1/2
then the process XT is called canonical Bernoulli and denoted by BT =
(Bt)t∈T . This class of processes is important for various applications, e.g.
to infinitely divisible processes [18] and empirical processes (see [19] for a
comprehensive study). If (ξi) = (gi) and gi are normally N (0, 1) distributed
then the process XT is called canonical Gaussian and denoted by GT =
(Gt)t∈T . In fact, canonical Gaussian processes can be seen as a motivation
to study canonical processes in general, the reason being the Karhunen–
Loève representation of separable Gaussian processes by means of canonical
Gaussian processes (see e.g. [12, Corollary 5.3.4]).

The main object studied will be suprema of canonical processes. For any
set T and a stochastic process (Xt)t∈T we define

SX(T ) = sup
F⊂T

E sup
t∈F

Xt,

where F runs through all finite subsets of T . Usually, by considering a sepa-
rable modification of Xt, t ∈ T , it is possible to guarantee that supt∈T Xt is
a well-defined random variable (for the definition of a separable version of a
process and a discussion of measurability of suprema in the general setting of
not necessarily separable Banach spaces see [11, Ch. 2]). In this case SX(T )
coincides with the usual expectation of the supremum of Xt, i.e.

SX(T ) = E sup
t∈T

Xt.

Let us finish this section with a few important technicalities which will
be helpful in dealing with canonical processes. We have SX(T ) = SX(T − t),
where T−t = {s−t : s ∈ T}, so we may always require that 0 ∈ T . Moreover,
SX(T ) = SX(Conv T ) and SX(T ) = SX(clT ), where Conv T is the convex
hull of T and clT is the closure of T in `2.
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We follow the convention that numerical constants denoted by the same
letter may vary from line to line.

2. Suprema of canonical processes via chaining. First, we recall
the basics of the chaining approach to upper bounds for stochastic processes.
Let (T, d) be a separable metric space, t0 ∈ T a fixed element and Xt, t ∈ T ,
a process such that ‖Xs −Xt‖2 ≤ d(t, s) for t, s ∈ T , so that it is separable.
For each countable dense D ⊂ T it is true that E supt∈DXt = SX(T ).

We say that a sequence A = (An)n≥0 of partitions of T is admissible if
A0 = {T} and |An| ≤ Nn = 22

n for n ≥ 1 and these partitions are nested,
i.e. for any A ∈ An, n ≥ 1, there is B ∈ An−1 such that A ⊂ B. For t ∈ T
we denote by An(t) the unique element of the partition An which contains t.

A sequence π = (πn)n≥0 of mappings πn : T → T is said to be adapted
to the partitions (An)n≥0 if πn(t) = πn(s) for s, t ∈ A ∈ An, n ≥ 0, and
π0(t) = t0 for t ∈ T (the common value of πn on A ∈ An will be denoted by
πn(A)). Let Tn = {πn(t) : t ∈ T} and D =

⋃
n Tn.

We say that π is regular if

(2) lim
n→∞

d(t, πn(t)) = 0 for each t ∈ T.

For regular π the set D is dense in T . We define

γX(π) = sup
t∈T

∞∑
n=1

‖Xπn(t) −Xπn−1(t)‖2n , γX(T ) = inf γX(π)

where the infimum is taken over all admissible sequences (An)n≥0 of parti-
tions of T and regular sequences πn, n ≥ 0, of mappings T → T adapted to
(An)n≥0. Furthermore, for t ∈ T and each m > 1 we can write the following
chain representation:

Xπm(t) = Xπ0(t) +

m∑
n=1

(Xπn(t) −Xπn−1(t)).

Therefore for each t ∈ D we have

(3) Xt ≤ Xt0 +
∞∑
n=1

|Xπn(t) −Xπn−1(t)|.

γX(T ) should be compared with Talagrand’s functional γ2(T, d) (see [19, Def-
inition 2.2.19] or the formulation due to Latała and Mendelson (see [9], [13]),
where it was proved that under suitable regularity assumptions, SX(T ) ≤
KγX(T ), where K is a universal constant.

Let us give a short argument for a similar upper bound with an improved
constant.
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Theorem 1. Under the above assumption on (T, d), t0 ∈ T and a process
(Xt)t∈T we have

SX(T ) ≤ EXt0 + 3γX(T ).

Proof. Let (An)n≥0 be any admissible sequence of partitions of T and
π = (πn)n≥0 a regular and sequence of mappings of T adapted to (An)n≥0.
For any A ∈ An and n ≥ 1 we denote by A′ the unique element of An−1
which contains A.

In what follows we will use the fact that a ≤ b(1 + (a/b − 1)+) for any
a, b > 0. For each t ∈ D we get

Xt −Xt0 ≤
∞∑
n=1

|Xπn(t) −Xπn−1(t)|

≤
∞∑
n=1

2‖Xπn(t) −Xπn−1(t)‖2n
(

1 +

( |Xπn(t) −Xπn−1(t)|
2‖Xπn(t) −Xπn−1(t)‖2n

− 1

)
+

)

≤
( ∞∑
n=1

2‖Xπn(t)−Xπn−1(t)‖2n
)(

1 +

∞∑
n=1

( |Xπn(t)−Xπn−1(t)|
2‖Xπn(t)−Xπn−1(t)‖2n

−1

)
+

)
.

The last inequality holds since
∑∞

n=1 bn(1 + cn) ≤ (
∑∞

n=1 bn)(1 +
∑∞

n=1 cn)
for any sequences (bn), (cn) of nonnegative real numbers.

Hence,

sup
t∈D

Xt −Xt0 ≤
(

sup
t∈T

∞∑
n=1

2‖Xπn(t) −Xπn−1(t)‖2n
)

·
(

1 +

∞∑
n=1

sup
t∈T

( |Xπn(t) −Xπn−1(t)|
2‖Xπn(t) −Xπn−1(t)‖

− 1

)
+

)

≤ 2γX(π)

(
1 +

∞∑
n=1

∑
A∈An

( |Xπn(A) −Xπn−1(A′)|
2‖Xπn(A) −Xπn−1(A′)‖2n

− 1

)
+

)
.

We easily see that if t ∈ A ∈ An then

Xπn(t) −Xπn−1(t) = Xπn(A) −Xπn−1(A′).

Therefore,

(4) E sup
t∈D

Xt

≤ EXt0 + 2γX(π)

(
1 +

∞∑
n=1

∑
A∈An

E

( |Xπn(A) −Xπn−1(A′)|
2‖Xπn(A) −Xπn−1(A′)‖2n

− 1

)
+

)
.

