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Summary. Defining a condenser in a locally compact space as a locally finite, countable
collection of Borel sets Ai, i ∈ I, with the sign si = ±1 prescribed such that Ai ∩Aj = ∅
whenever sisj = −1, we consider a minimum energy problem with an external field over
infinite-dimensional vector measures (µi)i∈I , where µi is a suitably normalized positive
Radon measure carried by Ai and such that µi ≤ ξi for all i ∈ I0, I0 ⊂ I and constraints ξi,
i ∈ I0, being given. If I0 = ∅, the problem reduces to the (unconstrained) Gauss variational
problem, which is in general unsolvable even for a condenser of two closed, oppositely
signed plates in R3 and the Coulomb kernel. Nevertheless, we provide sufficient conditions
for the existence of solutions to the stated problem in its full generality, establish the vague
compactness of the solutions, analyze their uniqueness, describe their weighted potentials,
and single out their characteristic properties. The strong and the vague convergence of
minimizing nets to the minimizers is studied. The phenomena of non-existence and non-
uniqueness of solutions to the problem are illustrated by examples. The results obtained
are new even for the classical kernels on Rn, n ≥ 2, and closed Ai, i ∈ I, which is important
for applications.

1. Introduction. The interest in minimum energy problems with ex-
ternal fields, initially inspired by Gauss [23] and further experiencing a new
growth due to work of Frostman [15] and Polish and Japanese mathemati-
cians (Leja et al. and Ohtsuka; see [31, 37] and the references cited therein),
has been motivated by their direct relations with the Dirichlet and bal-
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ayage problems. A new impulse to this part of potential theory (which is
often referred to as Gauss variational problem or weighted minimum energy
problems) came in the 1980’s when Gonchar and Rakhmanov [24, 26] and
Mhaskar and Saff [33] applied logarithmic potentials with external fields in
the investigation of orthogonal polynomials and rational approximations to
analytic functions.

In the present paper we study weighted minimum energy problems in a
very general setting, over infinite-dimensional vector measures on a locally
compact (Hausdorff) space (l.c.s.)X [3, Chapter I, Section 9, n◦ 7], associated
with a generalized condenser. To be precise, a generalized condenser A in X
is a locally finite, countable collection of Borel sets Ai ⊂ X, i ∈ I, termed
plates, with the sign si := signAi = ±1 prescribed such that Ai ∩ Aj = ∅
whenever sisj = −1. We emphasize that although any two oppositely charged
plates of a generalized condenser are disjoint, their closures in X may have
points in common. A generalized condenserA is said to be standard if the Ai,
i ∈ I, are closed in X. The concept of a standard condenser with infinitely
many (closed) plates has been introduced first in our earlier study [43],
while that of a generalized condenser seems to be new. Unless explicitly
stated otherwise, when speaking of a condenser, we shall tacitly assume it is
generalized.

We denote by M(X) the linear space of all real-valued scalar Radon mea-
sures on X, equipped with the vague topology, i.e., the (Hausdorff) topology
of pointwise convergence on the class C0(X) of all continuous functions on X
with compact support (1). For any set Q ⊂ X, let M+(Q) stand for the cone
of all positive ν ∈ M(X) carried by Q (for a definition, see Section 2.1 be-
low). These and other notions of the theory of measures and integration on
a l.c.s., to be used throughout the paper, can be found in [14, 4]; see also
[16] for a short survey.

A vector measure µ = (µi)i∈I is said to be associated with a (generalized)
condenser A = (Ai)i∈I if µi ∈ M+(Ai) for all i ∈ I. Denoting by M+(A)
the class of all those µ, we thus have (2)

M+(A) :=
∏
i∈I

M+(Ai).

The trace of the vague product space topology on M+(X)Card I on M+(A)
is likewise called the vague topology on M+(A).

For any topological space Y , let Ψ(Y ) consist of all lower semicontinuous
(l.s.c.) functions ψ : Y → (−∞,∞], nonnegative unless Y is compact.

(1) When speaking of a continuous function, we understand that the values are finite
real numbers.

(2) If I is a singleton, we keep the normal fonts instead of the bold ones.
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A kernel on X is defined as a symmetric function κ ∈ Ψ(X ×X). In the
present paper we shall be concerned with a positive definite kernel κ, which
means that the energy κ(ν, ν) :=

	
κ(x, y) d(ν ⊗ ν)(x, y) of any (signed)

ν ∈ M(X) is nonnegative whenever defined. (By definition, κ(ν, ν) is well
defined provided that κ(ν+, ν+)+κ(ν−, ν−) or κ(ν+, ν−) is finite, ν+ and ν−
being respectively the positive and negative parts in the Hahn–Jordan de-
composition of ν.) Then the set Eκ(X) of all ν ∈M(X) with κ(ν, ν) finite is
a pre-Hilbert space with the inner product

〈µ, ν〉κ := κ(µ, ν) :=
�
κ(x, y) d(µ⊗ ν)(x, y), µ, ν ∈ Eκ(X),

and the seminorm ‖ν‖κ :=
√
κ(ν, ν). The topology on Eκ(X) determined by

‖ · ‖κ is termed strong. A (positive definite) kernel κ is said to be strictly
positive definite if the seminorm ‖ · ‖κ is a norm.

In accordance with an electrostatic interpretation of a condenser, assume
that the interaction between the components µi, i ∈ I, of µ ∈ M+(A) is
characterized by the matrix (sisj)i,j∈I , so that the energy of µ is given
by (3)

(1.1) κ(µ,µ) :=
∑
i,j∈I

sisjκ(µi, µj).

Let E+
κ (A) consist of all µ ∈M+(A) with κ(µ,µ) finite (see footnote 3).

