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RELAXATION AND LINEAR PROGRAMS IN A HYBRID
CONTROL MODEL

Abstract. Some optimality results for hybrid control problems are pre-
sented. The hybrid model under study consists of two subdynamics, one of a
standard type governed by an ordinary differential equation, and the other
of a special type having a discrete evolution. We focus on the case when
the interaction between the subdynamics takes place only when the state
of the system reaches a given fixed region of the state space. The controller
is able to apply two controls, each applied to one of the two subdynamics,
whereas the state follows a composite evolution, of continuous type and dis-
crete type. By the relaxation technique, we prove the existence of a pair
of controls that minimizes an incurred (discounted) cost. We conclude the
analysis by introducing an auxiliary infinite-dimensional linear program to
show the equivalence between the initial control problem and its associated
relaxed counterpart.

1. Introduction. Hybrid control systems can be considered as a sub-
class of controlled dynamical systems with the key property that the as-
sociated dynamic may undergo structural modifications from time to time,
exerted by the own controller or by means of the location of the state of the
system. The hybrid control system we are interested in is composed of two
subdynamics: one of a standard type that runs in almost all situations, and
another of a special type that is activated under extreme circumstances. Any
change of subdynamic may produce a structural modification in the system
and, at the same time, an opportunity for an instantaneous (and sizeable)
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change in the state of the system. Naturally, at any given time, only one of
the two subdynamics (standard/special) may be active.

The dynamic is a key feature in hybrid control models, but the form of
the state and control is also important: The state of the system does not
only provide a “usual’’ description of the phenomenon, but also has a record
keeping mechanism. Specifically, the state is represented as a pair where the
first entry describes the standard evolution of the system (a continuous-type
variable) and the second one records the structural changes (a discrete-type
variable). As for the control variable, the controller is able to apply two
controls: one acting only on the standard subdynamic and the other acting
only on the special subdynamic.

The interaction between the subdynamics is only possible when the state
variable reaches a specific region of the state space. In this situation, the
hybrid control model is said to satisfy the automaton property, as the only
possible switch from one subdynamics to the other is carried out automati-
cally in that region. The details are provided in the next section.

In the above set-up, the aim of the controller is to find a control policy,
regarded as a pair (with each component controlling each of the two sub-
dynamics), so as to minimize an infinite-horizon discounted cost introduced
later. To accomplish this goal, we rely on the relaxation technique, which is
a useful and well-known tool for providing optimal control policies. We shall
produce optimality results in this framework by applying two different types
of hypotheses. In addition, an auxiliary infinite-dimensional linear program
is analyzed in order to show the equivalence between the control problem
under study and the associated relaxed counterpart.

Related literature on hybrid control systems is vast and it covers both
theoretical and practical results. To mention a handful of related works
with a more theoretical inclination, we cite Azhmyakov et al. [3], Barles
et al. [4], Bensoussan and Menaldi [6], Branicky et al. [7], Dharmatti and
Ramaswamy [8], Lygeros [12], Riedinger et al. [14], Shaikh and Caines [15],
Zhang and James [18], among others. All these references are based on dy-
namic programming (through the analysis of some quasi-variational inequal-
ities) or on the use of the well-known maximum principle. For the point of
view of applications, specifically in robotics, aircraft planning, and automata,
we mention, for instance, Posa et al. [13], Soler et al. [16], Tavernini [17], al-
though there are many others in the literature.

This paper is somehow a continuation of Bensoussan and Menaldi [6].
Indeed, this reference provided conditions ensuring the existence of the op-
timal value u(x, n), regarded as a continuous viscosity solution of certain
quasi-variational inequalities (QVI). However, the existence of optimal con-
trols was not studied in that paper; in fact, the question of existence becomes
delicate because there is not enough regularity to provide optimal control
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policies as a straightforward consequence of the QVI. However, from the use
of relaxation methods either on the control variable or on the state-control
variables, it is possible to overcome the difficulties and find optimal controls
in this hybrid environment.

To the best of our knowledge there is no literature that uses the same
methodology. The preprint of Zhao et al. [19] is somewhat related to ours.
It analyzes the optimality of a finite-horizon cost through the use of lin-
ear programs and occupation measures. Optimal policies are obtained under
convexity and affine assumptions on the cost function. In our paper, however,
we tackle an optimal control problem for an infinite-horizon discounted cost
criterion and the techniques used go in two directions: (1) we use a relaxed
control approach when certain regularity in some parts of our model is sat-
isfied, and (2) we use occupation measures and linear programs when such
regularity is not known in advance. In both cases, the techniques used to find
optimal control policies differ considerably from the arguments provided by
Zhao et al. [19].

Our paper is divided into six sections. Section 2 presents the details of our
dynamical system and introduces some elements of it, such as state, action,
and interface spaces, the dynamic of the system, types of control policies, the
payoff to be optimized, as well as our main assumptions. Section 3 provides
optimality results for the control model under the so-called transversality as-
sumption. To this end, the control is regarded as a “distribution” of controls,
i.e., the concept of relaxed control and the corresponding optimality criterion
are used. A kind of continuity of the trajectories of the system with respect
to the relaxed controls is necessary here, which is the key to finding optimal
results. In Section 4, the same problem as in Section 3 is studied, but without
assuming the transversality condition; this forces us to regard the state as
a “distribution” of states. In this scenario, the control problem is rewritten
as an infinite-dimensional linear problem, in which the control policies are
replaced by measures with some characteristics. An important feature of the
space where these measures live is its relative compactness. Then standard
results on continuity-compactness are applied to show the existence of an
optimal measure that optimizes our performance criterion. Section 5 is de-
voted to showing the equivalence between the control problem under study
and the control problem associated to the relaxed policies. For this purpose,
an auxiliary infinite-dimensional linear program and the corresponding dual
are discussed. By studying the restrictions of the dual problem, it is possible
to deduce the above equivalence under an additional hypothesis on the costs.
Finally, Section 6 provides a discussion of the transversality condition, which
allows us to give a detailed proof of Proposition 3.2.

Warning: For simplicity of notation, throughout this article, we shall use
(x, n) to represent the initial condition of the state of the system (x(·), n(·))
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in (2.1) below, but sometimes it will be denoted as (x0, n0) or (x(0), n(0))
when the context requires it.

2. Model definition. The controlled dynamic system we are interested
in is formed by the state space S = Rd×N with N ⊂ Rl, the control spaces
V ⊂ Rp andK ⊂ Rq, and the interface setD ⊂ S. We have two subdynamics,
one of a standard type governed by an ordinary differential equation (ODE)
and the other with an (instantaneous) impulsive or transitional character.
The state of the system is denoted by the pair (x, n) ∈ S, where x and n
represent the continuous-type and discrete-type states, respectively.

Changes of (x, n) over time are effected through the two subdynamics
(standard and special) as well as through interventions of the controller
carried out by the selection over time of two control parameters v ∈ V and
k ∈ K acting on the standard and special subdynamics respectively.

The activation of each subdynamic is decided automatically depending on
the location of the state variable. To be more specific, when (x, n) belongs to
SrD, the standard dynamic is turned on and it is affected by the control v.
When (x, n) touches D, the special subdynamic acts whose control variable
is now k. Certainly, one and only one of the two subdynamics is active at
any given time.

Formally, the aforementioned dynamic is represented as follows:
(2.1)(
ẋ(t), ṅ(t)

)
=
(
g(x(t), n(ti), v(t)), 0

)︸ ︷︷ ︸
continuous subdynamic

for t ∈ [ti, ti+1[,

(x(ti), n(ti)) =
(
X(x(ti−), n(ti−), ki), N(x(ti−), n(ti−), ki)

)︸ ︷︷ ︸
discrete subdynamic

, i = 0, 1, . . . ,

ti+1 := inf{t ≥ ti : (x(t−), n(ti)) ∈ D}, when ti <∞.

with initial condition t0 = 0, (x(0), n(0)) = (x0, n0) ∈ S, and

(2.2)
(
X(x(t0−), n(t0−), k0), N(x(t0−), n(t0−), k0)

)
:=

{(
X(x0, n0, k1), N(x0, n0, k1)

)
when (x0, n0) ∈ D,

(x0, n0) when (x0, n0) ∈ S rD.

In the above dynamic, t− means the left limit of t, and the value v(t) repre-
sents the control action used by the controller at time t, which is exerted in
the standard subdynamic; in contrast, the values {ki : i ≥ 1} are the control
actions applied by the controller at each time ti in the special subdynamic.
For convenience, we also use an extra variable k0. This variable becomes a
fictitious element in our model and just makes sense when (x0, n0) ∈ D,
whose value is actually k1; in the other situation (when (x0, n0) ∈ S r D)
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this variable is not used. Moreover, the sequence {ti} is referred to as a
time-interface set and it is obtained by means of the last line in (2.1).

In other words, the standard subdynamic evolves as an ODE in the
continuous-type variable x, with drift (or vector field) expressed by the func-
tion g : SrD×V → Rd, while the discrete-type variable n remains constant.
In contrast, the special subdynamic is expressed by the transition function
(X,N) : D ×K → S.

Remark 2.1. (a) In previous works (see, for instance, Branicky et al. [7]),
the ODE in the hybrid dynamic (2.1) has been considered to change di-
mension each time the special subdynamic is turned on. In this case, the
sequence {dk}, whose elements give the dimension of x ∈ Rdk at the kth
activation of n, could be either bounded or unbounded. In the former situa-
tion, we can define d := maxk dk and work with a single dimension; whereas
in the latter case, we can consider as the range of x the space of sequences
R∞F :=

⋃
k≥1 Rk, i.e., sequences of real numbers with only a finite number

of nonzero terms. The convergence of elements in R∞F is with respect to the
inductive topology, i.e., x(n) → x if and only if (i) all the x(n) and x belong
to the same Rk for some k (sufficiently large) and (ii) x(n) → x in Rk. Our
analysis here is based on the former scenario, that is, when the ODE is of a
single finite (and likely large) dimension without any changes.

(b) As part of our hypotheses, we have assumed that Sn := {x ∈ Rd :
(x, n) ∈ S} = Rd for all n ∈ N . Otherwise, if Sn ( Rd, a more detailed
analysis would apply. Namely, by defining
(2.3) Dn = {x ∈ Rd : (x, n) ∈ D},
the case ∂Sn ⊂ Dn (imposed for instance as the assumption (A2) in Bar-
les et al. [4]) does not cause any inconvenience, because when the state
(x, n) reaches the boundary ∂Sn, it also reaches Dn, so a discrete transi-
tion is triggered according to the rule in (2.1) (see also (2.6) below). How-
ever, the case ∂Sn r Dn 6= ∅ is more delicate, since there might be sit-
uations when the standard subdynamic x gets away from the set Sn in
finite time. In this case, some additional conditions must be imposed on
the vector field g in order to ensure the state x stays inside or even in
the border of Sn. We may then have the following conditions: if Sn is a
closed set, then the continuous dynamics cannot leave the set Sn r Dn.
This condition can be achieved if the boundary ∂Sn is piecewise smooth
and the vector field g(·, n, ·) never points to the exterior of Sn at points
of the active boundary ∂Sn r Dn. Alternatively, if Sn is an open set, then
on ∂Sn r Dn (if non-empty), the vector field g(·, n, ·) must point strictly
to the interior of Sn. Other possibilities may be used; for instance, we can
stop the system evolution when leaving Sn r Dn. Note also that the case
∂Sn r Dn 6= ∅ does not necessarily force the boundary ∂Dn to satisfy a
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transversality condition (but such a condition must probably be imposed on
the region ∂Sn rDn).