Now, we show that for any nonnegative random variable θ and p > 2,

E

(
θ

2‖θ‖p
− 1

)
+

≤ 1

2
· 1

p · 2p
.
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Obviously, it is enough to prove that if θ ≥ 0 and Eθp ≤ 1 then E(θ/2−1)+ ≤
1
2 ·

1
p·2p . Indeed, if θ is as above and ξ = E(θ|G) where G is the σ-field generated

by the single event C = {θ ≥ 2} then E(ξ/2 − 1)+ = E(θ/2 − 1)+ and by
Jensen’s inequality Eξp ≤ Eθp ≤ 1. Observe that for the random variable ξ
we have ξ = x1C for some x > 2 and C with P(C) ≤ 1/xp. Hence

E

(
θ

2
− 1

)
+

= E(ξ) ≤ max
x>2

1

xp

(
x

2
− 1

)
=

(
1− 1

p

)p−1 1

p · 2p
≤ 1

2
· 1

p · 2p
.

If we apply the above inequality for p = 2n for each n ≥ 1, the inequal-
ity (4) yields

E sup
t∈D

Xt −EXt0 ≤ 2γX(π)

(
1 +

1

2
·
∞∑
k=1

Nk

2k22k

)
≤ 3γX(π).

Hence taking the infimum over all admissible partitions together with regular
and adapted sequences π we conclude the proof.

The same proof gives the estimate

E sup
t∈T
|Xt| ≤ E|Xt0 |+ 3γX(T ).

Lemma 1. Let X = (Xt), t ∈ `2, be a canonical process and C1 a constant
such that

(5) ‖Xt‖2n+1 ≤ C1‖Xt‖2n , ∀t ∈ `2, n ≥ 0.

Then, for all T1, T2 ⊂ `2.

(6) γX(T1 + T2) ≤ C1(γX(T1) + γX(T2)).

For canonical Bernoulli and canonical Gaussian processes the above inequal-
ity holds with C1 =

√
3.

Proof. For i = 1, 2 let (Ain) be an admisible sequence of partitions of Ti,
together with an adapted and regular sequence πi = (πin) of mappings of Ti.
We have to construct an admissible sequence of partitions for T1 + T2 with
an associated sequence of mappings. For that purpose for each t ∈ T1 + T2
fix t1 ∈ T1 and t2 ∈ T2 such that t = t1 + t2. For A1 ⊂ T1 and A2 ⊂ T2 define

A1 ∗A2 = {t ∈ T1 + T2 : t1 ∈ A1, t2 ∈ A2}.

Define Bn in the following way: B0 = {T1 + T2} and for n ≥ 0 let Bn+1

consist of all sets A1 ∗ A2, where A1 ∈ A1
n and A2 ∈ A2

n. It is easy to
see that (Bn) is an admissible sequence of partitions of T1 + T2. Indeed,
|Bn+1| ≤ Nn ·Nn ≤ Nn+1, the sequence is clearly nested and for t = t1 + t2

we have Bn(t) = An(t1) ∗A′n(t2).
Now define a sequence π = (πn)n≥0 by π0(t) = 0 and πn+1(t) = π1n(t1) +

π2n(t2) for t ∈ T 1 + T 2. Obviously the sequence (πn) is regular and adapted
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to the partition (Bn). Furthermore,
‖t− πn+1(t)‖2 ≤ ‖t1 − π1n(t1)‖2 + ‖t2 − π2n(t2)‖2,

so limn→∞ ‖t− πn+1(t)‖2 = 0. In this way we guarantee the regularity con-
dition (2) for the sequence of mappings πn adapted to the partition Bn.

We need to show that for fixed t ∈ T1 + T2,

(7)
∞∑
n=1

‖Xπn(t) −Xπn−1(t)‖2n ≤ C1(γX(T1) + γX(T2)).

By the above construction and the triangle inequality we get
‖Xπn+1(t)−Xπn(t)‖2n+1≤‖Xπ1

n(t
1)−Xπ1

n−1(t
1)‖2n+1+‖Xπ2

n(t
2)−Xπ2

n−1(t
2)‖2n+1 ,

so by (5),
‖Xπn+1(t)−Xπn(t)‖2n ≤ C1(‖Xπ1

n(t
1)−Xπ1

n−1(t
1)‖2n+‖Xπ2

n(t
2)−Xπ2

n−1(t
2)‖2n)

and we sum over n ≥ 1 to obtain (7). That (5) holds with constant
√

3
for both canonical Bernoulli and Gaussian processes is a result known as
hypercontractivity (cf. [1], [7, Chapter 3.4], [4, Chapter 13]), which states
that for 1 < q < p < ∞ we have ‖Bt‖p ≤

√
p−1
q−1‖Bt‖q, and similarly

for Gt.
Let us summarize the available information about the processes for which

a full characterization of the supremum (i.e. lower and upper bounds) can
be provided with the use of γX(T ). The seminal result of Fernique and Ta-
lagrand known as the Majorizing Measure Theorem (see [3], [16] or [19] for
a modern formulation) is equivalent to the statement that SG(T ) is com-
parable with γG(T ) up to a numerical constant. In [17] it was proved that
SX(T ) is comparable with a quantity which, in a sense, is equivalent to
γX(T ) for a canonical process generated by ξ’s which are symmetric and
satisfy P(|ξ| > t) = exp(−cptp) for a fixed p ∈ [1, 2]. A similar result holds
for p > 2, yet it is only possible to show that there exists a set T ′ ⊂ `2

(which may significantly differ from T ) such that SX(T ) is comparable with
γX(T ′) up to a numerical constant. Note that the limiting case when p→∞
is the case of canonical Bernoulli processes.

Later, the idea of [17] was slightly generalized by R. Latała [8] to canon-
ical processes generated by ξ with log-concave tails, yet under specific reg-
ularity assumptions. Finally, in [10] it was proved that it suffices to assume
only certain conditions on the moment growth of ξ. Unfortunately, this result
still does not apply to Bernoulli processes.

The question of characterizing SB(T ) was a long-standing problem posed
by M. Talagrand and known as the Bernoulli conjecture. It was finally settled
in [2]. In order to explain this result we need to provide a family of distances
relating to canonical Bernoulli processes which follow from some properties
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of Bernoulli-type random variables. We have (see [5], [14] and [6] for the
formulation below), for any p ∈ N, p ≥ 1,

(8) ‖Bt‖p ≤
p∑
i=1

|t∗i |+
√
p
(∑
i>p

|t∗i |2
)1/2

≤ 4‖Bt‖p,

where (t∗i )i≥1 is the rearrangement of (ti)i≥1 such that |t∗1| ≥ |t∗2| ≥ · · · .
Equivalently, we can express this relation as

1

4
inf

t=t1+t2
(‖t1‖1 + ‖Gt2‖p) ≤ ‖Bt‖p ≤ inf

t=t1+t2
(‖t1‖1 + ‖Gt2‖p)

for p ≥ 2. This motivates the following interpretation. If we denote by I ⊂ N
some index set, we can think of (8) as a decomposition of the norm ‖Bt‖p
into the `1 part

p∑
i=1

|t∗i | = sup
|Ic|≤p

∑
i∈Ic
|ti|

and the Gaussian part
√
p
(∑
i>p

|t∗i |2
)1/2

=
√
p inf
|Ic|≤p

(∑
i∈I
|ti|2

)1/2
.