To define admissible measures in the extremal problem we shall be deal-
ing with, fix a numerical vector a = (ai)i∈I with ai > 0, a vector-valued
function g = (gi)i∈I with continuous gi : X → (0,∞), and a vector-valued
external field f = (fi)i∈I with universally measurable fi : X → [−∞,∞].
Let E+

κ,f (A,a,g) consist of all µ ∈ E+
κ (A) such that 〈gi, µi〉 :=

	
gi dµ

i = ai

for all i ∈ I and 〈f ,µ〉 :=
∑

i∈I 〈fi, µi〉 is finite (see footnote 3); then so is
the weighted energy

Gκ,f (µ) := κ(µ,µ) + 2〈f ,µ〉, µ ∈ E+
κ,f (A,a,g).

Fix also I0 ⊂ I and ξi ∈ M+(Ai), i ∈ I0, such that 〈gi, ξi〉 > ai; these
ξi, i ∈ I0, will serve as (upper) constraints acting on positive measures
carried by Ai, i ∈ I0. We shall be concerned with the problem of minimizing
the weighted energy Gκ,f (µ) over all µ ∈ E+

κ,f (A,a,g) with the additional
property that µi ≤ ξi for all i ∈ I0.

If I0 = ∅, the problem reduces to the (unconstrained) Gauss variational
problem, which is in general unsolvable even for a standard condenser of

(3) An expression
∑
i∈I ci involving numerical values ci is meant to be well defined

provided that every summand is so and the sum does not depend on the order of
summation. By the Riemann series theorem, the sum is finite if and only if the series
converges absolutely. Thus, κ(µ,µ) is finite if κ is (µi⊗µj)-integrable for all i, j ∈ I and
the series in (1.1) converges absolutely.
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two closed, oppositely charged plates in Rn, n ≥ 3, and the Riesz kernels
κα(x, y) := |x − y|α−n, α ∈ (0, n). (Here, |x − y| denotes the Euclidean
distance between x, y ∈ Rn.) See Theorem 1.6 below providing necessary
and sufficient conditions for the solvability of this problem for α ∈ (0, 2].
The phenomenon of unsolvability is illustrated by Example 1.7.

Nevertheless, we provide sufficient conditions for the existence of solu-
tions to the stated problem in its full generality and establish the vague
compactness of the solutions (Theorems 6.1, 6.3, and 6.5), analyze their
uniqueness (Section 4.2), describe their weighted potentials, and single out
their characteristic properties (Theorem 8.2 and Corollary 8.3). The strong
and the vague convergence of minimizing nets to the minimizers is also
studied (Eq. (6.5) and Corollary 6.7). We discover the phenomenon of non-
uniqueness of solutions to the problem, which is illustrated by Example 4.6.

Remark 1.1. The results obtained are new even for the classical kernels
on Rn, n ≥ 2 (in particular, for − log |x − y| on R2), and closed Ai, i ∈ I,
which is important for applications. While our investigation is focused on
theoretical aspects in a very general context, and possible applications are
outside the scope of the present paper, it is worth remarking that minimum
energy problems in the constrained and unconstrained settings for the loga-
rithmic kernel and finite-dimensional vector measures have been considered
for several decades in relation to Hermite–Padé approximants [25, 1] and
random matrix ensembles [29, 2].

The results of the present paper, mentioned above, are obtained for a
condenser with nearly closed plates, which differ from closed sets in a set of
zero inner capacity cκ(·) (Definition 2.8) (4). Nevertheless, we develop an effi-
cient approach to the study of energies and potentials of infinite-dimensional
vector measures for an arbitrary generalized condenser (Section 3), which we
intend to use in future work.

The approach developed is based on the observation that, since (Ai)i∈I is
locally finite, the Ai, i ∈ I, are Borel, and Ai ∩Aj = ∅ whenever sisj = −1,
the mapping

M+(A) 3 µ 7→ Rµ :=
∑
i∈I

siµ
i

maps M+(A) onto a certain set of signed scalar Radon measures on X.
Furthermore, E+

κ (A) becomes a semimetric space with the semimetric

(1.2) ‖µ1 − µ2‖E+
κ (A) :=

[∑
i,j∈I

sisjκ(µi1 − µi2, µ
j
1 − µ

j
2)
]1/2

,

and R maps E+
κ (A) isometrically onto its (scalar) R-image, contained in

(4) These closed sets may not form a condenser.
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the pre-Hilbert space Eκ(X) (see Section 3.5). In view of this isometry, the
topology on the semimetric space E+

κ (A) is likewise termed strong.
Another fact crucial to our approach is a strong completeness result for

a certain subspace of E+
κ (A), where A is a standard condenser (see The-

orem 1.2 below, established in our earlier paper [43]). Let A+, resp. A−,
denote the union of the Ai, i ∈ I, with si = +1, resp. si = −1. Write

E+
κ (A,≤a,g) := {µ ∈ E+

κ (A) : 〈gi, µi〉 ≤ ai for all i ∈ I}.
Theorem 1.2. Assume the Ai, i ∈ I, are closed, κ is consistent (5), and

(1.3)
∑
i∈I

aig
−1
i,inf := C <∞, where gi,inf := inf

x∈Ai
gi(x).

If moreover κ|A+×A− is upper bounded, then the following assertions hold.

• E+
κ (A,≤ a,g) is complete in the induced strong topology. In more detail,

any strong Cauchy net in E+
κ (A,≤ a,g) converges strongly to any of its

vague cluster points.
• If moreover κ is strictly positive definite and the Ai, i ∈ I, are mutually
disjoint, then the strong topology on E+

κ (A,≤a,g) is finer than the induced
vague topology.

1.1. Minimum α-Riesz energy problem for a standard condenser.
We next show that the problem in question is in general unsolvable even in
the case where A = (A1, A2) is a standard condenser in Rn, n ≥ 3, with
s1 = +1, s2 = −1, f1 ≡ f2 ≡ 0, g1 ≡ g2 ≡ 1, a1 = a2 = 1, I0 = ∅, and
κ(x, y) := κα(x, y) := |x − y|α−n, α ∈ (0, 2]. Under these requirements, the
problem can equivalently be rewritten as follows:

(1.4) wα(A) := inf κα(µ1 − µ2, µ1 − µ2),

where µi, i = 1, 2, ranges over the class

E+
κα(Ai, 1) := {ν ∈M+(Ai) ∩ Eκα(Rn) : ν(Ai) = 1}.