(c) The dynamic (2.1) allows, in principle, the case of multiple (instan-
taneous) transitions triggered by the discrete subdynamic at some time ti.
Later, we will impose assumptions on the model to avoid this possibility.

Control policies. An admissible control policy will be a pair (v(·), {ki})
consisting of:

• A continuous-type control that is a Borel measurable V -valued function
v(·) on [0,∞[. We denote by V the set of all continuous-type control poli-
cies.
• An impulse-type (or discrete-type) control that consists of a sequence {ki}

such that ki ∈ K ⊂ Rq. We denote by K the set of all impulse-type
controls.

Throughout this paper we will assume that the following assumptions hold
true.

(a) The interface and control sets satisfy

(2.4)

{
the set interface D is closed,
the control spaces V and K are compact.

(b) There exists a positive constant M , such that

(2.5)


g : S rD × V → Rd is continuous,
|g(x, n, v)| ≤M, ∀x, n, v,
|g(x, n, v)− g(x′, n, v)| ≤M |x− x′|, ∀x, x′, n, v.

(c) The transition function

(2.6) (X,N) : D ×K → S is uniformly continuous.

Remark 2.2. SinceK is compact, by a simple use of Tikhonov’s theorem
the space K of impulse controls is compact too in the product topology.

Remark 2.3. It is easy to verify that conditions in (2.4) and (2.5) ensure
that, for any admissible policy v(·), the solution

x(t) = x(s) +

t�

s

g(x(r), n, v(r)) dr

of the ODE ẋ(t) = g(x(t), n, v(t)) exists and is unique for t ≥ s and each
n ∈ N (see, for instance, Fleming and Rishel [9]).

Construction of the controlled paths. We now present the construc-
tion of the state of the system along time (controlled paths) by means of an
algorithm. The algorithm provides, in particular, the existence and unique-
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ness of the evolution of the state t 7→ (x(t), n(t)). Furthermore, it also gen-
erates the sequence {ti : i ≥ 1} of time-interfaces, the path t 7→ (x(t), n(t))
defined on each interval of times [ti, ti+1[, and the sequence of transitions
{(x(ti), n(ti)) : i ≥ 1} whenever ti < ∞. For simplicity, and when the con-
text requires it, we write (x(ti−), n(ti−)) as (xi, ni) or (xi−, ni−).

Suppose that a pair (v(·), {ki}) ∈ V × K is given. Then the algorithm
runs as follows:

(0) Initialization. Assume (x0, n0) is a given initial state at time t0 = 0.
According to whether (x0, n0) belongs or not to D, the counter i is set: If
(x0, n0) ∈ S r D, set i = 0, (xi, ni) = (x0, n0), and go to step (1); else if
(x0, n0) ∈ D, set i = 1, (xi−, ni−) = (x0, n0), and go to step (2).

(1) Continuous type. If (xi, ni) ∈ S r D, then the standard subdy-
namic is activated at time ti < ∞ and the continuous-type state evolves
as x(t) = xi +

	t
ti
g(x(s), ni, v(s)) ds for ti ≤ t < ti+1 (with ti as in (2.1)),

whereas the discrete-type state remains constant, with value n(t) = ni. Thus,
(xi+1−, ni+1−) = (x(ti+1−), n(ti+1−)) belongs to D, and x(t) ∈ S r D for
every t ∈ [ti, ti+1[. If ti+1 =∞, then stop successfully.

(2) Discrete type. If (xi−, ni−) ∈ D, then the special subdynamic is ac-
tivated at time ti < ∞ and a new state (X,N)(xi−, ni−, ki) = (x, n) is
produced. Now, if (x, n) ∈ SrD then set (xi, ni) = (x, n). Otherwise, i.e., if
(x, n) ∈ D, then set (xi+1−, ni+1−) = (x, n) and a discrete-type transition,
either (xi+1, ni+1) = (X,N)(xi+1−, ni+1−, ki+1) with (xi+1, ni+1) in S rD
or (xi+1−, ni+1−) = (X,N)(xi+1−, ni+1−, ki+1) with (xi+1−, ni+1−) in D,
is triggered again. This is repeated until the state (xi+j , ni+j) belongs to
S r D. In this case, ti = ti+1 = · · · = ti+j , all (xi−, ni−), (xi+1−, ni+1−),
. . . , (xi+j−, ni+j−) belong to D, and (xi+j , ni+j) belongs to S r D. Note
that j + 1 discrete-type transitions occurred at the same instant of time ti,
and if a finite j as above is not found then this step never ends and the
construction fails.

(3) Iteration. Now repeat (1) and (2) alternately, i.e., after (1) go to (2)
and after (2) go to (1).

(4) Ending. If this construction gets trapped in (2), then the hybrid evo-
lution exists only up to time ti<∞. Otherwise this iteration may end only af-
ter step (1) is completed successfully with ti+1 =∞, or it may be repeated to
generate an infinite sequence t0 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · of impulse/switching
times. In any case, the hybrid trajectory t 7→ (x(t), n(t)) is defined as a
cadlag function on [t0, ti[ for any i ≥ 0, with ti being either < +∞ or +∞.

In the above algorithm, (i) each ki is used only when ti <∞, i ≥ 1; thus,
the variable i counts the impulse/switching times, (ii) t0 = 0 is the initial
time, (iii) the first impulse/switching time t1 may be equal to t0.
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As pointed out earlier, some conditions on the data are necessary to en-
sure that (a) the procedure (0), . . . , (3) does not end with step (2), i.e., after
a finite number of instantaneous transitions, a state in S r D is reached;
and (b) the evolution runs over time, i.e., the sequence {ti : i ≥ 1} di-
verges to +∞. A sufficient condition that overcomes these drawbacks is the
following: There exist constants c and C satisfying

(2.7) 0 < c ≤ {|ξ −X(x, n, k)|+ |η −N(x, n, k)|} ≤ C,
∀(x, n), (ξ, η) ∈ D, k ∈ K.

The following result ensures that the trajectories in (2.1) are well defined
in the following sense.

Proposition 2.4. Under assumptions (2.4)–(2.7), for any pair of con-
trols (v(·), {ki}) ∈ V × K, the trajectory t 7→ (x(t), n(t)) obtained from the
hybrid algorithm exists, is unique, and it does not allow simultaneous jumps,
i.e., there exists a constant h := (M + 1)−1 log[1 + c(M + 1)/M ] > 0 such
that the sequence {ti : i ≥ 1} of impulse times satisfies ti+1 ≥ ti + h for all
i = 0, 1, . . . . As a consequence, ti → ∞ as i → ∞, and the trajectories are
right continuous with left limits on [0,∞[.

Proof. The existence and uniqueness follows from the definition of each
transition (X,N)(x(ti−), n(ti−), ki) and from the existence and uniqueness
of each trajectory x(t) on [ti, ti+1[, both constructed via the hybrid algo-
rithm. Namely, when the hybrid algorithm is at step (1), the continuous-type
variable x evolves as an ODE with usual assumptions guaranteeing existence
and uniqueness (see Remark 2.3), whereas the discrete-type variable n is a
constant. On the other hand, when the hybrid algorithm is at stage (2), the
transition function (X,N) acts, which of course produces one and only one
value (x, n) from some (xi−, ni−). Therefore, the existence and uniqueness
of the whole evolution t 7→ (x(t), n(t)) follows by linking together the trajec-
tory in accordance with the hybrid algorithm. The last part of the theorem
follows from Bensoussan and Menaldi [6, Theorem 2.1].

Definition 2.5. Let X ⊂ Rj with j ≥ d+ l+p+ q (recall the dimension
of the state-action spaces).

(a) We denote by Bb(X ) the space of all Borel measurable and bounded
real-valued functions on X , endowed with the supremum norm ‖ · ‖.

(b) Cb(X ) and Cu
b (X ) are subspaces of Bb(X ) consisting of all continuous

and all uniformly continuous functions, respectively.
(c) Consider the special case X ≡ S. We denote by C1,0

b (S) the following set
of real-valued functions defined on S:

(2.8) C1,0
b (S) := {ϕ ∈ Cb(S) : ∂xiϕ ∈ Cb(S), i = 1, . . . , d},
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with norm defined by

‖ϕ‖1 := ‖ϕ‖+

d∑
i=1

‖∂xiϕ‖.

Note that in (2.8), the derivative of ϕ is only applied to the variable x
but not to n.

For every pair (v(·), {ki}) ∈ V×K, the dynamic (2.1) can be characterized
by the following integration by parts formula (similar to one in Bensoussan
and Lions [5, p. 87]): for each ϕ ∈ C1,0

b (S) and t ≥ 0,

(2.9) e−αtϕ(x(t), n(t))− ϕ(x, n)

=

t�

t0

e−αs[g(x(s), n(s), v(s)) · ∇xϕ(x(s), n(s))− αϕ(x(s), n(s))] ds

+

∞∑
i=0

e−αti [ϕ(X(x(ti−), n(ti−), ki), N((x(ti−), n(ti−), ki))

− ϕ(x(ti−), n(ti−))]1{ti≤t},

where the time-interface set {ti : i ≥ 0} is generated by the hybrid algorithm.

Performance index. We introduce the instantaneous and switching
cost rates f : S rD × V → R and ` : D ×K → R, respectively, satisfying
the following conditions:

(2.10)

{
f ≥ 0 and f ∈ Cu

b (S rD × V ),

` ≥ 0 and ` ∈ Cu
b (D ×K).

With the above ingredients, if (x, n) denotes the initial state at time t0 = 0,
then, for each pair (v(·),{ki}) ∈ V ×K of controls, the total cost incurred by
the controller is defined as

J(x, n; v(·), {ki}) =

∞�

0

e−αtf(x(t), n(t), v(t)) dt(2.11)

+
∞∑
i=0

e−αti`(x(ti−), n(ti−), ki),

where the set {ti : i ≥ 1} of impulse times is generated by the set D
through the hybrid algorithm as explained earlier. Note that Proposition 2.4
and assumption (2.10) imply that the total cost (2.11) is finite for every
(v(·), {ki}) ∈ V × K.

The value function or optimal cost is defined to be

(2.12) u(x, n) = inf
(v(·),{ki})∈V×K

J(x, n; v(·), {ki}).
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Moreover, if there exists (v̂(·), {k̂i}) ∈ V × K satisfying J(x, n; v̂(·), {k̂i})
= u(x, n), then we will refer to it as an optimal pair.

A direct consequence of the above is that, in principle, the optimal cost
u is an element of Bb(S).