In fact, a characterization similar to (8) can be formulated for a broad
class of processes, namely processes with log-concave distributions. In par-
ticular, in [9] there is a characterization of ‖Xt−Xs‖p for canonical processes
based on one-unconditional log-concave random variables.

As already mentioned, the characterization of SB(T ) was known as the
Bernoulli conjecture and was finally proved in [2]. It states that similarly
to (8), SB(T ) can be decomposed into the Gaussian and `1 parts. More
precisely, there must exist a decomposition of T into T1, T2 ⊂ `2 such that
T1 +T2 ⊃ T and moreover SB(T ) dominates up to a universal constant both
supt∈T1 ‖t‖1 and SG(T2). Usually such a decomposition is formulated in terms
of existence of a mapping π : T → `2 which defines T1 = {t − π(t) : t ∈ T}
and T2 = {π(t) : t ∈ T}. Recall that we can always assume that 0 ∈ T and
π(0) = 0.

We now prove that the Bernoulli Theorem of [2] implies that there must
exist a subset T ′ ⊂ `2 such that γB(T ′) is comparable to SB(T ). The idea
of the proof works also for other classes of canonical processes for which we
can characterize SX(T ) in terms of increments (see Remark 3 below).

Theorem 2. There exists a function π : T → `2 such that

(9) K−1(γB(T1 + T2)) ≤ SB(T ) ≤ K(γB(T1 + T2)),

where K is a universal constant, T1 = {t − π(t) : t ∈ T} and T2 = {π(t) :
t ∈ T}.
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Proof. By the main result of [2] we get the existence of π : T → `2 and
consequently the existence of a decomposition into countable sets T1, T2 ⊂ `2
such that T ⊂ T1 + T2 and

(10) SB(T ) ≥ K−1
(

sup
t∈T1
‖t‖1 + SG(T2)

)
,

where K is a universal constant. By the famous Fernique–Talagrand ma-
jorizing measure bound ([16], [15], [3]) we know that SG(T ) is comparable
with γG(T2). To be precise, we know that SG(T ) ≥ Cγ2(T ), where γ2(T ) is
Talagrand’s γ2 functional given by

inf sup
t∈T2

∞∑
n=0

2n/2∆2(An(t)),

where the infimum runs over all admissible sequences of partitions of T2
and ∆2 denotes the diameter of a set in `2 norm. Obviously, we associate
with any admissible partition (An)n≥0 a sequence (πn) by choosing πn(t) to
be any point in An(t). Notice that the diameters of the sets An(t) converge
uniformly to 0 so (5) is satisfied. To conclude that γ2(T2) ≥ CγG(T2) we just
estimate the 2nth norm of a Gaussian random variable by the 2nd norm.
Now, let g be a standard normal variable independent of Bt, t ∈ T . Observe
that for any p ≥ 1,

√
2√
π
‖Bt −Bs‖p = E|g|‖Bt −Bs‖p ≤ ‖Gt −Gs‖p

so we can conclude
√
π√
2
γG(T2) ≥ γB(T2).

The next goal is to show that supt∈T1 ‖t‖1 ≥ CγB(T1). To this end we
consider a dense countable subset S1 of T1. We will start by constructing an
admissible sequence of partititions and the associated sequence (πn) for S1
and then we will extend the construction to the whole T1. We choose an
admissible sequence (An(S1))n≥0 of partitions such that for n > 0, An(S1)
consists of Nn− 1 single points and one addititonal set that contains all the
remaining points. Clearly this sequence of partitions is nested. Fix t0 in S1.
Define

πn(t) =

{
t if An(t) = {t},
t0 otherwise.

Obviously, this sequence of partitions together with the sequence (πn) defined
above satisfy (2). If for some m, t ∈ Am(t) = {t} but Am−1(t) 6= {t}, then

∞∑
n=1

‖Bπn(t) −Bπn−1(t)‖2n = ‖Bt −Bt0‖2m ≤ ‖t− t0‖1.
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Therefore, by the triangle inequality,

sup
t∈S1

∞∑
n=1

‖Bπn(t) −Bπn−1(t)‖2n ≤ 2 sup
t∈S1

‖t‖1.

In this way we have proved that supt∈S1
‖t‖1 ≥ 1

2γB(S1).
Now, we provide a procedure that allows us to extend the construction of

the partition and the sequence (πn) to the whole T1. Recall that the partition
element An(S1) consists of Nn − 1 singletons which we will denote by Sn.
Of course, S1 ⊂ S2 ⊂ · · · . Furthermore, S1 is countable, so we can refer to
some fixed order on S1. To construct the partition An(T1) we will proceed
by induction. For n = 0 we simply put A0(T1) = {T1}, π0(t) = t0 ∈ S1 ∩ T1,
since S1 ∩ T1 6= ∅. Suppose we have constructed An−1(T1), πn−1(t), t ∈ T1,
n ≥ 2. Consider A ∈ An−1(T1). For t ∈ A we define πn(t) as the element s of
Sn−1 which minimizes ‖t−s‖2. In the case of multiple minimizers we choose
the smallest one in the assumed order. This mapping defines a partition of
the set A into no more than Nn−1−1 elements. We repeat this procedure for
the remaining elements of An−1(T1) to obtain An(T1), which is nested in the
obvious way. Moreover, its cardinality does not exceed Nn−1 · Nn−1 = Nn.
Finally, the construction of πn(t) guarantees the regularity condition (5).
This finishes the construction.

By Lemma 1 we obtain

SB(T ) ≥ K−1(γB(T1) + γB(T2)) ≥ (KC1)
−1γB(T1 + T2).

On the other hand, we have a trivial upper bound

SB(T ) ≤ SB(T1) + SB(T2) = SB(T1 + T2) ≤ 4γB(T1 + T2),

by Theorem 1.

Remark 2. The natural lower bound in the above theorem would of
course be γB(T ) rather than γB(T1 +T2). However, it is not necessarily true
that γB is monotone in the sense that γB(T ) ≤ γB(T1 + T2) despite the fact
that T ⊂ T1 + T2. The problem is that πn(T ) ⊂ T1 + T2 but we cannot
easily rearrange πn so that πn(T ) ⊂ T . Obviously, we could reformulate our
definition in a way that πn : T → `2. In this setting γB is monotone but
values of π may still stay outside T . It is a non-trivial question whether it is
possible to improve the choice of the decomposition map π on the set T so
that π(T ) ⊂ T .

Let us also observe that for P(|ξi| > t) = exp(−cptp), p ≥ 2, we could
give a similar proof, since for any p we have Talagrand’s [19] characterization
of SX(T ).

Remark 3. For the class of canonical processes based on independent
symmetric ξi such thatP(|ξi| > t) = exp(−cptp), p ≥ 2, SX(T ) is comparable
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with γX(T1 + T2) up to a constant for some T1 + T2 ⊂ `2 that contains T .
The role of T2 can again be associated with comparing the process X with
the Gaussian process, whereas T1 ⊂ `p

∗ for p∗ = p
p−1 .