To formulate the corresponding result and to briefly explain the phenomenon
of unsolvability, we first recall the concept of α-thinness at infinity.

Throughout Section 1.1, F denotes a closed set in Rn, n ≥ 3, such that
F c := Rn \F 6= ∅, and F ∗ the inverse of F relative to {x ∈ Rn : |x−x0| = 1},
x0 ∈ F c being fixed. Let νF stand for the α-Riesz swept measure of
ν ∈M+(Rn) onto F , determined uniquely by [20, Theorem 3.6].

Definition 1.3. F is said to be α-thin at infinity if any of the following
four equivalent conditions holds:

(i) F ∗ is α-thin at x0.
(ii) Either F is compact, or x0 is an α-irregular boundary point of F ∗.

(5) We refer to [16, 18] for the concept of consistency (see also Section 2.2 below).
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(iii) If Fk denotes F ∩ {x ∈ Rn : qk ≤ |x − x0| < qk+1}, where q ∈ (1,∞),
then

(1.5)
∑
k∈N

cκα(Fk)

qk(n−α)
<∞.

(iv) There is a connected component D of F c such that for every nonzero
ν ∈M+(D) we have νF (Rn) < ν(Rn).

The equivalence of (i) and (ii) is due to [6, Theorem VII.13] or [30,
Theorem 5.10], that of (ii) and (iii) holds by the Wiener criterion, and that
of (iii) and (iv) has been established in [45, Theorems 8.6, 8.7] (see also
earlier papers [39, Theorem B] and [40, Theorem 4]).

Theorem 1.4. If F is not α-thin at infinity, then cκα(F ) = ∞. This
cannot be reversed, i.e., there is F with cκα(F ) =∞ that is α-thin at infinity.

Proof. According to [30, Lemma5.5], cκα(F ) <∞⇔
∑

k∈N cκα(Fk) <∞,
Fk being defined in Definition 1.3(iii). When compared with (1.5), this yields
the theorem.

Remark 1.5. For α = 2, the concept of α-thinness at infinity thus de-
fined is, in fact, equivalent to that of Doob [10, pp. 175–176], while for α 6= 2,
it seems to appear first in our earlier work [40]. Due to its deep relation to
balayage, it plays an important role in the investigation of condenser prob-
lems in Riesz potential theory (see e.g. [11, 21, 22]; for an illustration, see
Example 1.7 below). Note that for α = 2, a different concept of α-thin-
ness at infinity has been introduced by Brelot [5, p. 313], which is actually
more restrictive than Doob’s (equivalently, our) concept. Indeed, a closed set
F ⊂ Rn is 2-thin at infinity in the sense of Brelot if and only if c2(F ) < ∞
(see [8, p. 277, footnote] or [6, Chapter IX, Section 6]); while according to
Theorem 1.4, cα(F ) < ∞ is only sufficient, but not necessary for F to be
α-thin at infinity in the sense of our Definition 1.3. We emphasize that each
of items (i)–(iv) in Definition 1.3 is indeed equivalent to the existence of
the α-Riesz equilibrium measure γF on F , but treated in an extended sense
where γF (F ) = κα(γF , γF ) =∞ is allowed; see [45, Section 5] for details.

Returning to problem (1.4), we can certainly assume that cκα(Ai) > 0,
i = 1, 2, for if not, then wα(A) = +∞, and hence the problem makes no
sense. There is also no loss of generality in assuming cκα(A1) <∞, because
if cκα(Ai) =∞ for i = 1, 2, then wα(A) = 0; and hence this infimum cannot
be an actual minimum, κα being strictly positive definite [30, Theorem 1.15].

Theorem 1.6 (see [40, Theorem 5]). Assume, for simplicity, Ac2 is con-
nected. If moreover the Euclidean distance between A1 and A2 is > 0, then
problem (1.4) is (uniquely) solvable if and only if either cκα(A2) < ∞, or
A2 is not α-thin at infinity.
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It follows that if A2 is α-thin at infinity, but cκα(A2) = ∞ (such an A2

exists by Theorem 1.4), then wα(A) cannot be attained among the admissible
measures. The reason is that, under the quoted assumptions, any minimizing
sequence converges strongly and vaguely to a (unique) γ = γ+ − γ− such
that γ+ ∈ E+

κα(A1, 1), while γ− = (γ+)A2 [40, Eq. (27)]. Since A2 is α-thin
at infinity, we get (γ+)A2(A2) < 1 by Definition 1.3(iv), and problem (1.4)
therefore has no solution.

Example 1.7. Let n = 3 and α = 2. Define A2 to be a rotation body

A2 := {x ∈ R3 : 0 ≤ x1 <∞, x2
2 + x2

3 ≤ %2(x1)},
where % is given by one of the following three formulae:

%(x1) = x−s1 with s ∈ [0,∞),(1.6)
%(x1) = exp(−xs1) with s ∈ (0, 1],(1.7)
%(x1) = exp(−xs1) with s ∈ (1,∞),(1.8)

and let A1 be a closed ball in R3 \A2. Then A2 is not 2-thin at infinity if % is
defined by (1.6), A2 is 2-thin at infinity but has infinite Newtonian capacity
if % is given by (1.7), and finally cκ2(A2) <∞ if (1.8) holds [41, Example 5.3].
By Theorem 1.6, problem (1.4) is therefore solvable for A = (A1, A2) if A2

is determined either by (1.6), or by (1.8), but problem (1.4) is unsolvable if
A2 is given by (1.7) (see Figure 1.1).