3. Regular case. The existence and characterization of the optimal
cost (2.12) has been studied by Bensoussan and Menaldi [6], who provided
conditions ensuring the existence of the optimal value u(x, n), regarded
as a continuous viscosity solution of certain quasi-variational inequalities
(QVI). However, the existence of optimal controls was not studied; in fact,
the existence issue becomes delicate because there is not enough regular-
ity to provide optimal control policies as a straightforward consequence of
the QVI.

An effective method of finding optimal controls is the relaxation tech-
nique. In this method, the set V is embedded into a bigger set V that is
convex and compact (in an appropriate topology). Working in this new set,
it is possible to show the existence of an element, say v ∈ V, together with
a suitable impulse control {ki} such that both controls become optimal for
the minimization problem (2.12).

In the rest of this section,

• we introduce the concept of relaxed controls and show that this set is
compact in a suitable topology;
• we define a new optimal control problem related to the set of relaxed

controls;
• we impose a transversality condition on the set-interface D that ensures

the continuity (in a certain sense) of the trajectories (x(·), n(·)), with re-
spect to the control variables v ∈ V and {ki} ∈ K;
• we prove the existence of a pair (v̂(·), {k̂i}) ∈ V × K such that, for this

pair, the total cost defined in (3.3) below equals the value function (2.12).

To begin, we denote by P(V ) the set of all probability measures on V .
Let V be the set of functions v : [0,∞[→ P(V ). We can identify every v ∈ V
as an element in V by the relation v(t) “is isomorphic to” δv(t)(·), where δa
denotes the Dirac measure at a. From this last relation, we can interpret V
as a subset of V. The latter set is known as the set of relaxed controls.

The following proposition ensures important properties of V (for a proof,
see for instance Gamkrelidze [10, Theorem 8.1]).

Proposition 3.1. Under the compactness assumption on V given in
(2.4), the set V of relaxed controls is weakly sequentially compact: for any
sequence {vm(·)} in V, there exists v(·) ∈ V and a subsequence of {vm(·)}
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(still denoted by {vm(·)}) such that, for all g ∈ Cb([0, T ]× V ) and T > 0,

(3.1)
T�

0

�

V

g(t, v) vmt (dv) dt→
T�

0

�

V

g(t, v) vt(dv) dt as m→∞.

In this case, we write vm
w−→ v as m→∞.

By applying a relaxed control v(·) ∈ V (in lieu of v(·) ∈ V) together
with an impulse-type control {ki} to the hybrid dynamic (2.1), the following
relaxed dynamic is generated:

(3.2)

(
ẋ(t), ṅ(t)

)
=
( �
V

g(x(t), n(ti), v) vt (dv), 0
)

for t ∈ [ti, ti+1[,

(x(ti), n(ti)) =
(
X(x(ti−), n(ti−), ki), N(x(ti−), n(ti−), ki)

)
,

i = 0, 1, . . . ,

ti+1 := inf{t ≥ ti : (x(t−), n(ti)) ∈ D} when ti <∞.

with initial condition as in (2.2).
Following steps (0) to (3) of the hybrid algorithm, we can formally de-

duce the existence and uniqueness of a solution t 7→ (x(t), n(t)) in (3.2) by
mimicking the arguments of Section 2 in the nonrelaxed case. It is also clear
that Proposition 2.4 is still valid in the framework of relaxed controls.

For each initial condition (x, n) and any pair (v, {ki}) ∈ V×K, we define
the relaxed cost function

J(x, n; v(·), {ki}) =

∞�

0

e−αt
�

V

f(x(t), n(t), v) vt(dv) dt(3.3)

+

∞∑
i=0

e−αti`(x(ti−), n(ti−), ki).

Furthermore, we define the optimal relaxed cost by

(3.4) u(x, n) = inf
(v,{ki})∈V×K

J(x, n; v(·), {ki}).

Recall the set Dn defined in (2.3). We denote by ∂D and ∂Dn the bound-
aries of D and Dn, respectively; we also write D̊ for the interior of D.

In order to prove the existence of a pair (v̂(·), {k̂i}) ∈ V × K such that
u(x, n) = J(x, n; v̂(·), {k̂i}), we will impose the following transversality con-
dition on the boundary of D (and as a consequence on Dn). These conditions
have been considered in previous works (see, e.g., Bensoussan and Menaldi [6]
or Branicky et al. [7]).



202 H. Jasso-Fuentes and J.-L. Menaldi

For all (x, n) ∈ ∂D, there exists η(x, n), a unit inner normal to ∂Dn, and
a positive constant ρ0 such that, for any n, the function x 7→ η(x, n) belongs
to Cb(Rd), and

(3.5)


∂Dn is smooth,
|η(x, n)| = 1, ∀x ∈ ∂Dn, (unit normal)
|η(x, n) · g(x, n, v)| ≥ ρ0, ∀(x, n, v) ∈ ∂D × V (transversality).

Our next result concerns the continuity of the trajectories (x(·), n(·))
with respect to controls (v, {ki}) ∈ V×K. The proof, provided in Section 6,
strongly uses the transversality condition (3.5).

Proposition 3.2. Suppose that assumptions (2.4)–(2.7), (2.10), and
(3.5) are satisfied. Consider a sequence {(vm, {kmi })} of controls in V × K
and a pair (v∞, {k∞i }) ∈ V×K such that vm w−→ v∞ and {kmi } → {k∞i } (in
the product topology of K) as m → ∞. Denote by (xm(·), nm(·)) the trajec-
tory (3.2) corresponding to (vm, {kmi }) for m ≥ 1. Then (xm(·), nm(·)) →
(x∞(·), n∞(·)) locally uniformly at almost every point. Moreover, the limit
trajectory satisfies (3.2) with controls (v∞, {k∞i }).

Now we can establish one of our main theorems regarding the existence
of relaxed controls that minimize the optimal cost u defined in (2.12).

Theorem 3.3. Under the assumptions of Proposition 3.2, there exists
a pair (v̂, {k̂i}) consisting of a relaxed control v̂ ∈ V and an impulse-type
control {k̂i} ∈ K such that J(x, n, v̂(·), {k̂i}) = u(x, n), where J is the total
cost defined in (3.3).

Proof. By the definition of infimum, we can select a minimizing sequence
{(δvm(·)(·), {kmi })} ⊂ V×K such that

(3.6) J(x, n, vm(·), {kmi }) = J(x, n, δvm(·)(·), {kmi }) ↓ u(x, n) as m→∞,

where

J(x, n, δvm(·)(·), {kmi }) =

∞�

0

e−αt
�

V

f(xm(t), nm(t), v) δvm(t)(dv) dt(3.7)

+
∞∑
i=0

e−αt
m
i `(x(tmi −), n(tmi −), kmi ).

Since both V and K are compact (the former in a weak sense), we have
δvm(·)

w−→ v̂ ∈ V and {kmi } → {k̂i} ∈ K for a subsequence (not relabeled).
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The integral in (3.7) can be expressed as follows:

(3.8)
∞�

0

e−αt
�

V

f(xm(t), nm(t), v) δvm(t)(dv) dt

=

∞∑
i=0

t∞i+1�

t∞i

e−αt
�

V

f(xmi (t), nmi (t), v) δvm(t)(dv) dt

=
∞∑
i=0

t∞i+1�

t∞i

e−αt
�

V

[f(xmi (t), nmi (t), v)− f(x∞i (t), n∞i (t), v)] δvm(t)(dv) dt

+
∞∑
i=0

t∞i+1�

t∞i

e−αt
�

V

f(x∞i (t), n∞i (t), v) δvm(t)(dv) dt,

where the paths t 7→ (xmi (t), nmi (t)), i ≥ 0, are introduced by (6.1)–(6.4) in
the Appendix, whereas the sequence {t∞i } ⊂ [0, T ] is fixed (actually, it is
generated according to the proof of Proposition 3.2 in the aforementioned
appendix).

By the proof of Proposition 3.2, (xmi (·), nmi (·)) → (x∞i (·), n∞i (·)) uni-
formly as m→∞. Hence, as f ∈ Cu

b (SrD×V ), we have f(xmi (·), nmi (·), v)
→ f(x∞i (·), n∞i (·), v) on [t∞i , t

∞
i+1[ as m→∞ for all v ∈ V . Using the latter

property, we can easily verify that, for all t ∈ [t∞i , t
∞
i+1],�

V

[
f(xmi (t), nmi (t), v)− f(x∞i (t), n∞i (t), v)] δvm(t)(dv)→ 0 as m→∞.

Then, by the dominated convergence theorem,
∞∑
i=0

t∞i+1�

t∞i

e−αt
�

V

[f(xmi (t), nmi (t), v)− f(x∞i (t), n∞i (t), v)] δvm(t)(dv) dt→ 0

as m → ∞. Moreover, as the trajectory (x∞(·), n∞(·)) is continuous on
[t∞i , t

∞
i+1[, the mapping (t, v) 7→ f(x∞(t), n∞(t), v) is continuous on [t∞i , t

∞
i+1[

too. Now, using the fact that δvm(·)
w−→ v̂, we deduce that for all t ∈ [t∞i , t

∞
i+1[,

(3.9)
�

V

f(x∞i (t), n∞i (t), v) δvm(t)(dv)→
�

V

f(x∞i (t), n∞i (t), v) v̂t(dv).

Hence, by the dominated convergence theorem,
∞∑
i=0

t∞i+1�

t∞i

e−αt
�

V

f(x∞i (t), n∞i (t), v) δvm(t)(dv) dt

→
∞∑
i=0

t∞i+1�

t∞i

e−αt
�

V

f(x∞i (t), n∞i (t), v) v̂t(dv) dt as m→∞.
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Thus, we have proved that

(3.10)
∞�

0

e−αt
�

V

f(xm(t), nm(t), v) δvm(t)(dv) dt

→
∞�

0

e−αt
�

V

f(x∞(t), n∞(t), v) v̂t(dv) dt as m→∞.

On the other hand, the continuity of the mapping (x, n, v) 7→ `(x, n, k),
the uniform convergence (xmi (·), nmi (·)) → (x∞i (·), n∞i (·)) on [t∞i , t

∞
i+1[, and

the convergences tmi → t∞i and {kmi } → {k̂i} established in Proposition 3.2
and in its proof ensure that

e−αt
m
i `(xmi (tmi −), nmi (tmi −), kmi )→ e−αt

∞
i `(x∞i (t∞i −), n∞i (t∞i −), k̂i).

Using the dominated convergence theorem again, we deduce

(3.11)
∞∑
i=0

e−αt
m
i `(xmi (tmi −), nmi (tmi −), kmi )

→
∞∑
i=0

e−αt
∞
i `(x∞i (t∞i −), n∞i (t∞i −), k̂i).

Thus, relying on (3.10) and (3.11), we conclude that

J(x, n, δvm(·)(·), {kmi }) =

∞�

0

�

V

e−αtf(xm(t), nm(t), v) δvm(t)(dv) dt(3.12)

+

∞∑
i=0

e−αt
m
i `(xm(tmi −), nm(tmi −), kmi )

→
∞�

0

�

V

e−αtf(x∞(t), n∞(t), v) v̂t(dv) dt

+

∞∑
i=0

e−αt
∞
i `(x∞(t∞i −), n∞(t∞i −), k̂i)

= J(x, n, v̂, {k̂i}) = u(x, n),

which proves the result.