In general, we conjecture that the same is true for canonical processes
based on log-concave random variables.

Conjecture 1. If (ξi)i≥1 is a sequence of independent log-concave ran-
dom variables with mean 0 and variance 1 then there exist π : T → `2 such
that if T1 = {t− π(t) ∈ `2 : t ∈ T} and T2 = {π(t) ∈ `2 : t ∈ T}, then

K−1(γX(T1 + T2)) ≤ SX(T ) ≤ K(γX(T1 + T2)),

where K is a universal constant.

3. Contractions of canonical Bernoulli processes. Suppose we have
a map ϕ : T → `2. The main question we treat in this paper is under what
assumptions on Xt, T and ϕ we can show that SX(ϕ(T )) is bounded by
SX(T ) up to a numerical constant. In particular we are interested in the
case of canonical Bernoulli processes.

Let us start with classical results concerning comparison of Gaussian
processes. It is well-known that if Gt and G′t, t ∈ T , are centered Gaussian
processes and E|Gt−Gs|2 ≤ E|G′t−G′s|2, then for each finite subset F ⊂ T ,
(11) E sup

t∈F
Gt ≤ E sup

t∈F
G′t.

This is a consequence of Slepian’s Lemma ([11, Corollary 3.14] provides the
proof with constant 2; the proof with the best possible constant 1 is in [3,
Corollary 2.1.3]). Note also that by the Majorizing Measure Theorem the
result can be generalized to the case where we compare a centered Gaussian
process with a centered process for which we only require subgaussianity (see
[11, Theorem 12.16]).

We start with a discussion of possible extensions of this result. It is
natural to ask for other cases when similar comparison results hold. From
Theorem 1 it can be easily deduced that if we can compare moments then
we can compare γ-type upper bounds.

Corollary 1. Suppose that (Xt)t∈T is a canonical process and ϕ : T → `2.
If there exists a universal constant C such that for each n ≥ 1,

(12) ‖Xϕ(t) −Xϕ(s)‖2n ≤ C‖Xt −Xs‖2n ,
then SX(ϕ(T )) ≤ 3CγX(T ).

Proof. Clearly, by Theorem 1, SX(ϕ(T )) ≤ 4γX(ϕ(T )) ≤ 3CγX(T ).

This means that if we could show that SX(t) ≥ K−1γX(T ), then by
Corollary 1 we would get SX(ϕ(T )) ≤ 3CKSX(T ). Unfortunately, in general,
there is no proof that γX(T ) is comparable with SX(T ). On the other hand,
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as discussed before, there are cases where the idea works. In particular, we
could use Corollary 1 in order to recover the Gaussian comparison result with
some absolute constant. However, in the Gaussian setting, one can simply
refer to (11), rewriting it in the following way:

(13)
if ϕ : T → `2 satisfies ‖ϕ(t)− ϕ(s)‖2 ≤ ‖t− s‖2, then SG(ϕ(T )) ≤ SG(T ).

We now move to the case of canonical Bernoulli processes. The only
known comparison result is [18, Theorem 2.1] (or [11, Theorem 4.12]). It
states that if ϕ = (ϕi)i≥1 : T → `2, where ϕi : R→ R are contractions, then
SB(T ) dominates SB(ϕ(T )) with constant 1:

(14) if |ϕi(x)− ϕi(y)| ≤ |x− y| for i ≥ 1, then SB(ϕ(T )) ≤ SB(T ).

Note that if we are interested only in comparison up to a numerical constant
(not necessarily 1) then the requirement of coordinate contractions is too
demanding. However, it is known that the result analogous to (11), where
we assume that ϕ : `2 → `2 is a Lipschitz contraction, does not hold for
Bernoulli processes. Therefore some additional assumptions on ϕ or T are
required.

As we show in this paper, comparison for canonical Bernoulli processes
depends on a suitable family of distances already present in (8). The following
comparison result is a straightforward consequence of Theorem 2.

Corollary 2. Suppose that ϕ : T → `2 can be extended to T1 + T2 in
such a way that for any p ≥ 1,

‖Bϕ(t) −Bϕ(s)‖p ≤ ‖Bt −Bs‖p for all s, t ∈ T1 + T2.

Then SB(ϕ(T )) ≤ KSB(T ), where K is a universal constant.

Proof. Clearly, by Theorem 1 we have SB(ϕ(T )) ≤ 3γB(ϕ(T )). Hence,
by Theorem 2,

SB(ϕ(T )) ≤ 3γB(ϕ(T )) ≤ 3γB(ϕ(T1 + T2)) ≤ 3γB(T1 + T2) ≤ 3KSB(T ).

Note that the problem with application of the above result is that T1+T2
may be much larger than T . We conjecture the following generalization of
the above result.

Conjecture 2. Let ϕ = (ϕi)i≥1 : T → `2. If

(15) ‖Bϕ(t) −Bϕ(s)‖p ≤ ‖Bt −Bs‖p for all p ≥ 2, s, t ∈ T,
then SB(ϕ(T )) ≤ KSB(T ) for an absolute constant K.

We prove a weaker form of the conjecture. As explained before, the norm
‖Bt−Bs‖p can be decomposed into the Gaussian and `1 parts. Our condition
states that if the Gaussian part of ‖Bt−Bs‖p dominates the Gaussian part of



198 W. Bednorz and R. Martynek

‖Bϕ(t) −Bϕ(s)‖p for all s, t ∈ T and p ≥ 1 then SB(T ) dominates SB(ϕ(T ))
up to an absolute constant.

Theorem 3. Suppose that for all s, t ∈ T and all natural p ≥ 0 we have

(16) inf
|Ic|≤Cp

∑
i∈I
|ϕi(t)− ϕi(s)|2 ≤ C2 inf

|Ic|≤p

∑
i∈I
|ti − si|2

for an absolute constant C ≥ 1. Then SB(ϕ(T )) ≤ KSB(T ), where K is a
universal constant.

Remark 4. The result is stronger than the comparison for Bernoulli
processes (14). It is easy to give an example of ϕ for which the contraction
on each coordinate will fail, but if for t ∈ T , ϕ(t) is zero for all but some
fixed number of coordinates then C can be chosen to be appropriately large
so that (16) holds for p = 0. Consequently, the comparison will hold true. In
this way Theorem 3 supports the conjecture that (15) suffices to prove that
SB(ϕ(T )) ≤ KSB(T ).

There is an important case for which the conjecture is true: when we
assume that the supports J(t) = {i ≥ 1 : |ti| > 0} of t ∈ T are pairwise
disjoint for all t ∈ T . It is crucial to understand that in this case the de-
composition postulated in the Bernoulli Theorem can have a special form:
π(t) = tJ1(t) and t − π(t) = tJ2(t), where J1(t) and J2(t) are disjoint and
J1(t) ∪ J2(t) = J(t). We show this fact when proving the following result.