Fig. 1. A standard condenser A = (A1, A2) in R3, where A2 = {0 ≤ x1 < ∞, x2
2 + x2

3 ≤
ρ2(x1)} with ρ(x1) = exp(−x1) and A1 is a closed ball in R3 \A2

Remark 1.8. Theorem 1.6 and Example 1.7 have been illustrated in
[35, 27] by means of numerical experiments.
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2. Preliminaries

2.1. Measures, vague convergence, capacity. We shall tacitly use
the notation of Section 1. The vague topology on M(X) in general does
not possess a countable base, and hence it cannot be described in terms of
convergence of sequences. We follow Moore and Smith’s theory of conver-
gence, based on the concept of nets [34] (see also [28, Chapter 2] and [14,
Chapter 0]). However, if X is metrizable and countable at infinity, where
the latter means that X can be written as a countable union of compact
sets [3, Chapter I, Section 9, n◦ 9], then M(X) satisfies the first axiom of
countability [19, Remark 2.4], and the use of nets may be avoided.

Lemma 2.1 (see, e.g., [16, Section 1.1]). For any ψ ∈ Ψ(X) the map
ν 7→ 〈ψ, ν〉 is vaguely l.s.c. on M+(X).

Let a set Q ⊂ X and a measure ν ∈M+(X) be given. If Q is ν-measur-
able, then the indicator function 1Q of Q is locally ν-integrable, and hence
one can consider the trace (restriction) ν|Q = 1Q · ν of ν on Q [14, Sec-
tion 4.14.7]. As in [14, Section 4.7.3], Q is said to be ν-σ-finite if Q is
contained in a countable union of ν-integrable open sets (6). If Q is open
or ν-measurable and ν-σ-finite, then ν∗(Q) = ν∗(Q) ∈ [0,∞], where ν∗(Q)
and ν∗(Q) denote the inner and the outer ν-measure of Q, respectively [14,
Eqs. (4.7.3), (4.7.4)]; and we write ν(Q) := ν∗(Q) = ν∗(Q).

Lemma 2.2. If Q is ν-measurable and ν-σ-finite, then for any nonneg-
ative l.s.c. function ψ on X we have 〈ψ, ν|Q〉 = 〈ψ|Q, ν〉.

Proof. Applying first [14, Proposition 4.14.1(b)] and [14, Eq. (4.14.8)] to
ψ|Q and ν, and then applying [14, Proposition 4.14.1(a)] to ψ and ν|Q, we
arrive at our claim.

Theorem 2.3. Let X be metrizable and countable at infinity. If a se-
quence {νk}k∈N ⊂ M+(X) converges to ν vaguely, then for any relatively
compact Borel set Q ⊂ X with ν(∂XQ) = 0 we have νk|Q → ν|Q vaguely as
k →∞ (7).

Proof. The Portmanteau theorem in the form stated in [32, Theorem 2.1]
shows that under the hypotheses of Theorem 2.3,

lim
k→∞

νk(Q) = ν(Q).

Applying now to X, Q, νk and ν the same arguments as in [30, proof of
Theorem 0.5′], the only difference being in using the preceding display in
place of [30, Theorem 0.5], we establish the theorem.

(6) This necessarily holds if X is countable at infinity or ν is bounded, i.e., ν(X) <∞.
(7) IfX is an open subset of Rn, n ≥ 2, then Theorem 2.3 is, in fact, [30, Theorem 0.5′].
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Let M+(Q) consist of all ν ∈ M+(X) carried by Q, which means that
Qc := X \ Q is locally ν-negligible, or equivalently that Q is ν-measurable
and ν = ν|Q. If Qc is open or ν-σ-finite, then the concept of local ν-neglig-
ibility for Qc coincides with that of ν-negligibility; and hence ν ∈ M+(Q)
if and only if ν∗(Qc) = 0. Therefore, ν is carried by a closed Q if and
only if it is supported by Q, that is, S(ν) ⊂ Q, where S(ν) is the support
of ν.

In all that follows, κ is a positive definite kernel on X (Section 1). For
any Q ⊂ X, write E+

κ (Q) := Eκ(X) ∩M+(Q). The (inner) capacity of Q is
given by the formula

(2.1) cκ(Q) :=
[

inf
ν∈E+

κ (Q): ν(Q)=1
κ(ν, ν)

]−1

(see, e.g., [16, 37]). Then 0 ≤ cκ(Q) ≤ ∞. (As usual, the infimum over the
empty set is taken to be +∞. We also set 1/(+∞) = 0 and 1/0 = +∞.)

A proposition P(x) involving a variable point x ∈ X is said to hold
cκ-nearly everywhere (cκ-n.e.) on Q if cκ(N) = 0, where N consists of all
x ∈ Q for which P(x) fails. We write briefly ‘n.e.’ in place of ‘cκ-n.e.’ if this
does not cause any misunderstanding, and we omit ‘on Q’ if Q = X.

Lemma 2.4 (see [16, Lemma 2.3.1]). cκ(Q) = 0⇔ E+
κ (Q) = {0}.

2.2. Consistent and perfect kernels. In addition to the strong topol-
ogy on Eκ(X), determined by the seminorm ‖ · ‖κ (see Section 1), it is often
useful to consider the so-called weak topology on Eκ(X), defined by means of
the seminorms ν 7→ |κ(ν, µ)|, where µ ∈ Eκ(X) [16]. By the Cauchy–Schwarz
(Bunyakovski) inequality

|κ(µ, ν)| ≤ ‖µ‖κ · ‖ν‖κ, where µ, ν ∈ Eκ(X),

the strong topology on Eκ(X) is finer than the weak topology.
Following Fuglede [16, 18], we call a (positive definite) kernel κ consistent

if it satisfies either of the following two equivalent properties:

(C1) Every strong Cauchy net in E+
κ (X) converges strongly to any of its

vague cluster points (whenever these exist).
(C2) Every strongly bounded and vaguely convergent net in E+

κ (X) converges
weakly to its vague limit.

A kernel κ is called perfect if it is consistent and strictly positive definite
[16, Theorem 3.3], or equivalently if the following two conditions are fulfilled
(see [16, p. 166]):

(P1) E+
κ (X) is complete in the induced strong topology.