4. General case. In this section we drop the transversality condition
(3.5). This implies that the continuity of the trajectories established in
Proposition 3.2 may no longer be valid. So different arguments must be
applied.
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In this section we do the following:

• We prove that, for each t ≥ 0, the family {(xm(t), nm(t))}m of trajectories
associated to a sequence {(vm, {kmi })}m ⊂ V × K of controls is bounded
for all m ≥ 1.
• Wedefine the occupationmeasures associated to the trajectories (x(·), n(·)).
• We prove the pre-compactness of the occupation measures with respect to

a large set of finite measures satisfying suitable properties.
• We establish the existence of an optimal measure under which u(x, n)

attains the minimum.

For this purpose, similar to (3.2), the expression (2.9) can be written as
follows: for each ϕ ∈ C1,0

b (S), t ≥ 0, and v ∈ V,

(4.1) e−αtϕ(x(t), n(t))− ϕ(x, n)

=

t�

0

e−αs
[ �
V

g(x(s), n(s), v) vs(dv) · ∇xϕ(x(s), n(s))− αϕ(x(s), n(s))
]
ds

+
∞∑
i=0

e−αti [ϕ(X(x(ti−), n(ti−), ki), N((x(ti−), n(ti−), ki))

− ϕ(x(ti−), n(ti−))]1{ti≤t}.

For λ ≥ 1, we define

(4.2) c0 ≡ c0(λ) := sup

{
x · g(x, n, v)

λ+ |x|2 + |n|2
: (x, n) ∈ S rD, v ∈ V

}
,

where g is the vector field in (3.2). Since g is bounded by the constant M
(see (2.5)),

x · g(x, n, v)

λ+ |x|2 + |n|2
≤ |x|M
λ+ |x|2 + |n|2

≤ |x|√
λ+ |x|2 + |n|2

· M√
λ+ |x|2 + |n|2

,

i.e., c0 ≤Mλ−1/2. This implies that given the discount factor α > 0 in (2.11)
or in (3.3), there exists λ > 0 large enough that c0 < α, and this is our choice
of λ > 0 for all what follows.

We also define

(4.3) c1 ≡ c1(λ) :=

sup
{[(

λ+ |X(x, n, k)|2 + |N(x, n, k)|2
)1/2 − (λ+ |x|2 + |n|2

)1/2]
×
(
|X(x, n, k)− x|2 + |N(x, n, k)− n|2

)−1/2
: (x, n) ∈ D, k ∈ K

}
.

From the estimate

(4.4) |(λ+ |x|2 + |n|2)1/2− (λ+ |x′|2 + |n′|2)1/2| ≤ (|x−x′|2 + |n−n′|2)1/2,

we can deduce that c1 ∈ [−1, 1].
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Now take any controls (v, {ki}) ∈ V×K together with the corresponding
trajectory (x(·), n(·)) satisfying (3.2).

Proposition 4.1. Assume that (2.4)–(2.7) and (2.10) are satisfied. Fix
λ ≥ 1 so large that c0(λ) < α, and use any sequence {(vm, {kmi })} ⊂ V×K.
Then, for each t ≥ 0, the solution (xm(t), nm(t)) in (3.2) corresponding to
(vm, {kmi }) satisfies

(4.5)
(
λ+ |xm(t)|2 + |nm(t)|2

)1/2 ≤ Ct, ∀m ≥ 1,

with Ct = eαt(λ+ |x0|2 + |n0|2)1/2 + Cc1e
αt/(1− e−αh).

Proof. Replacing ϕ(·) in (4.1) by the function (λ + |x|2 + |n|2)1/2 and
using the estimates (4.2)–(4.4), we obtain

(λ+ |xm(t)|2 + |nm(t)|2)1/2e−αt

≤ (λ+ |x0|2 + |n0|2)1/2 +

t�

0

(c0 − α)e−αs[λ+ |xm(s)|2 + |nm(s)|2]1/2 ds

+ c1

{ ∞∑
i=1

e−αt
m
i
(
|X(xm(tmi −), nm(tmi −), kmi )− xm(tmi −)|2

+ |N(xm(tmi −), nm(tmi −), kmi )− nm(tmi −)|2
)1/2}

1{tmi ≤t},

and
tmi+1 = inf{t > tmi : (xm(t−), nm(tmi )) ∈ D}, i ≥ 0, t > 0.

Therefore, the result follows by using the upper bound in (2.7) as well as the
fact that c0 < α.

Let us go back to (4.1). Since g is bounded (see (2.5)) and using Propo-
sition 2.4 (specifically the fact that

∑
i e
−αti ≤

∑
i e
−αih), we see that for

every ϕ ∈ C1,0
b (S), we can let t→∞ on both sides of (4.1) to obtain

(4.6) ϕ(x, n)

= −
∞�

0

e−αt
[ �
V

g(x(t), n(t), v) vt(dv) · ∇xϕ(x(t), n(t))− αϕ(x(t), n(t))
]
dt

−
∞∑
i=0

e−αti
[
ϕ(X(x(ti−), n(ti−), ki), N((x(ti−), n(ti−), ki))

− ϕ(x(ti−), n(ti−))
]

=

∞�

0

e−αt
�

V

Avϕ(x(t), n(t)) vt(dv) dt+
∞∑
i=0

e−αtiLkiϕ(x(ti−), n(ti−)),
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where for all (x, n) ∈ S, v ∈ V , and k ∈ K,

Avϕ(x, n) := −g(x, n, v) · ∇xϕ(x, n) + αϕ(x, n),

Lkϕ(x, n) := ϕ(x, n)− ϕ(X(x, n, k), N(x, n, k)).

(4.7)

It is easy to see that under assumptions (2.5) and (2.6), the mapping (x, n, v)
7→ Avϕ(x, n) is in Cb(SrD×V ) and (x, n, k) 7→ Lkϕ(x, n) is in Cb(D×K),
for all ϕ ∈ C1,0

b (S).
Now we introduce the so-called occupation measures. For ease of nota-

tion, any sequence {ki} ∈ K will be denoted by k.

Occupation measures. For each control pair (v, k) ∈ V × K and each
initial condition (x, n), we define the occupation measures

µv,k(x,n)(A× B) :=

∞�

0

�

V

e−αt1A(x(t), n(t))1B(v) vt(dv) dt,

∀A× B ⊆ S rD × V,(4.8)

νv,k(x,n)(A× B) :=

∞∑
i=0

e−αti1A(x(ti−), n(ti−))1B(ki), ∀A× B ⊆ D ×K.

We denote the sets of all occupation measures by

M(x,n)(S rD × V ) := {µv,k(x,n) : (v, k) ∈ V×K},

M(x,n)(D ×K) := {νv,k(x,n) : (v, k) ∈ V×K}.

Observe that

(4.9) 0 ≤ µv,k(x,n) ≤
1

α
and 0 ≤ νv,k(x, n) ≤ 1

1− e−αh
, ∀(v, k) ∈ V×K,

where h is the constant in Proposition 2.4. In fact, the normalized measures

(4.10) µ̃v,k(x,n) := αµv,k(x,n) and ν̃v,k(x,n) := Ŝv,kν
v,k
(x,n),

with Ŝv,k := [1/
∑∞

i=0 e
−αt(v,k)i ], turn out to be probability measures on S r

D × V and D ×K, respectively.

Definition 4.2.

(a) Let Mb(S rD × V ) (resp. Mb(D ×K)) be the space of all signed finite
measures on S rD × V (resp. on D ×K).

(b) Denote by M+
b (S r D × V ) (resp. M+

b (D ×K)) the subset of all non-
negative elements of Mb(S rD × V ) (resp. of Mb(D ×K)).
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Consider now the following problem:

(W) minimize 〈(µ, ν), (f, `)〉 subject to

(4.11)

〈δ(x,n), ϕ〉 = 〈(µ, ν), (Avϕ,Lkϕ)〉, ∀ϕ ∈ C1,0
b (S),

(µ, ν) ≤
(

1

α
,

1

1− e−αh

)
,

(µ, ν) ∈M+
b (S rD × V )×M+

b (D ×K).

Note that the relation (4.6) can be rewritten in terms of the occupation
measures as follows:

〈δ(x,n), ϕ〉 = 〈µv,k(x,n), A
vϕ〉+ 〈νv,k(x,n), L

kϕ〉(4.12)

= 〈(µv,k(x,n), ν
v,k
(x,n)), (A

vϕ,Lkϕ)〉

for all ϕ ∈ C1,0
b (S).

From (4.9) and (4.12), every occupation measure (v, k) 7→ (µv,k(x,n), ν
v,k
(x,n))

satisfies the restrictions of the weak problem (W). In terms of occupation
measures the total cost (3.3) can be expressed as

(4.13) J(x, n, v(·), {ki}) = 〈µv,k(x,n), f〉+ 〈νv,k(x,n), `〉 = 〈(µv,k(x,n), ν
v,k
(x,n)), (f, `)〉

for all (v, k) ∈ V×K.
We shall endow the spacesMb(SrD×V ) andMb(D×K) with the stan-

dard (Prokhorov) weak convergence: we say that a sequence {µm} of mea-
sures in Mb(S rD × V ) converges to some µ ∈ Mb(S rD × V ) and write
µm

w−→ µ if and only if�

SrD×V
h(x, n, v)µm(d(x, n, v)) −−−−→

m→∞

�

SrD×V
h(x, n, v)µ(d(x, n, v))

for all h ∈ Cb(S r D × V ). Similarly, we can define the above convergence
in Mb(D ×K).

The following proposition ensures that the sets M(x,n)(S rD × V ) and
M(x,n)(D×K) of occupation measures are pre-compact (in a weak sense) in
the spaces Mb(S rD × V ) and Mb(D ×K).

Proposition 4.3. The sets M(x,n)(S rD × V ) and M(x,n)(D ×K) are
weakly pre-compact: for any sequence {µv,k,m(x,n) }m ⊂M(x,n)(S rD× V ), there
exists µ ∈Mb(S rD × V ) such that

µv,k,m(x,n)

w−→ µ as m→∞

along a subsequence. Similarly, for any sequence {νv,k,m(x,n) }m ⊂M(x,n)(D×K),
there exists ν ∈Mb(D ×K) such that, along a subsequence,

νv,k,m(x,n)

w−→ ν as m→∞.
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Proof. We proceed by showing that the family of normalized measures
(4.10) is tight, which will imply the tightness of the original family (4.8). To
this end, fix T > 0 and define the compact set

B̄CT
(x, n) := {(z, r) ∈ S : |z − x|+ |r − n| ≤ CT },

with CT as in (4.5) at t = T , and where (x, n) denotes the initial state of
the dynamic (3.2). Now take a sequence {µv,k,m(x,n) }m ⊂ M(x,n)((S rD) × V )

and denote by (xm(·), nm(·)) the corresponding trajectory. Observe that by
Proposition 4.1, the path s 7→ (xm(s), nm(s)) with s ∈ [0, T ] lies in B̄CT

(x, n)
for all m ≥ 1; in fact, (xm(s), nm(s), v) ∈ B̄CT

(x, n) × V . Then, for every
ε > 0, we can choose T sufficiently large such that

µ̃v,k,m(x,n) (B̄CT
(x, n)× V ) = α

∞�

0

�

V

e−αs1B̄CT
(x,n)(x

m(s), nm(s))1V (v) vs(dv) ds

= α

T�

0

e−αs ds = (1− e−αT ) > 1− ε, ∀m ≥ 1.