Theorem 4. Suppose that (15) is satisfied and the supports J(t) =
{i ≥ 1 : |ti| > 0} are pairwise disjoint for all t ∈ T . Then SB(ϕ(T )) ≤
KSB(T ), where K is a universal constant.

As we show in the last section, results of this type are of interest when one
wants to compare weak and strong moments for random series in a Banach
space, as proposed by K. Oleszkiewicz in a private communication.

4. Proof of the main results. In this section we prove Theorems 3
and 4.

Proof of Theorem 3. The main step in the proof of the Bernoulli Theorem
[2, Proposition 6.2] is to show the existence of a suitable admissible sequence
of partitions. Consequently, if SB(T ) < ∞ and 0 ∈ T then it is possible to
define nested partitions An of T such that |An| ≤ Nn. Moreover, for each
A ∈ An one can find jn(A) ∈ Z and πn(A) ∈ T (we use the notation
jn(t) = jn(An(t)) and πn(t) = πn(An(t)), where t ∈ An(t) ∈ An) which
satisfy the following conditions for some M > 0 and r ≥ 2:
(i) ‖t− s‖2 ≤

√
M r−j0(T ) for s, t ∈ T ;

(ii) if n ≥ 1, An 3 A ⊂ A′ ∈ An−1 then either
(a) jn(A) = jn−1(A

′) and πn(A) = πn−1(A
′), or
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(b) jn(A) > jn−1(A
′), πn(A) ∈ A′ and

(17)
∑

i∈In(A)

min{|ti − πn(A)i|2, r−2jn(A)} ≤M2nr−2jn(A),

where for any t ∈ A, In(A) = In(t) = {i ≥ 1 : |πk+1(t)i − πk(t)i| ≤
r−jk(t) for 0 ≤ k ≤ n− 1}.

(iii) Moreover, the numbers jn(A), A ∈ An, n ≥ 0, satisfy

(18) sup
t∈T

∞∑
n=0

2nr−jn(t) ≤ LSB(T ),

where L is an absolute constant.

As proved in [2, Theorem 3.1], the existence of An, jn(A), πn(A), In(A) that
satisfy conditions (i) and (ii) formulated above implies the existence of a
decomposition T1, T2 ⊂ `2 such that T1 + T2 ⊃ T and

sup
t1∈T1

‖t1‖1 ≤ LM sup
t∈T

∞∑
n=0

2nr−jn(t), γG(T2) ≤ L
√
M sup

t∈T

∞∑
n=0

2nr−jn(t).

Together with condition (iii) we get (10). Our aim is to use the mapping ϕ to
transport all the required quantities to ϕ(T ). Before we do it, we formulate an
auxiliary fact about the sets In(A): we show that we can get rid of truncation
in (17) if we skip a well-controlled number of coordinates. We observe that
for each t ∈ A ∈ An there must exist a set Jn(t) such that |Jn(t)c| ≤M2n+1

and

(19)
∑

i∈Jn(t)

|ti − πn(t)i|2 ≤M2nr−2jn(t).

The fact will be proved in two steps. First, we show that |In(t)c| ≤M2n.
We need only prove that |In(t)| = |In(An(t))| ≤ 2n if πn−1(t) 6= πn(t),
which implies jn−1(t) 6= jn(t) and πn(t) ∈ An−1(t). Therefore, there exists
k ∈ {1, . . . , n} such that

jn−1(t) = jn−k(t) > jn−k−1(t), where j−1(t) = −∞,
and hence πn(t) ∈ An−1(t) ⊂ An−k(t) and πn−1(t) = πn−k(t), jn−1(t) =
jn−k(t), so by the construction of (An)n≥0,∑
i∈In−k(t)

min{(πn(t)i − πn−1(t)i)2, r−2jn−1(t)}

=
∑

i∈In−k(t)

min{(πn(t)i − πn−k(t)i)2, r−2jn−k(t)} ≤M2n−kr−2jn−k(t).

Consequently,

|{i ∈ In−k(t) : |πn(t)i − πn−1(t)i| > r−jn−1(t)}| ≤M2n−k.
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Obviously,

|In(t)c| ≤ |In−k(t)c|+ |{i ∈ In−k(t) : |πn(t)i − πn−1(t)i| > r−jn−1(t)}|
≤ |In−k(t)c|+M2n−k.

Therefore, by induction, |In(t)c| ≤M
∑n

k=1 2n−k ≤M2n. Now let

Jn(t) = {i ∈ In(A) : |ti − πn(t)i| ≤ r−jn(A)}.
The second step is to establish that |In(t) \ Jn(t)| ≤ M2n. Again it suffices
to prove the result only for n such that jn(t) > jn−1(t). Note that by (17),

|In(t) \ Jn(t)|r−2jn(t) =
∑

i∈In(A)\Jn(t)

r−2jn(t) ≤M2nr−2jn(t),

and hence the result holds. It remains to observe that

|Jn(t)c| ≤ |In(t)c|+ |In(t) \ Jn(t)| ≤M(2n + 2n) ≤M2n+1.

We turn to constructing an admissible sequence of partitions together
with all the related quantities for the set ϕ(T ). Let Bn consist of ϕ(A)
for A ∈ An. Obviously the partitions Bn are admissible, nested and B0 =
{ϕ(T )}. Moreover, for each n ≥ 0 and A ∈ An we define

πn(ϕ(A)) = ϕ(πn(A)) and jn(ϕ(A)) = jn(A),

and obviously

In(ϕ(A)) = In(ϕ(t))

= {i ≥ 1 : |ϕ(πk+1(t))i − ϕ(πk(t))i| ≤ r−jk(ϕ(t)) for 0 ≤ k ≤ n− 1}.
As mentioned at the beginning of this proof, in order to use [2, Theorem 3.1]
we have to verify conditions (i) and (ii) for the new sequence B = (Bn)n≥0
as well as jn(B), πn(B), In(B) for B ∈ Bn, n ≥ 0. For this we need our main
condition (16).

First, it is obvious that (16) implies for p = 0 that

‖ϕ(t)− ϕ(s)‖2 ≤ ‖t− s‖2 ≤
√
M r−j0(T ).

If A ∈ Bn and ϕ(A) ⊂ ϕ(A′) ∈ Bn−1 then either

jn(ϕ(A)) = jn(A) = jn−1(A
′) = jn−1(ϕ(A′))

and
πn(ϕ(A)) = ϕ(πn(A)) = ϕ(πn−1(A

′)) = πn−1(ϕ(A′)),

or jn(ϕ(A)) = jn(A) > jn−1(A
′) = jn−1(ϕ(A′)). In this case we have

πn(ϕ(A)) = ϕ(πn(A)) ∈ ϕ(A′) and it suffices to show that

(20)
∑

i∈In(ϕ(A))

min{|ϕ(t)i − ϕ(πn(A))i|2, r−2jn(ϕ(A))} ≤ C2nr−2jn(ϕ(A)).
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Obviously, the problem now is that we know little about the structure of the
set In(ϕ(A)). Therefore, we simply prove that∑

i≥1
min{|ϕ(t)i − ϕ(πn(A))i|2, r−2jn(ϕ(A))} ≤ C2nr−2jn(ϕ(A)).