(P2) The strong topology on E+
κ (X) is finer than the induced vague topology

on E+
κ (X).
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Example 2.5. On X = Rn, n ≥ 3, the α-Riesz kernel κα, α ∈ (0, n), is
strictly positive definite and consistent, and hence perfect [9]; thus so is the
Newtonian kernel κ2(x, y) = |x− y|2−n [7]. Recently it has been shown that
if X = D where D is an arbitrary open set in Rn, n ≥ 3, and GαD, α ∈ (0, 2],
is the α-Green kernel on D [30, Chapter IV, Section 5], then κ = GαD is
likewise perfect [20, Theorems 4.9, 4.11]. Furthermore, the 2-Green kernel
on a planar 2-Greenian set is strictly positive definite by [10, Chapter XIII,
Section 7] and it is consistent by [13], and hence perfect. The logarithmic
kernel − log |x− y| on a closed disc in R2 of radius < 1 is strictly positive
definite, as shown in [30, Theorem 1.16]. It is therefore perfect (see [36]),
because it satisfies Frostman’s maximum principle by [30, Theorem 1.6],
and hence is regular by [37, Eq. (1.3)]. For analogous results concerning the
logarithmic kernel on closed balls of arbitrary finite dimension, see [17].

Remark 2.6. In contrast to (P1), for a perfect kernel κ the whole pre-Hil-
bert space Eκ(X) is in general strongly incomplete, and this is the case even
for the α-Riesz kernel of order α ∈ (1, n) on Rn, n ≥ 3 [7].

Remark 2.7. The concept of consistent kernel is an efficient tool in
minimum energy problems over classes of positive scalar Radon measures
with finite energy. Indeed, if Q is closed, cκ(Q) ∈ (0,∞), and κ is consistent,
then the minimum energy problem in (2.1) has a solution λ [16, Theorem 4.1];
we shall call this λ an (inner) κ-capacitary measure on Q. (This λ is unique
if κ is strictly positive definite.) Later the concept of consistency has been
shown to be efficient also in minimum energy problems over classes of
vector measures of finite or infinite dimensions associated with a standard
condenser [41]–[44]. The approach developed in [41]–[44] substantially used
the assumption of the boundedness of the kernel on the Cartesian product
of the oppositely charged plates of a condenser, which made it possible to
extend Cartan’s proof [7] of the strong completeness of the cone E+

κ2
(Rn) of

all positive measures on Rn with finite Newtonian energy to an arbitrary
consistent kernel κ on a l.c.s. X and suitable classes of (signed) measures
µ ∈ Eκ(X) (compare with Theorem 1.2 as well as Remark 2.6 above).

2.3. Nearly closed sets. The following concept seems to be new (a pri-
vate communication by Bent Fuglede).

Definition 2.8. A set Q ⊂ X is said to be nearly closed, resp. nearly
compact, if there exists a closed, resp. compact, set Q̆ ⊂ X such that

cκ(Q4 Q̆) = 0, where Q4 Q̆ := (Q \ Q̆) ∪ (Q̆ \Q).

Lemma 2.9. For any nearly closed set Q,

E+
κ (Q) = E+

κ (Q̆).
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Proof. Note that Q = [Q̆ ∪ (Q \ Q̆)] \ (Q̆ \ Q). Since no set in X with
cκ(·) = 0 can carry a nonzero measure from E+

κ (X) (cf. Lemma 2.4), E+
κ (Q) ⊂

E+
κ (Q̆). Interchanging Q and Q̆, we obtain the converse inclusion.

Lemma 2.10. If a set Q ⊂ X is nearly closed, then the truncated cone
{ν ∈ E+

κ (Q) : ‖ν‖κ ≤ 1} is closed in the induced vague topology.

Proof. As seen from Lemma 2.9, it is enough to establish the lemma
for Q̆ in place of Q. Since M+(Q̆) is vaguely closed, Q̆ being closed in X,
and since the energy κ(ν, ν) is vaguely l.s.c. on M+(X) [16, Lemma 2.2.1(e)],
the lemma follows.

3. Vector measures. Their energies and potentials

3.1. Vector measures. Fix a countable set I of indices i ∈ N, and con-
sider the Cartesian product M+(X)Card I , equipped with the vague product
space topology. Elements µ = (µi)i∈I of M+(X)Card I , where µi ∈ M+(X)
for all i ∈ I, are termed positive (Card I)-dimensional vector measures on X.

Definition 3.1. A set F ⊂ M+(X)Card I is said to be vaguely bounded
if for every ϕ ∈ C0(X),

sup
µ∈F
|µi(ϕ)| <∞ for all i ∈ I.

Lemma 3.2. A vaguely bounded set F ⊂M+(X)Card I is vaguely relatively
compact.

Proof. It is clear from the above definition that for every i ∈ I, the set

Fi := {µi ∈M+(X) : µ = (µj)j∈I ∈ F}
is vaguely bounded, and hence vaguely relatively compact in M+(X) [4,
Chapter III, Section 2, Proposition 9]. Since F ⊂

∏
i∈I F

i, the lemma follows
from Tikhonov’s theorem on the product of compact spaces [3, Chapter I,
Section 9, Theorem 3].

Since M+(X) is Hausdorff in the vague topology, so is M+(X)Card I [3,
Chapter I, Section 8, Proposition 7], and hence a vague limit of any net
(µs)s∈S ⊂M+(X)Card I is unique if it exists. (Throughout the paper, S de-
notes an upper directed set of indices s.)

3.2. Generalized and standard condensers. Assume I = I+ ∪ I−,
where I+ ∩ I− = ∅ and I− is allowed to be empty, and to every i ∈ I there
corresponds a nonempty Borel set Ai ⊂ X.

Definition 3.3. A collection A = (Ai)i∈I is termed a generalized
(I+, I−)-condenser (or simply a generalized condenser) in X if every com-
pact subset of X intersects at most finitely many Ai, and moreover
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(3.1) Ai ∩Aj = ∅ for all i ∈ I+, j ∈ I−.