Similarly,

ν̃v,k,m(x,n) (B̄CT
(x, n)×K)

= Ŝvm,km

∞∑
i=0

e−αt
m
i 1B̄CT

(x,n)(x
m(ti−), nm(ti−))1K(ki)

= Ŝvm,km

∞∑
i=0

e−αt
m
i 1{ti≤T} > 1− ε, ∀m ≥ 1,

where the last inequality follows from Ŝvm,km
∑∞

i=0 e
−αtmi 1{ti≤T} ↑ 1 as

T →∞. Then by definition both sequences {µ̃v,k,m(x,n) } and {ν̃
v,k,m
(x,n) } are tight,

and thus relatively compact by Prokhorov’s theorem. Of course this prop-
erty of the normalized measures leads to the same property of the occupation
measures, which proves the result.

The next theorem gives a characterization of the value function u(x, n)
in terms of a pair of measures, say (µ, ν), that satisfies the restrictions of
problem (W).

Theorem 4.4. Under the assumptions (2.4)–(2.7) and (2.10), there ex-
ists (µ̂, ν̂) ∈Mb(S rD × V )×Mb(D ×K) satisfying the restrictions (4.11)
of problem (W) and such that the value function u(x, n) in (2.12) becomes
u(x, n) = 〈(µ̂, ν̂), (f, `)〉.

Proof. Choose a minimizing sequence of controls (δvm(·)(·), {kmi }) ∈ V×K
so that

(4.14) J(x, n, vm(·), {kmi }) = J(x, n, δvm(·)(·), {kmi }) ↓ u(x, n) as m→∞.
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By (4.13), we can relate to J((x, n, δvm(·)(·), {kmi }) the occupation measures
(µm, νm) ∈Mb(SrD×V )×Mb(D×K) defined in (4.8). Moreover, every pair
(δvm(·)(·), {kmi }) ∈ V ×K produces a trajectory given in (2.1), which in turn
is equivalent to (2.9). Hence, in virtue of (4.12) together with the fact that
(µm, νm) are in fact measures (and therefore are nonnegative), we deduce
that each element of the above sequence satisfies the restrictions of (4.11).

By compactness of the control spaces, we know that δvm(·)
w−→ v̂ and

{kmi } → {k̂i} for some v̂ ∈ V and {k̂i} ∈ K, so we can invoke Proposition 4.3
to deduce the existence of (µ̂, ν̂) ∈ Mb(S r D × V ) × Mb(D × K) such
that (µm, νm)

w−→ (µ̂, ν̂) as m → ∞. From (4.14), this limit pair is the one
associated with the value function u(x, n), i.e., u(x, n) = 〈(µ̂, ν̂), (f, `)〉.

It only remains to prove that (µ̂, ν̂) satisfies the restrictions in (4.11). To
do so, note again that for every m ≥ 1,

(4.15) 〈δ(x,n), ϕ〉 = 〈(µm, νm), (Avϕ,Lkϕ)〉, ∀ϕ ∈ C1,0
b (S).

Since the mapping (x, n, v) 7→ Avϕ(x, n) is in Cb(SrD×V ) and (x, n, k) 7→
Lkϕ(x, n) is in Cb(D×K), for all ϕ ∈ C1,0

b (S), and since (µm, νm)
w−→ (µ̂, ν̂)

as m→∞, we deduce that

〈δ(x,n), ϕ〉 = lim
m→∞

〈(µm, νm), (Avϕ,Lkϕ)〉

= 〈(µ̂, ν̂), (Avϕ,Lkϕ)〉, ∀ϕ ∈ C1,0
b (S),

and
0 ≤ lim

m
µm = µ̂ ≤ 1

α
and 0 ≤ lim

m
νm = ν̂ ≤ 1

1− e−αh
.

This proves the result.

5. Linear programs. This section is devoted to showing that the con-
trol problems (2.12) and (3.4) are equivalent for the regular case of Section 3.
Furthermore, we also provide a second equivalence of the former problem
with the minimization of an ancillary infinite-dimensional linear program; in
particular, the restrictions of the corresponding dual counterpart of this lin-
ear program will be of great importance. This material could also be interest-
ing from the point of view of approximations since infinite-dimensional linear
programs can be analyzed through approximations of finite-dimensional lin-
ear programs—see, for instance, Lasserre [11]. In this way, our results in this
section could provide a guide to approximating the value function u in (2.12)
by means of finite-dimensional linear programs; such an analysis is, however,
outside the scope of this paper.

It is also important to mention that along this section we shall use
a regularity-type condition on the value function u that holds under the
transversality condition (3.5).
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We summarize this section into the following four main facts:

• Problem (W) (see (4.11)) is embedded into a linear program (P) (see
(5.3)).
• Problem (P) has an associated dual counterpart (P∗) (see (5.4)).
• Under an extra assumption on the value function u (see (5.13)), we prove

inf(P) ≥ u(x, n). As a consequence, problems (2.12) and (3.4) are equiva-
lent: u(x, n) = u(x, n) = min(W) = inf(P).
• The transversality condition (3.5) implies that assumption (5.13) is satis-

fied.

Dual pairs. General results in duality theory show that, for some sub-
set X of Rj , with j as in Definition 2.5, the topological (strong) dual of
Cb(X ) turns out to be Mb(X ), with Cb and Mb corresponding to the sets in
Definitions 2.5(b) and 4.2, respectively. It follows that these spaces define a
dual pair under the duality

(5.1) 〈Mb(X ), Cb(X )〉X =
�

X
g dη, ∀g ∈ Cb(X ), η ∈Mb(X ).

The above spaces are Banach spaces under the associated norms; neverthe-
less, hereafter, convergence inMb(X ) is assumed to hold in the weak topology
σ(Cb(X ),Mb(X )): µn

w−→ µ means 〈µn, g〉 → 〈µ, g〉 for all g ∈ Cb(X ).
On the other hand, for X ≡ S, recall the space C1,0

b (S) introduced in
Definition 2.5(c). We shall denote its (algebraic) dual by Db(S). These spaces
endowed with the weak topologies σ(C1,0

b (S),Db(S)) and σ(Db(S), C1,0
b (S))

become a dual pair under the duality

〈Db(S), C1,0
b (S)〉S =

�

S

h d%, ∀h ∈ C1,0
b (S)), % ∈ Db(S).

Observe that δ(x,n)(·) ∈ Db(S) for all (x, n) ∈ S.
Now recall the pair (Av, Lk) introduced in (4.7). This pair, regarded as

a single operator, maps C1,0
b (S) into Cb(S rD× V )×Cb(D×K). A useful

property of this operator is

Proposition 5.1. The operator (Av, Lk) is continuous with respect to
the norm induced by Cb(S rD × V )× Cb(D ×K), defined by

‖(g1, g2)‖∗ := max{‖g1‖, ‖g2‖}, ∀g1 ∈ Cb(S rD × V ), g2 ∈ Cb(D ×K).

Proof. It is easy to verify that

‖Avϕ‖ ≤ (‖g‖+ α)‖ϕ‖1, ‖Lkϕ‖ ≤ 2‖ϕ‖1, ∀ϕ ∈ C1,0
b (S).

Then

‖(Av, Lk)ϕ‖∗ = max{‖Avϕ‖, ‖Lkϕ‖} ≤ (‖g‖+ α+ 2)‖ϕ‖1.
This proves the result.
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For each (µ, η) in the product space Mb((S r D) × V ) ×Mb(D × K),
define the functional Φ(µ,η) on C1,0

b (S) as follows:

Φ(µ,η)ϕ := 〈(µ, η), (Av, Lk)ϕ〉 = 〈µ,Avϕ〉+ 〈η, Lkϕ〉, ∀ϕ ∈ C1,0
b (S).

Since (Av, Lk) is continuous, so is Φ(µ,η). This implies the existence of
ν(µ,η) ∈ Db(S) such that

Φ(µ,η)ϕ = 〈ν(µ,η), ϕ〉 = 〈(µ, η)(Av, Lk)ϕ〉, ∀ϕ ∈ C1,0
b (S).

Since this holds for every (µ, η) ∈ Mb((S rD) × V ) ×Mb(D ×K), we can
define the operator (Av, Lk)∗ : Mb((S rD)× V )×Mb(D ×K)→ Db(S) by

(Av, Lk)∗(µ, η) := ν(µ,η), ∀(µ, η) ∈Mb((S rD)× V )×Mb(D ×K).

It is clear that (Av, Lk)∗ is the adjoint of (Av, Lk), because

(5.2) 〈(Av, Lk)∗(µ, η), ϕ〉 = 〈(µ, η), (Av, Lk)ϕ〉

for all (µ, η) ∈Mb(S rD × V )×Mb(D ×K) and ϕ ∈ C1,0
b (S).

SinceDb(S) is the algebraic dual of C1,0
b (S), by construction of the adjoint

operator (Av, Lk)∗ we see that it maps Mb(S rD × V ) ×Mb(D ×K) into
Db(S). A characterization of this last assertion is given in the following result
(a proof can be found e.g. in Aliprantis and Border [1, Theorem 6.43]).

Proposition 5.2. The operator (Av, Lk)∗ is weakly continuous, i.e., it is
continuous with respect to the weak topologies σ(Mb(SrD×V )×Mb(D×K),

Cb(S rD × V )× Cb(D ×K)) and σ(Db(S), C1,0
b (S)).

Cones. Now we define the natural cones of the space Cb(S rD × V )×
Cb(S ×K):

[Cb(S rD × V )× Cb(S ×K)]+

:= {(ϕ1, ϕ2) ∈ Cb(S rD × V )× Cb(D ×K) : ϕ1, ϕ2 ≥ 0}.
We also define the corresponding dual cone as

[Mb(S rD × V )×Mb(D ×K)]+

:=
{

(µ1, µ2) ∈Mb(S rD × V )×Mb(D ×K) : 〈(µ1, µ2), (ϕ1, ϕ2)〉 ≥ 0,

∀(ϕ1, ϕ2) ∈ [Cb(S rD × V )× Cb(S ×K)]+
}
.

With all the previous definitions, we define the linear program

(P) minimize 〈(µ, ν), (f, `)〉 subject to

(5.3)
δ(x,n) = (Av, Lk)∗(µ, ν),

(µ, ν) ∈ [Mb(S rD × V )×Mb(D ×K)]+.

Note that 〈(µ, ν), (f, `)〉 means 〈µ, f〉SrD×V + 〈ν, `〉D×K (see (5.1)).
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The dual problem of (P) turns out to be

(P∗) maximize 〈δ(x,n), ϕ〉 subject to

(5.4)
(f, `)− (Av, Lk)ϕ ∈ [Cb(S rD × V )× Cb(S ×K)]+,

ϕ ∈ C1,0
b (S).