Clearly,

(21)
∑
i≥1

min{|ϕ(t)i − ϕ(πn(A))i|2, r−2jn(ϕ(A))}

≤ C22
nr−2jn(A) + inf

|Ic|≤C22n

∑
i∈I
|ϕ(t)i − ϕ(πn(A))i|2.

We can choose C2 ≥ 2CM in such a way that by (16) we get

inf
|Ic|≤C22n

∑
i∈I
|ϕ(t)i−ϕ(πn(A))i|2

≤ C2 inf
|Ic|≤M2n+1

∑
i∈I
|ti − πn(A)i|2

≤ C2
∑

i∈Jn(t)

|ti − πn(A)i|2.

Hence, by (19) and (21),∑
i≥1

min{|ϕ(t)i − ϕ(πn(A))i|2, r−2jn(ϕ(A))} ≤ (C2 + C2M)2nr−2jn(A),

which proves (20) with C3 = C2 + C2M .
We have proved that the assumptions required in [2, Theorem 3.1] are

satisfied for (Bn)n≥0 and the related quantities. Consequently, there exists a
decomposition S1, S2 ⊂ `2 such that S1 + S2 ⊃ ϕ(T ) and

sup
s∈S1

‖s‖1 ≤ LC sup
t∈ϕ(T )

∑
n≥0

2nr−jn(t), γG(S2) ≤ L
√
C sup
t∈ϕ(T )

∑
n≥0

2nr−jn(t).

Since jn(ϕ(t)) = jn(t) and we have (18) for (An)n≥0, we obtain

sup
t∈ϕ(T )

∑
n≥0

2nr−jn(t) ≤ LSB(T ).

This implies that

SB(ϕ(T )) ≤ SB(S1) + SB(S2) ≤ KSB(T )

for a universal constant K and ends the proof.

The second case we consider is when the supports J(t) = {i ≥ 1 : |ti| > 0}
are pairwise disjoint for all t ∈ T . The proof requires the following notation.
For any t ∈ `2 and J ⊂ {1, 2, . . .} we define t1J ∈ `2 such that (t1J)i = ti
for i ∈ J and (t1J)i = 0 otherwise.
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Proof of Theorem 4. Obviously, we may require that SB(T ) < ∞. We
additionally assume that 0 ∈ T . This simplifies the proof, but the proof
works also for the general case as we will point out at the end.

Recall that by the Bernoulli Theorem [2] there exists a decomposition
T1 + T2 ⊃ T such that

SB(T ) ≥ K−1
(

sup
t∈T1
‖t‖1 + γG(T2)

)
,(22)

where K is an absolute constant. Obviously, we may think of K as suitably
large. We can represent the decomposition by π : T → `2 such that T2 =
{π(t) : t ∈ T} and T1 = {t− π(t) : t ∈ T}. We show that under the disjoint
supports assumption we may additionally require that π(t) = t1J2(t) and
t−π(t) = t1J1(t) where J1(t) and J2(t) are disjoint subsets of J(t) such that
J1(t) ∪ J2(t) = J(t). Moreover, J2(t) = {i ∈ J(t) : |ti| ≤ p(t)} for some
suitably chosen p(t) ≥ 0.

In order to prove the result we have to look closer into the definition
of π(t) in [2, proof of Theorem 3.1]. The definition is based on the construc-
tion of admissible sequences of partitions we have described in the proof of
Theorem 3 above. Using the notation introduced there, let
(23) m(t, i) = inf{n ≥ 0 : |πn+1(t)i − πn(t)i| > r−jn(t)}, t ∈ T, i ≥ 1.

Note that SB(T ) is comparable with supt∈T
∑

n≥0 2nr−jn(t). Therefore, if
SB(T ) is finite then necessarily limn→∞ jn(t) = ∞ for all t ∈ T . From the
partition construction in [2, Section 6] we know that we can additionally
assume a regularity condition on jn(t), n ≥ 0, namely

jn(t) ≤ jn−1(t) + 2 for all n ≥ 0,

and for technical purposes we take j−1(t) = −∞. As in [2, proof of The-
orem 3.1] the Bernoulli decomposition π(t) is given by π(t)i = πm(t,i)(t)i,
where if m(t, i) = ∞ the definition means that π(t)i = limn→∞ πn(t)i and
the limit exists. Consequently, denoting Jn(t) = {i ≥ 1 : m(t, i) = n} and
J∞(t) = {i ≥ 1 : m(t, i) =∞} we get

π(t) =
∑
n≥0

πn(t)1Jn(t) + π(t)1J∞(t).

Clearly, Jn(t), n ≥ 0, and J∞(t) are disjoint. Note also that if m(t, i) = ∞
and i ∈ J(π(t)), then there must exist n ≥ 0 such that |πk(t)i| > 0 for all
k ≥ n. Due to the disjoint supports assumption this is only possible if there
exists n ≥ 0 such that πn(t)i = πn+1(t)i = · · · . Now, if there exists m ≥ 0
such that Am(t) = {t} we define

τ(t) = inf
{
n ≥ 0 : An(t) = {t} = {πn(t)}, jn−1(t) < jn(t)

}
,

otherwise τ(t) =∞. The time τ(t) is of special nature in the sense that with-
out loss of generality we may assume that jn(t) = jn−1(t) + 2 for n ≥ τ(t).
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This is due to the fact that partitioning ceases after that time. Now, we
define

J2(t) = {i ∈ J(t) : |ti| ≤ r−jτ(t)(t)−1}, J1(t) = J(t) \ J2(t).

We can now introduce an improved version of π denoted by π̄ and given by

π̄(t) = t1J2(t).

It is clear that
‖t− π̄(t)‖1 = ‖t1J1(t)‖1.

For n ≥ 0 let

Ln(t) = {i ∈ J(t) : r−jn(t) < |ti| ≤ r−jn−1(t)}.
Observe that J1(t) =

⋃
n<τ(t) Ln(t). If i ∈ Ln(t), n ≥ 0, then we may

find 0 ≤ m ≤ n such that jm−1(t) < jm(t) = jm+1(t) = · · · = jn(t).
Consequently, by the definition (17) of In(t), for all s ∈ Am(t),∑
i∈In(t)

min{|si − πn(t)i|2, r−2jn(t)} =
∑

i∈Im(t)

min{|si − πm(t)i|2, r−2jm(t)}

≤M2mr−2jm(t) = M2mr−2jn(t) ≤M2nr−2jn(t).