Writing

(3.2) si := signAi :=

{
+1 if i ∈ I+,

−1 if i ∈ I−,

we call Ai, i ∈ I+, and Aj , j ∈ I−, positive and negative plates of the gener-
alized condenser A. Note that any two equally signed plates may intersect
or even coincide. Also note that although any two oppositely signed plates
are disjoint by (3.1), their closures in X may intersect (actually, even in a set
of nonzero capacity) (8). Furthermore, it follows from the above definition
that the sets A+ :=

⋃
i∈I+ Ai and A− :=

⋃
j∈I− Aj are Borel and disjoint,

which will be used substantially in all that follows.

Lemma 3.4. If the Ai, i ∈ I, are nearly closed, then so are A+ and A−.

Proof. With Ăi, i ∈ I, determined by Definition 2.8 for Q = Ai, write

(3.3) Ă+ :=
⋃
i∈I+

Ăi and Ă− :=
⋃
j∈I−

Ăj .

Then Ă± is closed, for the collection (Ăi)i∈I± of (closed) sets Ăi is locally
finite. Since cκ(Ai 4 Ăi) = 0 for all i ∈ I, the countable subadditivity of
inner capacity on Borel sets [16, Lemma 2.3.5] yields cκ(A± 4 Ă±) = 0.

Definition 3.5. A generalized condenser is standard if its plates are
closed.

Unless explicitly stated otherwise, in all that follows A = (Ai)i∈I is
a generalized condenser in X. Let M+(A) consist of all µ = (µi)i∈I ∈
M+(X)Card I with µi ∈M+(Ai) for all i ∈ I. In other words, M+(A) stands
for the Cartesian product

∏
i∈I M+(Ai), equipped with the vague topol-

ogy induced from M+(X)Card I . Elements of M+(A) are said to be (vector)
measures associated with A.

Lemma 3.6. If a condenser A is standard, then M+(A) is vaguely closed
in M+(X)Card I .

Proof. Noting that the M+(Ai), i ∈ I, are vaguely closed in M+(X)
(Ai being closed in X), we obtain the lemma from [3, Chapter I, Section 4,
Corollary to Proposition 7].

3.3.MappingR : M+(A)→M(X). Since each compact subset ofX has
points in common with at most finitely many Ai, for any given µ = (µi)i∈I ∈
M+(A) and ϕ ∈ C0(X) only a finite number of µi(ϕ) are nonzero. This

(8) This remains valid even when the Ai, i ∈ I, are nearly closed.
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implies that to every positive vector measure µ ∈M+(A) there corresponds
a unique (signed) scalar Radon measure Rµ = R(µ) ∈M(X) such that

Rµ(ϕ) =
∑
i∈I

siµ
i(ϕ) for all ϕ ∈ C0(X),

si being determined by (3.2). Since the positive scalar measures
∑

i∈I+ µi

and
∑

i∈I− µ
i are carried by the nonintersecting Borel sets A+ and A−,

respectively, these two measures are, in fact, the positive and negative parts
in the Hahn–Jordan decomposition of Rµ; i.e., Rµ = (Rµ)+− (Rµ)−, where

(Rµ)+ :=
∑
i∈I+

µi and (Rµ)− :=
∑
i∈I−

µi.

When the dependence of the mapping R on the (generalized) condenser A
needs to be indicated explicitly, we shall write RA in place of R.

The mapping M+(A) →M(X) thus defined is in general non-injective,
i.e., there exist µ1,µ2 ∈ M+(A) such that µ1 6= µ2, but Rµ1 = Rµ2. We
say that µ1,µ2 ∈ M+(A) are R-equivalent if Rµ1 = Rµ2. R-equivalence
on M+(A) implies identity (and hence these two relations on M+(A) are
equivalent) if and only if Ai∩Aj = ∅ for all i 6= j (compare with Lemma 3.15
below).

Lemma 3.7. If a net (µs)s∈S ⊂ M+(A) converges vaguely to µ0 ∈
M+(A), then Rµs → Rµ0 vaguely in M(X) as s increases along S.

Proof. This follows directly from the observation that the (compact) sup-
port of any ϕ ∈ C0(X) can intersect only finitely many Ai.

Remark 3.8. Lemma 3.7 cannot in general be reversed. However, if
the Ai, i ∈ I, are closed and mutually disjoint, then for any (µs)s∈S and µ0

inM+(A), the vague convergence of (Rµs)s∈S to Rµ0 implies the vague con-
vergence of (µs)s∈S to µ0. This follows from the Tietze–Urysohn extension
theorem [14, Theorem 0.2.13].

3.4. Energies and potentials of vector measures and those of
their scalar R-images. For a (positive definite) kernel κ and vector mea-
sures µ,ν ∈M+(A), define the mutual energy (9)

(3.4) κ(µ,ν) :=
∑
i,j∈I

sisjκ(µi, νj)

and the vector potential κµ(·) as a vector-valued function on X with the
components

(3.5) κiµ(·) :=
∑
j∈I

sisjκ(·, µj), i ∈ I,

(9) With regard to (3.4) and (3.5), see footnote 3.
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where κ(·, ν) :=
	
κ(·, y) dν(y) denotes the potential of ν ∈M(X). For µ = ν,

κ(µ,ν) becomes the energy κ(µ,µ) of µ (cf. (1.1)).
Let E+

κ (A) consist of all µ ∈ M+(A) with finite κ(µ,µ), which means
that κ is (µi ⊗ µj)-integrable for all i, j ∈ I and the series

∑
i,j∈I |κ(µi, µj)|

is convergent (the latter can be omitted if X is compact, for then I is finite).

Lemma 3.9. For µ ∈ M+(A) to have finite energy, it is sufficient that
µi ∈ E+

κ (Ai) for all i ∈ I and moreover
∑

i∈I ‖µi‖κ <∞.