The latter restriction can be seen as

(5.5) Avϕ ≤ f, Lkϕ ≤ `.

5.1. Consistency. It is obvious that the dual problem is feasible (i.e.,
the restrictions are nonempty). Indeed, take the constant function 0 ∈ C1,0

b
and use the fact that the costs f and g are nonnegative. On the other hand,
we have already verified that the weak problem (W) is feasible, hence so
is (P). This implies that problems (P) and (P∗) are both consistent. Then
we define the value of the primal problem (P) to be

(5.6) inf(P) := inf{〈(µ, ν), (f, `)〉 : (µ, ν) is feasible for (P)}.

In a similar manner, the value of the dual problem (P∗) is defined by

(5.7) sup(P∗) := sup{〈δ(x,n), ϕ〉 : ϕ is feasible for (P∗)}.

Since problem (W) satisfies the restrictions (5.3), we have inf(W) ≥ inf(P).
The following result ensures the so-called weak duality between the linear

programs (P) and (P∗). The proof is provided for general infinite-dimensional
linear spaces by Anderson and Nash [2].

Proposition 5.3 (Weak duality). The values of (P) and (P∗) are finite
and they satisfy

(5.8) sup(P∗) ≤ inf(P).

Remark 5.4. It is possible to get equality in (5.8) under an extra con-
dition on the cost functions. This condition must guarantee lower bounds
f ≥ c0 and ` ≥ c0 for some positive constant c0.

Relation of (P) and the value function u. First consider those func-
tions f̂(x, n, v) ∈ Cu

b (S r D × V ) and ˆ̀(x, n, k) ∈ Cu
b (D × K) which are

Lipschitz continuous in x uniformly with respect to the other variables, i.e.,
there is a positive constant Mf̂ ,ˆ̀, such that, for all x, y ∈ Rd,

(5.9) sup
n,v
|f̂(x, n, v)− f̂(y, n, v)|+ sup

n,k
|ˆ̀(x, n, k)− ˆ̀(y, n, k)| ≤Mf̂ ,ˆ̀|x− y|.

For any initial condition (x, n) ∈ S, and each pair of controls (v(·),{ki}) ∈
V × K, let us associate to f̂ and ˆ̀ the total cost
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Ĵ(x, n; v(·), {ki}) =

∞�

0

e−αtf̂(x(t), n(t), v(t)) dt(5.10)

+

∞∑
i=0

e−αti ˆ̀(x(ti−), n(ti−), ki),

as well as the corresponding value function

(5.11) û(x, n) = inf
(v(·),{ki})∈V×K

Ĵ(x, n; v(·), {ki}).

Now let us go back to the original costs (f, `) defined in (2.10). By
the properties of these functions, it is easy to see that the mappings x 7→
f(x, n, v) and x 7→ `(x, n, k) can be approximated by Lipschitz continuous
functions uniformly on compact sets.

So denote by {(fm, `m)} a sequence of Lipschitz continuous functions
satisfying

(5.12)

sup
x∈X̂

sup
(n,v)∈N×V

|fm(x, n, v)− f(x, n, v)| → 0,

sup
x∈X̂

sup
(n,k)∈N×K

|`m(x, n, k)− `(x, n, k)| → 0,

as m→∞, for every compact set X̂ ⊂ Rd.

Let us impose the following condition on the value functions um(x, n)
associated to the elements of the above convergent sequence:

(5.13) There exists a sequence {(fm, `m)} satisfying (5.9) and (5.12) under
which the corresponding value function um(x, n) in (5.11) is Lipschitz
continuous in x, uniformly in n ∈ N , with Lipschitz constant Mm

u .

Remark 5.5. Assumption (5.13) may seem to be a little strong, but we
will see later that there are situations (such as those when the boundary
of the set-interface D is regular) where this condition turns out to be a
consequence of our present assumptions.

We now present an ancillary result that is based on the dynamic program-
ming principle. For a proof, see Bensoussan and Menaldi [6, Corollary 3.8].

Lemma 5.6. For any pair of functions fm, `m satisfying (5.13), the
corresponding value function um in (5.11) satisfies the following system of
quasi-variational inequalities (QVI):

(5.14)
0 ≤ fm(x, n, v) + 〈g(x, n, v), ∂xu

m(x, n)〉 − αum(x, n),

0 ≤ `m(x, n, k) + um(X(x, n, k), N(x, n, k))− um(x, n),

for almost all x ∈ Rd and all n, v, k.
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Given some ε > 0, let %ε : Rm → R satisfy

(i) %ε ≥ 0, (ii) %ε(x) = 0, ∀|x| ≥ ε, (iii)
�

Bε(x)

%ε(x) dx = 1,

(iv) %ε is infinitely differentiable.
Now consider the convolution of um and %ε:

(5.15) umε (x, n) = %ε ∗ um(x, n)

:=
�

Bε(x)

%ε(x− y)um(y, n) dy =
�

Bε(0)

%ε(y)um(x− y, n) dy.

As a direct consequence of the definition, ‖umε ‖ ≤ ‖um‖. The next result
regards the regularity of umε .

Lemma 5.7. The function umε belongs to C1,0
b (S).

Proof. From the definition of umε , it is evident that umε is differentiable
with continuous derivatives at x ∈ Rd, and also the mapping n 7→ umε (x, n)
is continuous.

It remains to prove that the derivatives are bounded. We have

(5.16) |umε (x, n)− umε (y, n)|

=
∣∣∣ �

Bε(0)

%ε(z)u
m(x− z, n) dz −

�

Bε(0)

%ε(z)u
m(y − z, n) dz

∣∣∣
=
∣∣∣ �

Bε(0)

%ε(z)[u
m(x− z, n)− um(y − z, n)] dz

∣∣∣
≤

�

Bε(0)

%ε(z)M
m
u |x− y| dz = Mm

u |x− y|.

Hence
|umε (x, n)− umε (y, n)|

|x− y|
≤Mm

u , implying |∂xumε (x, n)| ≤Mm
u .

Lemma 5.8. The value function um can be approximated uniformly by
the functions umε :

‖umε − um‖ → 0 as ε→ 0.

Proof. Observe that

|umε (x, n)− um(x, n)| =
∣∣∣ �

Bε(0)

%ε(y)um(x− y, n) dy − um(x, n)
∣∣∣

≤
�

Bε(0)

%ε(y)|um(x− y, n)− um(x, n)| dy

≤
�

Bε(0)

%ε(y)Mm
u |y| dy ≤Mm

u ε.
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Thus,
‖umε − um‖ = sup

(x,n)∈S
|umε (x, n)− um(x, n)| ≤Mm

u ε,

which gives ‖umε − um‖ → 0 as ε→ 0.

Lemma 5.9. The function umε satisfies

(5.17)

γmε ≤ fm(x, n, v) + 〈g(x, n, v), ∂xu
m
ε (x, n)〉 − αumε (x, n),

∀(x, n, v) ∈ S × V,
βmε ≤ `m(x, n, k) + umε (X(x, n, k), N(x, n, k))− umε (x, n),

∀(x, n, k) ∈ D ×K,
where γε and βε are constants with γε → 0 and βε → 0 as ε→ 0.

Proof. First recall that um satisfies (5.14). Applying to these QVI the
convolution with the function %ε, we obtain

0 ≤ fm(x, n, v) ∗ %ε + 〈g(x, n, v), ∂xu
m(x, n) ∗ %ε〉 − αum(x, n) ∗ %ε

for almost all (x, n) ∈ S and all v ∈ V ,
0 ≤ `m(x, n, k) ∗ %ε + um(X(x, n, k), N(x, n, k)) ∗ %ε − um(x, n) ∗ %ε,

∀(x, n, k) ∈ D ×K.
Then, the proof reduces to showing that

(i) ‖fm ∗ %ε − fm‖ → 0, (ii) ‖〈g, ∂xum〉 ∗ %ε − 〈g, ∂xumε 〉‖ → 0,

(iii) ‖`m ∗ %ε − `m‖ → 0 as ε→ 0.

Let us prove (i):

(5.18) |fm ∗ %ε(x, n, v)− fm(x, n, v)|

=
∣∣∣ �

Bε(0)

%ε(y)fm(x− y, n, v) dy − fm(x, n, v)
∣∣∣

≤Mm
f,`

�

Bε(0)

%ε(y)|y| dy ≤Mm
f,`ε.

Then the result follows by taking the supremum over all (x, n, v) ∈ SrD×V .
In the same way, we can prove (iii).

It remains to prove (ii): To this end, observe that

|〈g(x, n, v), ∂xu
m(x, n)〉 ∗ %ε(x)− 〈g(x, n, v), ∂xu

m
ε (x, n)〉|

=
∣∣∣ d∑
j=1

�

Bε(0)

[gj(x− y, n, v)− gj(x, n, v)]∂xju
m(x− y, n)%ε(y) dy

∣∣∣
≤

�

Bε(0)

‖∂xum‖M |y|%ε(y) dy ≤Mε‖∂xum‖,

where M is the constant introduced in (2.5). This proves (5.17).
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We now establish the relations between the values of the linear program
inf(P) with the value function u(x, n) in (2.12). To begin, we note that our
previous results imply that

(5.19) u(x, n) ≥ u(x, n) ≥ inf(W) ≥ inf(P).

The next theorem states that u(x, n) ≤ inf(P), yielding equality in (5.19).
This result uses, in some sense, the restrictions of the dual problem (P∗).

Theorem 5.10. Suppose that assumptions (2.4)–(2.7), (2.10), and (5.13)
are satisfied. Then, for each (x, n) ∈ S,

(5.20) inf(P) = u(x, n).

Proof. Let umε (x, n) be the approximation of um(x, n) established in
(5.15). By (5.17), it satisfies

γmε ≤ fm(x, n, v) + 〈g(x, n, v), ∂xu
m
ε (x, n)〉 − αumε (x, n), ∀(x, n, v) ∈ S × V,

βmε ≤ `m(x, n, k) + umε (X(x, n, k), N(x, n, k))− umε (x, n),

∀(x, n, k) ∈ D ×K.

Recalling the definitions

Avϕ(x, n) := −〈g(x, n, v), ∂xϕ(x, n)〉+ αϕ(x, n),

Lkϕ(x, n) := ϕ(x, n)− ϕ(X(x, n, k), N(x, n, k)),

we can write

(5.21)
γmε +Avumε (x, n) ≤ fm(x, n, v), ∀(x, n, v) ∈ S rD × V,

βmε + Lkumε (x, n) ≤ `m(x, n, k), ∀(x, n, k) ∈ D ×K.

On the other hand, consider a feasible pair (µ1, µ2) for (P). Then

〈(µ1, µ2), (fm, `m)〉 = 〈µ1, f
m〉+ 〈µ2, `

m〉

≥ 〈µ1, A
vumε 〉+ 〈µ1, γ

m
ε 〉+ 〈µ2, L

kumε 〉+ 〈µ2, β
m
ε 〉 (by (5.21))

= 〈(µ1, µ2), (Av, Lk)umε 〉+ 〈(µ1, µ2), (γmε , β
m
ε )〉

= 〈(Av, Lk)∗(µ1, µ2), umε 〉+ 〈(µ1, µ2), (γmε , β
m
ε )〉 (by (5.2))

= umε (x, n) + 〈(µ1, µ2), (γmε , β
m
ε )〉 (by (5.3)).