We need to show that the decomposition π̄ is of the right form, i.e. it satis-
fies (22). To this end we need to investigate a few cases according to different
possible paths of approximations π. First suppose that t 6= πn(t). Then we
may use the above inequality for s = t and thanks to disjoint supports we
have

|In(t) ∩ Ln(t)|r−2jn(t) ≤
∑

i∈In(t)

min{|si − πn(t)i|2, r−2jn(t)} ≤M2nr−2jn(t),

so |In(t) ∩ Ln(t)| ≤ M2n. The same inequality holds if t = πn(t) but
Am(t) 6= {t}.

We show that Ln(t) ⊂ In(t). Indeed, suppose that i 6∈ In(t). This means
that for some k ∈ {0, 1, . . . , n − 1} we have |πk+1(t)i − πk(t)i| > r−jk(t).
This may concern i ∈ J(t) only if πk+1(t) = t, πk(t) 6= t or πk(t) = t and
πk+1(t) 6= t, but then it means that |ti| > r−jk(t) ≥ r−jn−1(t), i.e. i 6∈ Ln(t),
as desired.

For 1 ≤ n < τ(t) this implies that

(24)
∑

i∈Ln(t)

|ti| ≤M2nr−jn−1(t).

For n = 0 we use simply |ti| ≤ 2SB(T ) and hence

(25)
∑

i∈L0(t)

|ti| ≤ 2MSB(T ).
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Now suppose that t = πn(t) = πm(t) and Am(t) = {t}. If either t 6= πm−1(t)
or {t} 6= Am−1(t), then τ(t) = m; otherwise τ(t) < m. If τ(t) = m, then by
the above argument,∑

i∈Ln(t)

|ti|2 =
∑

i∈Ln(t)

min{|ti|2, r−2jm−1(t)} ≤M2m−1r−2jm−1(t),

and since |ti| ≥ r−jm(t)−1 and jm(t) = jm−1(t) + 2, we have∑
i∈Ln(t)

|ti| ≤M2m−1r−2jm−1(t)+jm(t) ≤M2m−1r−jm−1(t)+2.

We have the remaining bound

(26)
∑

i∈Ln(t)

|ti| ≤M2τ(t)−1r−jτ(t)−1(t)+2.

Combining (24)–(26) we conclude by (18) that

‖t1J1(t)‖1 ≤ 2MSB(T ) + 2M

τ(t)−2∑
n=0

r−jn(t)2n +M2τ(t)−1r−jτ(t)−1(t)+2(27)

≤ 2MLSB(T ),

where L is an absolute constant.
Now consider s, t ∈ T , s 6= t. In order to prove that

(28) ‖π̄(s)− π̄(t)‖2 = ‖t1J2(t) − s1J2(s)‖2 ≤ ‖π(t)− π(s)‖2

we have to argue that J2(t) ∩ J(π(s)) = ∅, J2(s) ∩ J(π(t)) = ∅. Note that
J2(t) ⊂ J∞(t) and J2(t) ⊂ J∞(s). Moreover, J∞(s) and J∞(s) are disjoint.
Obviously, it suffices to show that J2(t) ∩ J(π(s)) = ∅.

First, note that J2(t) ∩ J∞(s) = ∅. Indeed, if this set were non-empty
then for a given n ≥ 0 we would have t = πn(s) = πn+1(s) = · · · , but then
s ∈ An(t) for all n ≥ 0 and therefore τ(t) =∞. This would imply J2(t) = ∅,
a contradiction.

Suppose that i ∈ J2(t) and i ∈ Jn(s). This is only possible if πn(s) = t
and πn+1(s) 6= πn(s) = t and r−jn(s) < |πn(s)i|. Let m ≥ 0 be such that
jm−1(s) < jm(s) = jm+1(s) = · · · = jn(s). Then either m = 0, or m ≥ 1
and t = πn(s) = πm(s) ∈ Am−1(s), which means that Am−1(s) = Am−1(t)
and jm−1(s) = jm−1(t). Therefore, τ(t) ≥ m and jτ(t)(t) > jm−1(t). As
i ∈ J2(t) ∩ Jn(s), we have

r−jm−1(t)−2 = r−jm−1(s)−2 ≤ r−jm(s)

< |ti| ≤ r−jτ(t)(t) = r−jτ(t)−1(t)−2 ≤ r−jm−1(t)−2,

a contradiction. If m = 0, then the argument is trivial.
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Summing up, by (27) we have

sup
t∈T
‖t− π̄(t)‖1 ≤ LSB(T )

and by (28) and Gaussian comparison we have γG(π(T )) ≤ γG(π̄(T )), which
means that our improved version of π satisfies

SB(T ) ≥ K−1
(

sup
t∈T
‖t− π̄(t)‖1 + γG(π̄(T ))

)
,

where K is a universal constant. In this way we have proved that we may
additionally require that π(t) = t1J2(t) and t−π(t) = t1J1(t) for some disjoint
J1(t), J2(t) such that J1(t) ∪ J2(t) = J(t). Recall that J2(t) in each case is
of the form {i ∈ J(t) : |ti| ≤ r(t)} for a given r(t) ≥ 0.

We turn to the main part of the proof. Let p(t) be the smallest positive
integer such that

(29)
√
p(t) ‖t1J2(t)‖2 ≥ KSB(T ) ≥ ‖t1J1(t)‖1.

Note that it is possible that J2(t) = ∅, in which case we may think of p(t) as
equal to ∞. Since K is large enough and SB(T ) ≥ 1

2 supt∈T ‖t‖2, it is clear
that p(t) must be at least, say, 2. Consequently, by the choice of p(t),

(30)
√
p(t) ‖t1J2(t)‖2 ≤ 2KSB(T ).

The last step is to define a suitable decomposition for ϕ(T ). For each t ∈ T
we define π(ϕ(t)) = tJ2(ϕ(t)) and ϕ(t) − π(ϕ(t)) = tJ1(ϕ(t)), where J2(ϕ(t))

and J1(ϕ(t)) are defined by the decomposition of the norm ‖Bϕ(t)‖p(t), i.e.∑
i∈J1(ϕ(t))

|ϕ(t)i| = sup
|Ic|≤p(t)

∑
i∈Ic
|ϕ(t)i|

and ∑
i∈J2(ϕ(t))

|ϕ(t)i|2 = inf
|Ic|≤p(t)

∑
i∈I
|ϕ(t)i|2.

Consequently, by the decomposition (8) and the main assumption (15),∑
i∈J1(ϕ(t))

|ϕ(t)i|+
√
p(t)

( ∑
i∈J2(ϕ(t))

|ϕ(t)i|2
)1/2

≤ 4‖Bϕ(t)‖p(t) ≤ 4‖Bt‖p(t) ≤ 4(‖t1J1(t)‖1 +
√
p(t) ‖t1J2(t)‖2).

Therefore, by (29), (30), ∑
i∈J1(ϕ(t))

|ϕ(t)i| ≤ K1SB(T ).
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Moreover, by (29),( ∑
i∈J2(ϕ(t))

|ϕ(t)i|2
)1/2

≤ K2‖t1J2(t)‖2.