Proof. In fact, applying the Cauchy–Schwarz inequality in Eκ(X), we get∑
i,j∈I
|κ(µi, µj)| ≤

∑
i,j∈I
‖µi‖κ‖µj‖κ =

(∑
i∈I
‖µi‖κ

)2
.

The following lemma is crucial for the establishment of relations between
energies and potentials of vector measures µ ∈ M+(A) and those of their
(signed scalar) R-images Rµ ∈M(X).

Lemma 3.10. Given a generalized (L+, L−)-condenser B = (B`)`∈L in
a l.c.s. Y , consider ω = (ω`)`∈L ∈ M+(B) and ψ ∈ Ψ(Y ). For ψ to be
|RBω|-integrable, it is necessary and sufficient that

∑
`∈L |〈ψ, ω`〉| < ∞;

and in that case,
〈ψ,RBω〉 =

∑
`∈L

s`〈ψ, ω`〉.

Proof. We can certainly assume L is infinite, for otherwise the lemma is
obvious. Then Y is noncompact, and hence ψ is nonnegative. Therefore

〈ψ, (RBω)+〉 ≥
∑

`∈L+, `≤N

〈ψ, ω`〉 for all N ∈ L+.

On the other hand, since B is locally finite, the sum of ω` over all ` ∈ L+

that do not exceed N approaches (RBω)+ vaguely as N increases along L+.
Hence, by Lemma 2.1 (10),

〈ψ, (RBω)+〉 ≤ lim
N∈L+

∑
`∈L+, `≤N

〈ψ, ω`〉.

Combining these two displays and then letting N along L+, we get

〈ψ, (RBω)+〉 =
∑
`∈L+

〈ψ, ω`〉.

Since the same holds for (RBω)− and L−, the lemma follows by subtrac-
tion.

(10) The symbol lims∈S denotes a limit as s increases along an upper directed set S.
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Corollary 3.11. Fix µ,ν ∈M+(A) and x ∈ X. Then

κ(Rµ, Rν) =
∑
i,j∈I

sisjκ(µi, νj),(3.6)

κ(x,Rµ) =
∑
i∈I

siκ(x, µi),(3.7)

each of the identities being understood in the sense that either of its sides is
finite whenever so is the other and then they coincide. By (3.4) and (3.6)
with µ = ν,

(3.8) µ ∈ E+
κ (A) ⇐⇒ Rµ ∈ Eκ(X).

Proof. Relation (3.7) follows directly from Lemma 3.10 with Y = X,
B = A, and ψ(·) = κ(x, ·). We next apply Lemma 3.10 to the (generalized)
condenser A × A := (Ai × Aj)(i,j)∈I×I in X × X with s(i,j) := sisj , the
function ψ := κ ∈ Ψ(X ×X), and the vector measure µ⊗ ν ∈M+(A×A),
where µ⊗ ν := (µi ⊗ νj)(i,j)∈I×I . Noting that

RA×A(µ⊗ ν) =
∑
i,j∈I

sisjµ
i ⊗ νj = (RAµ)⊗ (RAν),

we arrive at (3.6).

Corollary 3.12. Given µ,ν ∈ E+
κ (A), we have

(3.9) κ(µ,ν) = κ(Rµ, Rν) =
∑
i,j∈I

sisjκ(µi, νj).

Furthermore, for every i ∈ I, κiµ(x) is finite n.e. and can be written in the
form

(3.10) κiµ(x) = siκ(x,Rµ) =
∑
j∈I

sisjκ(x, µj).

The series in (3.9) as well as in (3.10) converges absolutely, the latter being
valid n.e.

Proof. It is seen from (3.8) that Rµ, Rν ∈ Eκ(X); hence, κ(Rµ, Rν) is
finite (see, e.g., [16, Lemma 3.1.1]), which yields (3.6) with the absolutely
convergent series on the right-hand side. Compared with (3.4), this implies
(3.9). Being the potential of a (scalar) measure of finite energy relative to the
positive definite kernel, κ(·, Rµ) is finite n.e. [16, p. 164]. Hence, the series
on the right-hand side in (3.7) converges absolutely n.e., which together with
(3.5) establishes (3.10).

Remark 3.13. Since the kernel is positive definite, (3.9) with ν = µ
yields the positivity of the energy κ(µ,µ), which a priori was not obvious:

(3.11) κ(µ,µ) ≥ 0 for all µ ∈ E+
κ (A).
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Remark 3.14. It is clear from the above that E+
κ (A) is a convex cone.

Indeed, since M+(A) is so, it is enough to observe that R(β1µ1 + β2µ2) ∈
Eκ(X) for any β1, β2 ∈ (0,∞) and µ1,µ2 ∈ E+

κ (A). As Rµ1, Rµ2 ∈ Eκ(X)
by (3.8), while R(β1µ1 + β2µ2) = β1Rµ1 + β2Rµ2, the convexity of E+

κ (A)
follows from the linearity of Eκ(X).

3.5. Semimetric space of vector measures with finite energy. We
next show that the cone E+

κ (A) can be thought of as a semimetric space,
isometric to its (scalar) R-image.

Lemma 3.15. R-equivalence on E+
κ (A) is equivalent to identity if and

only if the Ai, i ∈ I, are mutually essentially disjoint, i.e.,

(3.12) cκ(Ai ∩Aj) = 0 for all i 6= j.

Proof. The sufficiency part is obvious by Lemma 2.4. Assume now that
there are Ak and A`, k 6= `, with cκ(Ak∩A`) > 0; then necessarily sks` = +1.
It follows from Lemma 2.4 that there exists a nonzero τ ∈ E+

κ (Ak ∩ A`).
Choose µ = (µi)i∈I ∈ E+

κ (A) such that µk|Ak∩A` − τ ≥ 0, and define µm =
(µim)i∈I ∈ E+

κ (A), m = 1, 2, where µk1 := µk − τ and µi1 := µi for all i 6= k,
while µ`2 := µ` + τ and µi2 := µi for all i 6= `. Then Rµ1 = Rµ2, and hence
µ1 and µ2 are R-equivalent, but µ1 6= µ2.