Letting ε→ 0, we deduce

(5.22) 〈(µ1, µ2), (fm, `m)〉 ≥ um(x, n).
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On the other hand,

|um(x, n)− u(x, n)| ≤ sup
v(·),{ki}

|Jm(x, n, v(·), {ki})− J(x, n, v(·), {ki})|

≤ sup
v(·)

∞�

0

e−αt|fm(x(t), n(t), v(t))− f(x(t), n(t), v(t))|

+ sup
{ki}

∞∑
i=0

e−αti |`m(x(ti−), n(ti−), {ki})− `(x(ti−), n(ti−), {ki})| → 0,

where the last convergence follows from (5.12). Finally, by letting m → ∞
in (5.22), we get

〈(µ1, µ2), (f, `)〉 ≥ u(x, n), ∀(x, n) ∈ S.

Since (µ1, µ2) was arbitrary, we get inf(P) ≥ u(x, n). This inequality together
with (5.19) yields (5.20).

As a consequence, we can deduce the following.

Remark 5.11. The optimal control problem (2.12) is equivalent to its
relaxed counterpart defined in (3.4).

Transversality case. We conclude this section by showing that, un-
der the transversality condition (3.5), it is possible to deduce the assump-
tion (5.13).

Firstly, we assert that the transversality condition provides the regularity
of the trajectory t 7→ (x(t), n(t)) with respect to the initial data (x, n).
To be more specific, condition (3.5) allows the construction of a function
ψ : S rD → R satisfying, in an appropriate sense (viscosity, distribution or
semigroup) the inequality{

〈g(x, n, v), ∂xψ(x, n)〉 − αψ(x, n) ≤ −1, ∀(x, n) ∈ S rD,

ψ(x, n) = 0, ∀(x, n) ∈ D.

Then, denoting by ti and t′i the ith exit times from S rD for the trajectory
with initial conditions (x, n) and (x′, n), respectively, we can obtain conti-
nuity of these times in the following sense (see Bensoussan and Menaldi [6,
p. 415]):

(5.23) |e−αti−e−αt′i | ≤ C̃[|x−x′|+ |n−n|] for some positive constant C̃.

By using (5.23), under a suitable induction procedure, similar to that given
in the proof of Proposition 3.2 (see Section 6), it is possible to get Lipschitz
continuity of the continuous-type variable x(·) of either (6.2) or (6.4):

(5.24)
∣∣x(t)− x′(t)

∣∣ ≤ M̃ |x− x′| for some positive constant M̃ ,∀t ≥ 0.
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As a consequence, we have

Proposition 5.12. For every pair (f̂ , ˆ̀) of functions satisfying the Lip-
schitz condition (5.9), the corresponding value function û(x, n) is Lipschitz
continuous in x with constant Mû := M̃Mfm,ˆ̀[1/α+ 1/(1− e−αh)].

Proof. To prove this result, let us use the notation (xz, np) to emphasize
that the trajectory x(·), n(·) has begun at state (x(0), n(0)) = (z, p). With
this in mind, we get

|Ĵ(z, p, v(·), {ki})− Ĵ(y, p, v(·), {ki})|

=
∣∣∣∞�

0

e−αtf̂(xz(t), np(t), v(t)) dt+
∞∑
i=0

e−αti ˆ̀(xz(ti−), np(ti−), ki)

−
∞�

0

e−αtf̂(xy(t), np(t), v(t)) dt+

∞∑
i=0

e−αti ˆ̀(xy(ti−), np(ti−), ki)
∣∣∣

≤
∞�

0

e−αt|f̂(xz(t), np(t), v(t))− f̂(xy(t), np(t), v(t))| dt

+

∞∑
i=0

e−αti |ˆ̀(xz(ti−), np(ti−), ki)− ˆ̀(xy(ti), n
p(ti), ki)|

≤
∞�

0

e−αtMf̂ ,ˆ̀|x
z(t)− xy(t)| dt+

∞∑
i=0

e−αtiMf̂ ,ˆ̀|x
z(ti−)− xy(ti−)|.

By using (5.24), we know that

|xz(t)− xy(t)| ≤ M̃ |z − y| for some constant M̃ ,

so we conclude that

|Ĵ(z, p, v(·), {ki})− Ĵ(y, p, v(·), {ki})| ≤ M̃Mf̂ ,ˆ̀

[
1

α
+

1

1− e−αh

]
|x− y|.

Thus,

|û(z, p)− û(y, p)| ≤ sup
v(·),{ki}

|Ĵ(z, p, v(·), {ki})− Ĵ(y, p, v(·), {ki})|

≤Mû|x− y|

with Mû := M̃Mf̂ ,ˆ̀[1/α+ 1/(1− e−αh)].

6. Appendix: Proof of Proposition 3.2. Our first step is to rewrite
the dynamic (3.2) as follows. For any fixed (v, {ki}) ∈ V × K, and a fixed
initial condition (x0, n0), we consider two cases.
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Case 1: (x0, n0) ∈ S rD. Then

(6.1)

(xi(t), ni(t)) =
(
xi(ti) +

t�

ti

�

V

g(xi(s), ni(s), v) vs(dv) ds, ni(ti)
)
, t ≥ 0,

(xi(ti), ni(ti)) =
(
X(xi−1(ti−), ni−1(ti−), ki), N(xi−1(ti−), ni−1(ti−), ki)

)
,

ti+1 := inf{t ≥ ti : (xi(t−), ni(ti)) ∈ D} when ti <∞, ∀i = 0, 1, . . . ,(
X(x−1(t0−), n−1(t0−), k0), N(x−1(t0−), n−1(t0−), k0)

)
:= (x0, n0), t0 = 0.

In this case, (3.2) is equivalent to

(6.2)
(x(t), n(t)) =

∞∑
i=0

(xi(t), ni(t))1[ti,ti+1[(t),

(x0(t0), n0(t0)) = (x0, n0).

Case 2: (x0, n0) ∈ D. Then

(6.3)

(xi(t), ni(t)) =
(
xi(ti) +

t�

ti

�

V

g(xi(s), ni(s), v) vs(dv) ds, ni(ti)
)
, t ≥ 0,

(xi(ti), ni(ti)) =
(
X(xi−1(ti−), ni−1(ti−), ki), N(xi−1(ti−), ni−1(ti−), ki)

)
,

ti+1 := inf{t ≥ ti : (xi(t−), ni(ti)) ∈ D} when ti <∞, ∀i = 1, 2, . . . ,(
X(x0(t1−), n0(t1−), k1), N(x0(t1−), n0(t1−), k1)

)
=: (X(x0, n0, k1), N(x0, n0, k1)), t1 = 0,

for which (3.2) turns into

(6.4)
(x(t), n(t)) =

∞∑
i=1

(xi(t), ni(t))1[ti,ti+1[(t),

(x1(t1), n1(t1)) = (X(x0, n0, k1), N(x0, n0, k1)).

Now take a sequence {(vm, {kmi })}m of controls. Denote by (xmi (·), nmi (·))
the trajectory in either (6.1) or (6.3) when the control pair (vm, {kmi }) is
applied. Our first step consists in proving that the convergence (vm, {kmi })→
(v∞, {k∞i }) implies the existence of a trajectory (x∞0 (·), n∞0 (·)) satisfying
(6.1) or (6.3) respectively and such that (xm0 (·), nm0 (·)) → (x∞0 (·), n∞0 (·))
locally uniformly as m → ∞. This last trajectory is governed by the pair
(v∞, {k∞i }).

Let us proceed to handle Case 1. To begin, we define(
X(xm−1(t0−), nm−1(t0−), km0 ), N(xm−1(t0−), nm−1(t0−), km0 )

)
:= (x0, n0), m ≥ 1.



A hybrid control model 221

Then trivially

lim
m→∞

(
X(xm−1(t0−), nm−1(t0−), km0 ), N(xm−1(t0−), nm−1(t0−), km0 )

)
= (x0, n0),

so we define(
X(x∞−1(t0−), n∞−1(t0−), k0), N(x∞−1(t0−), n∞−1(t0−), k0)

)
:= lim

m→∞

(
X(xm−1(t0−), nm−1(t0−), km0 ), N(xm−1(t0−), nm−1(t0−), k0)

)
.

Now use (6.1) for i = 0: for every t ≥ 0 and t0 = 0,

(6.5) (xm0 (t), nm0 (t)) =
(
X(xm−1(t0−), nm−1(t0−), km0 )

+

t�

0

�

V

g(xm0 (s), nm0 (s), v) vms (dv) ds,N(xm−1(t0−), nm−1(t0−), km0 )
)
.

It is clear that

(6.6) nm0 (t) = N(xm−1(t0−), nm−1(t0−), km0 ) = n0, ∀m ≥ 1, ∀t ≥ 0,

which implies that limm n
m
0 (t) = n0 for all t ≥ 0. Thus, we define n∞0 (t) :=

limm n
m
0 (t) = n0.

On the other hand, since by (2.5) the vector field g(x, n, v) is bounded
uniformly on S×V , we see that for allm ≥ 1,

	
V g(x, n, v) vmt (dv) is bounded

too. Now fix some T > 0. According to (6.5), for all 0 ≤ s < t ≤ T ,

|xm0 (t)− xm0 (s)| =
∣∣∣t�
s

�

V

g(xm0 (r), nm0 (r), v) vmr (dv) dr
∣∣∣(6.7)

≤M(t− s), ∀m ≥ 1,

where M is the constant defined in (2.5). Also observe that for all m ≥ 1
and all 0 ≤ t ≤ T ,

|xm0 (t)| ≤Mt+ |xm0 (0)|(6.8)
≤MT + |X(xm−1(t0−), nm−1(t0−), km0 )|
= MT + x0 < +∞.

From (6.7) and (6.8), the family {xm0 (·)} is equicontinuous and bounded, so
by the Arzelà–Ascoli theorem, it is relatively uniformly compact on [0, T ]:
there exists a (uniformly) convergent subsequence of {xm0 (·)} (not relabeled)
such that xm0 (·)→ x∞0 (·) ∈ Cb([0, T ]) uniformly.

Let us now check that this limit term satisfies the first subdynamic in
(6.5) for m = +∞. Write
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(6.9) xm0 (t) = xm0 (0) +

t�

0

�

V

g(xm0 (s), nm0 (s), v) vms (dv) ds

= xm0 (0) +

t�

0

�

V

[g(xm0 (s), nm0 (s), v)− g(x∞0 (s), n∞0 (s), v)] vms (dv) ds

+

t�

0

�

V

g(x∞0 (s), n∞0 (s), v) vms (dv) ds, ∀0 ≤ t ≤ T.