This implies that

‖π(ϕ(t))− π(ϕ(s))‖2 ≤ ‖π(ϕ(t))‖2 + ‖π(ϕ(s))‖2
≤ K2(‖t1J2(t)‖2 + ‖s1J2(s)‖2) ≤ K3‖π(t)− π(s)‖2.

Therefore, by Gaussian comparison, we get γG(π(ϕ(T ))) ≤ KγG(π(T )) and
hence finally

SB(ϕ(T )) ≤ K
(

sup
t∈T
‖π(ϕ(t))‖1 + γG(π(ϕ(T )))

)
≤ KLSB(T ).

This ends the proof in the case when 0 ∈ T . For the general case the proof
follows the same lines, where instead of t we consider t− π0(t). Notice that
formally this may not obey the disjoint supports assumption, but it does not
qualitatively affect the argument presented above.

Note that the above proof works since in the case of disjoint supports
we have almost perfect knowledge about the decomposition in the Bernoulli
Theorem. On the other hand, it is not difficult to give an alternative proof
based on the independence of the variables Bt, t ∈ T , but it is worth seeing
what the decomposition in [2, Theorem 3.1] should be in order to make
Bernoulli comparison possible.

5. The Oleszkiewicz problem. In this section we apply our result to
compare expectations of norms of random series in a Banach space. First,
we prove a general result which concerns ϕ : T → `2 where ϕ is linear, T is
convex and T = −T . Then the assumption (12) becomes

(31) ‖Bϕ(u)‖p ≤ C‖Bu‖p for all p ≥ 1 and u ∈ cl(Lin(T )),

where Lin(T ) is the linear space spanned by the set T . This is because by
the assumptions on T any point u ∈ Lin(T ) can be represented as c · t, where
c ∈ R and t ∈ T . By the linearity of ϕ,

‖Bϕ(u)‖p = |c| ‖Bϕ(t)‖p ≤ C|c| ‖Bt‖p = C‖Bu‖p.
On the other hand, we can easily extend the condition (31) to the closure
of Lin(T ).

We turn to proving that if cl(Lin(T )) = `2 then (31) implies that SB(T )
dominates SB(ϕ(T )).

Theorem 5. Suppose that T = −T , T is convex and cl(Lin(T )) = `2.
If ϕ is linear and satisfies (12) then SB(ϕ(T )) ≤ KSB(T ), where K is a
universal constant.
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Proof. By the Bernoulli Theorem [2] there exist T1, T2 such that T ⊂
T1 + T2 and

SB(T ) ≥ L−1
(

sup
t∈T1
‖t‖1 + γG(T2)

)
.

Since ϕ is linear, it can be easily extended to cl(Lin(T )) = `2 and thus we
can define Si = ϕ(Ti), i ∈ {1, 2}. Obviously S1 + S2 ⊃ ϕ(T ); moreover, (31)
implies in particular that

‖ϕ(u)‖1 = ‖Bϕ(u)‖∞ ≤ C‖Bu‖∞ = C‖u‖1
and

‖ϕ(u)− ϕ(v)‖2 = ‖Bϕ(u−v)‖2 ≤ C‖Bu−v‖2 = C‖u− v‖2.
Consequently,

sup
s∈S1

‖s‖1 = sup
t∈T1
‖ϕ(t)‖1 ≤ C sup

t∈T1
‖t‖1

and
γG(S2) = γG(ϕ(T2)) ≤ CγG(T2).

Therefore

SB(ϕ(T )) ≤ SB(S1) + SB(S2) ≤ K
(

sup
s∈S1

‖s‖1 + γG(S2)
)

≤ CK
(

sup
t∈T1
‖t‖1 + γG(T2)

)
≤ CK2SB(T ).

We aim to study the question, posed by Oleszkiewicz, of comparability of
weak and strong moments for Bernoulli series in a Banach space. Let xi, yi,
i ≥ 1, be vectors in a Banach space (B, ‖ · ‖). Suppose that for all x∗ ∈ B∗
and u ≥ 0,

(32) P
(∣∣∣∑

i≥1
x∗(xi)εi

∣∣∣ > u
)
≤ C̄P

(∣∣∣∑
i≥1

x∗(yi)εi

∣∣∣ > C̄−1u
)
.

This property is called weak tail domination. As explained in the introduc-
tion, weak tail domination can be understood in terms of comparability of
weak moments, i.e. for any integer p ≥ 1 and x∗ ∈ B∗,

(33)
∥∥∥∑
i≥1

x∗(xi)εi

∥∥∥
p
≤ C

∥∥∥∑
i≥1

x∗(yi)εi

∥∥∥
p
.

Oleszkiewicz asked whether or not this implies comparability of strong mo-
ments, that is, whether (32) or rather (33) implies that

E
∥∥∥∑
i≥1

xiεi

∥∥∥ = E sup
x∗∈B∗1

∑
i≥1

x∗(xi)εi(34)

≤ KE sup
x∗∈B∗1

∑
i≥1

x∗(yi)εi = KE
∥∥∥∑
i≥1

yiεi

∥∥∥,
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where K is an absolute constant. Note that in the Oleszkiewicz problem
one may assume that B is a separable space since we can easily restrict the
argument to the closure of Lin(y1, x1, y2, x2, . . .). Therefore

E
∥∥∥∑
i≥1

yiεi

∥∥∥ = sup
F⊂B∗1

E sup
x∗∈F

∣∣∣∑
i≥1

x∗(yi)εi

∣∣∣,
where F runs through all finite sets contained in B∗1 = {x∗ ∈ B∗ : ‖x∗‖ ≤ 1}.
We may assume that E‖

∑
i≥1 yiεi‖ <∞ since otherwise there is nothing to

prove. Consequently, for each x∗ ∈ B∗ the series
∑

i≥1 x
∗(yi)εi is convergent,

which is equivalent to
∑

i≥1(x
∗(yi))

2 < ∞. Let Q : B∗ → `2 be defined
by Q(x∗) = (x∗(yi))i≥1. It is clear that Q : B∗/kerQ → `2 is a linear
isomorphism onto a closed linear subspace of `2. We apply Theorem 5 to get
the following result.

Corollary 3. Suppose that Q is onto `2. Then (32) implies (34).

Unfortunately, if Q is not onto `2 then the above argument fails. Still it
is believed that the comparison holds. A partial result can be deduced from
Theorem 3:

Corollary 4. Suppose that for each x∗ ∈ B∗ and p ≥ 0,

(35) inf
|Ic|≤Cp

∑
i∈I
|x∗(xi)|2 ≤ C2 inf

|Ic|≤p

∑
i∈I
|x∗(yi)|2.

Then (34) holds, i.e.

E
∥∥∥∑
i≥1

xiεi

∥∥∥ ≤ KE
∥∥∥∑
i≥1

yiεi

∥∥∥.
Proof. It suffices to notice that (35) implies (16) and then apply Theo-

rem 3.
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