The continuity of both t 7→ x∞0 (t) and (x, n, v) 7→ g(x, n, v) yields the conti-
nuity of (t, v) 7→ g(x∞0 (t), n∞0 (t), v). Then from Proposition 3.1 we deduce

(6.10)
t�

0

�

V

g(x∞0 (s), n∞0 , v) vms (dv) ds→
t�

0

�

V

g(x∞0 (s), n∞0 , v) v∞s (dv) ds

as m → ∞, for all 0 ≤ t ≤ T . Using the Lipschitz property of the vector
field g, we can easily verify that the second term on the right-hand side of
(6.9) goes to zero as m→∞. Together with (6.10) and (6.6), this yields

(6.11) (xm0 (t), nm0 (t))→ (x∞0 (t), n∞0 (t))

=
(
x0 +

t�

0

�

V

g(x∞0 (s), n∞0 (s), v) v∞s (dv) ds, n0

)
.

Let us now analyze the first times when the sequence {(xm0 (·), nm0 (·))}
of processes reaches the set-interface D, for each m ≥ 0 (also known as
exit times from S rD), and study the convergence of those times. For this
purpose and noting that nm0 (t) = n0 for all t ≥ 0 and m ≥ 1, we define

tm1 := inf{t ≥ 0 : (xm0 (t−), n0) ∈ D},
t∞1 := inf{t ≥ 0 : (x∞0 (t−), n0) ∈ D}.

Recalling the definition of Dn0 in (2.3), we can write

tm1 = inf{t ≥ 0 : xm0 (t−) ∈ Dn0} and t∞1 := inf{t ≥ 0 : x∞0 (t−) ∈ Dn0}.
Since (x0, n0) ∈ S rD (which implies x0 ∈ Rd rDn0), we have t∞1 > 0.

Therefore, there exists a constant ŝ with 0 < ŝ < t∞1 . By the properties
of x∞0 (·), the trajectory t 7→ x∞0 (t) lies in Rd rDn0 on [0, ŝ]. Observe that
{x∞0 (s) : s ∈ [0, ŝ]} is a compact set contained in the open set Rd r Dn0 .
By the uniform convergence xm0 (·) → x∞0 (·), there exists a natural number
M such that for all m ≥ M , the set {x∞0 (t), xm0 (t) : 0 ≤ t ≤ ŝ} also lies in
Rd rDn0 , yielding tm1 ≥ ŝ for m ≥ M . Hence, lim infm t

m
1 ≥ ŝ. Since ŝ was

arbitrary, we can take it close enough to t∞1 , implying that lim infm t
m
1 ≥ t∞1 .

Note that if t∞1 = +∞, then lim infm t
m
1 = +∞ and thus the proof

would follow by applying the convergence (6.11) on the interval [0, T ] for
every T > 0. Therefore, we now focus on the case t∞1 < +∞; namely,
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using the assumptions in (3.5), for any t > t∞1 , there exists t̂ < t such that
x∞0 (t̂) ∈ D̊n0 . As D̊n0 is open, the convergence xm0 (·) → x∞0 (·) (in this case
we must take the constant T in the Arzelà–Ascoli theorem no smaller than t̂)
ensures the existence of some constant M such that for all m ≥ M , we can
guarantee xm0 (t̂) ∈ D̊n0 . Then tm1 ≤ t̂ and so lim supm t

m
1 ≤ t̂. Finally, taking

t̂ close to t∞1 , we can deduce that lim supm t
m
1 ≤ t∞1 . Combining the previous

arguments, we obtain
lim
m→∞

tm1 = t∞1 .

This convergence together with the previous uniform convergence of
(x0(·), n0(·)) implies that

(6.12) (x∞0 (t∞1 −), n∞0 (t∞1 −)) = lim
m→∞

(xm0 (tm1 −), nm0 (tm1 −)).

Next, in virtue of the continuity of the mappings X, N and the conver-
gences in (6.12) and {kmi } → {k∞i }, we deduce

(6.13) (X,N)
(
xm0 (tm1 −), nm0 (tm1 −), km1

)
→ (X,N)

(
x∞0 (t∞1 −), n∞0 (t∞1 −), k∞1

)
as m→∞.

In general, for i ≥ 1, we first apply similar arguments to those in (6.5)
to obtain, for all t ≥ tmi , and m ≥ 1,

(6.14) (xmi (t), nmi (t)) =
(
X
(
xmi−1(tmi −), nmi−1(tmi −), kmi

)
+

t�

tmi

�

V

g(xmi (s), nmi (s), v) vms (dv) ds,N(xmi−1(tmi −), nmi−1(tmi −), kmi )
)
.

Furthermore, the process n(·) behaves as

(6.15) nmi (t) = N
(
xmi−1(tmi −), nmi−1(tmi −), kmi

)
, ∀t ≥ tmi , ∀m ≥ 1.

Since the sequence {tmi } is convergent, we can define t̄i := infm t
m
i . Using this

number, we can define a continuous extension of the trajectory (xmi (t), nmi (t))
on [t̄i,+∞[ by letting

(6.16) (xmi (t), nmi (t)) :=

{
(xmi (tmi ), nmi (tmi )) on [t̄i, t

m
i [,

(xmi (t), nmi (tmi )) on [tmi ,+∞].

Similar to the convergence (6.13) and the convergence kmi → k∞i , we can
deduce

nmi (t) = N
(
xmi−1(tmi −), nmi−1(tmi −), kmi

)
→ N

(
x∞i−1(t∞i −), n∞i−1(t∞i −), k∞i

)
= n∞i (t), ∀t ≥ t̄i,

and this convergence is uniform.
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On the other hand, using again (2.5), we find that the dynamic x(·) has
the following properties. For all T > t̄i and t̄i ≤ s < t ≤ T , we have

|xmi (t)− xmi (s)| ≤
t�

s

�

V

|g(xmi (r), nmi (r), v)| vmr (dv) dr ≤M(t− s),

and for all t̄i ≤ t ≤ T ,
|xmi (t)| ≤M(T − t̄i) + |X(xmi−1(t̄i−), nmi−1(t̄i−), kmi )|

≤MT + sup
m≥1
|X(xmi−1(t̄i−), nmi−1(t̄i−), kmi )| < +∞,

where the last term is bounded due to the convergences

(x∞i−1(t∞i −), n∞i−1(t∞i −)) = lim
m→∞

(xmi−1(tmi −), nmi−1(tmi −))

and

(6.17) (X,N)
(
xmi−1(tmi −), nmi−1(tmi −), kmi

)
→ (X,N)

(
x∞i−1(t∞i −), n∞i−1(t∞i −), k∞i

)
as m → ∞. Hence, by the simple use of the Arzelà–Ascoli theorem, there
exists a uniformly convergent subsequence {xmi (·)} (not relabeled) such that
xmi (·)→ x∞i (·) on [t̄i, T ], in particular on [t∞i , T ].

To verify that this limit term satisfies the first subdynamic in (6.14) for
the case m = +∞, we proceed as follows: From (6.14) and the continuous
extension (6.16) we know that

xmi (t) = X(xmi−1(tmi −), nmi−1(tmi −), kmi ) +

t�

tmi

�

V

g(xmi (s), nmi (s), v) vms (dv) ds.

By following the same steps as in the 0th case, we can prove that

(6.18)
t�

tmi

�

V

g(xmi (s), nmi (s), v) vms (dv) ds

→
t�

t∞i

�

V

g(x∞i (s), n∞i (s), v) v∞s (dv) ds

as m → ∞. Then, by letting m → ∞, the convergence in (6.18) together
with (6.17) yields

(6.19) (xmi (t), nmi (t))→ (x∞i (t), n∞i (t))

=
(
X
(
x∞i−1(t∞i −), n∞i−1(t∞i −), k∞i

)
+

t�

t∞i

�

V

g(x∞i (s), n∞i (s), v) vs(dv) ds,N
(
x∞i−1(t∞i −), n∞i−1(t∞i −), k∞i

))
for all t∞i ≤ t ≤ T .
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Let us now analyze the first times (exit times) when the sequence
{(xmi (·), nmi (·))} of processes is outside S r D for each m ≥ 0 and study
the convergence of these times. We define these exit times as

(6.20)
tmi+1 := inf{t ≥ tmi : (xmi (t−), nmi (tmi )) ∈ D},
t∞i+1 := inf{t ≥ t∞i : (x∞i (t−), n∞i (t∞i )) ∈ D}.

Our aim is to prove the convergence (6.21) below. Indeed, it is clear that
(x∞i (t∞i ), n∞i (t∞i )) ∈ S r D, so t∞i+1 > 0. As a consequence, there exists a
constant ŝ satisfying 0 < ŝ < t∞i+1.

Using the continuous extension (6.16) it is easy to see that (x∞i (t), n∞i (t))
∈ SrD for all t ∈ [t̂i, ŝ]. Furthermore, {(x∞i (s), n∞i (s)) : s ∈ [t̄i, ŝ]} ∈ SrD.
Since SrD is open, we can use the uniform convergence of (xmi (·), nmi (·))→
(x∞i (·), n∞i (·)) on [t̄i, ŝ] to deduce the existence of a natural number M such
that for all m ≥ M , the set {(xmi (t), nmi (t)), (x∞i (t), n∞i (t)) : t̄i ≤ t ≤ ŝ}
is contained in S r D. This implies that t̂mi+1 ≥ ŝ for m ≥ M , yielding
lim infm t̂

m
i+1 ≥ ŝ. Since ŝ was arbitrary, we can take this constant close

enough to t∞i+1, implying that lim infm t̂
m
i+1 ≥ t∞i+1.

The proof for the converse inequality lim supm t̂
m
i+1 ≤ t∞i+1 is identical to

the 0th case, so we omit it.
If t∞i+1 = +∞, then lim infm t

m
i+1 = +∞ and thus the assertion follows by

applying the convergence (6.19) on the interval [t∞i , T ] for every T > 0.
Combining the previous arguments, we can deduce

(6.21) lim
m→∞

tmi+1 = t∞i+1.

Again, this convergence together with the uniform convergence of
(xmi (·), nmi (·))→ (x∞i (·), n∞i (·)) implies that

(6.22) (x∞i (t∞i+1−), n∞i (t∞i+1−)) = lim
m→∞

(xmi (tmi+1−), nmi (tmi+1−)),

yielding

(X,N)
(
xmi (tmi+1−), nmi (tmi+1−), kmi+1

)
→ (X,N)

(
x∞i (t∞i+1−), n∞i (t∞i+1−), k∞i+1

)
as m→∞, and so on.

Now take a sequence of processes as in (6.2):

(xm(t), nm(t)) =
∞∑
i=0

(xmi (t), nmi (t))1[tmi ,t
m
i+1[(t),

(xm0 (t0), nm0 (t0)) = (x0, n0)
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and define the limit trajectory

(x∞(t), n∞(t)) =
∞∑
i=0

(x∞i (t), n∞i (t))1[t∞i ,t∞i+1[(t),

(x∞0 (t0), n∞0 (t0)) = (x0, n0).

By construction, (xm(t), nm(t))→ (x∞(t), n∞(t)) uniformly on each interval
[t∞i , t

∞
i+1[; in other words, the above convergence is locally uniform at almost

every point of [0,∞[.
Finally, to prove Case 2, when (x0, n0) ∈ D, we use the previous steps

but starting the analysis from (6.13), and then follow the rest of the proof
of Case 1.
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