Theorem 3.16. The cone E+
κ (A) is a semimetric space with the semi-

metric ‖µ1 − µ2‖E+
κ (A) defined by (1.2), and this space is isometric to its

R-image. Assume now κ is strictly positive definite. Then ‖µ1 − µ2‖E+
κ (A)

becomes a metric if and only if (3.12) holds.

Proof. Fix any µ1,µ2 ∈ E+
κ (A). Applying (3.9) to κ(Rµk, Rµt), k, t =

1, 2, and then combining the equalities obtained, we get

‖Rµ1 −Rµ2‖2κ =
∑
i,j∈I

sisjκ(µi1 − µi2, µ
j
1 − µ

j
2),

where the series converges absolutely. Hence, the sum on the right-hand side
in (1.2) is ≥ 0. When compared with (1.2), the last display yields

(3.13) ‖µ1 − µ2‖E+
κ (A) = ‖Rµ1 −Rµ2‖κ.

Since ‖·‖κ is a seminorm on Eκ(X), the first assertion of the theorem follows.
Assume now κ is strictly positive definite. By (3.13), ‖µ1−µ2‖E+

κ (A) = 0
if and only if µ1 and µ2 are R-equivalent, while by Lemma 3.15, R-equival-
ence on E+

κ (A) is equivalent to identity if and only if (3.12) holds.

In view of the isometry between E+
κ (A) and its R-image, contained in

the pre-Hilbert space Eκ(X), the topology on the semimetric space E+
κ (A)

is likewise termed strong. As usual, µ,ν ∈ E+
κ (A) are said to be equivalent

in the semimetric space E+
κ (A) if ‖µ− ν‖E+

κ (A) = 0.
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Corollary 3.17. µ,ν ∈ E+
κ (A) are equivalent in E+

κ (A) if and only if

κiµ(·) = κiν(·) n.e. for all i ∈ I.

Proof. In view of (3.13), µ and ν are equivalent in E+
κ (A) if and only

if Rµ and Rν are equivalent in Eκ(X), which in turn holds if and only if
κ(·, Rµ) = κ(·, Rν) n.e. [16, Lemma 3.2.1(a)]. Combining this with (3.10)
establishes the corollary.

Being nonlinear, E+
κ (A) is not normed. Nevertheless, for any of its ele-

ments µ it is convenient to write ‖µ‖E+
κ (A) := ‖µ− 0‖E+

κ (A). Then

(3.14) ‖µ‖2E+
κ (A)

= κ(µ,µ) = κ(Rµ, Rµ) = ‖Rµ‖2κ.

4. Minimum energy problems for a generalized condenser

4.1. Formulation of the problems. For a (positive definite) kernel κ
on X and a (generalized) condenser A = (Ai)i∈I , we shall consider minimum
energy problems with external fields over certain subclasses of E+

κ (A).
Fix a vector-valued external field f = (fi)i∈I , where each fi : X →

[−∞,∞] is µ-measurable for every µ ∈ M+(X). The f -weighted vector po-
tential and the f -weighted energy of µ ∈ E+

κ (A) are defined by

Wµ
κ,f := κµ + f ,(4.1)

Gκ,f (µ) := κ(µ,µ) + 2〈f ,µ〉,(4.2)

respectively. Let E+
κ,f (A) consist of all µ ∈ E+

κ (A) with 〈f ,µ〉 finite, which
means that every fi, i ∈ I, is µi-integrable and the series

∑
i∈I 〈fi, µi〉 con-

verges absolutely.
Fix a numerical vector a = (ai)i∈I with ai > 0, i ∈ I, and a vector-valued

function g = (gi)i∈I , where all the gi : X → (0,∞) are (finitely) continuous,
and write

M+(A,a,g) := {µ ∈M+(A) : 〈gi, µi〉 = ai for all i ∈ I}.

If E+
κ,f (A,a,g) := E+

κ,f (A) ∩M+(A,a,g) is nonempty, or equivalently if

Gκ,f (A,a,g) := inf
µ∈E+

κ,f (A,a,g)
Gκ,f (µ) <∞,

then the following (unconstrained) f -weighted minimum energy problem, also
known in the literature as the Gauss variational problem (see, e.g., [23, 37,
38, 43, 44, 22]), makes sense.

Problem 4.1. Does there exist λA ∈ E+
κ,f (A,a,g) with

Gκ,f (λA) = Gκ,f (A,a,g)?
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Let C(Ai), i ∈ I, consist of all ξi ∈ M+(Ai) with 〈gi, ξi〉 > ai; those
ξi are said to be (upper) constraints for elements of M+(Ai, ai, gi). Given
ξi ∈ C(Ai), write

Mξi(Ai, ai, gi) := {µi ∈M+(Ai, ai, gi) : µi ≤ ξi},

Eξiκ (Ai, ai, gi) := E+
κ (Ai) ∩Mξi(Ai, ai, gi),

where µi ≤ ξi means that ξi − µi ≥ 0.
Fix I0 ⊂ I, which might be empty. We generalize Problem 4.1 by as-

suming that for every i ∈ I0, the i-components µi of the (new) admissible
measures µ are now additionally required not to exceed a fixed constraint
ξi ∈ C(Ai); that is, µi ∈ Mξi(Ai, ai, gi) for all i ∈ I0. To be precise, write
σ := (σi)i∈I , where

σi :=

{
ξi if i ∈ I0,

∞ if i ∈ I \ I0,

and define

Mσ(A,a,g) :=
∏
i∈I

Mσi(Ai, ai, gi),

Eσκ (A,a,g) := E+
κ (A) ∩Mσ(A,a,g),

Eσκ,f (A,a,g) := E+
κ,f (A) ∩Mσ(A,a,g).

Here the formal notation M∞(Ai, ai, gi) means that no active upper con-
straint is imposed on µi ∈M+(Ai, ai, gi), i.e.,

Mσi(Ai, ai, gi) = M+(Ai, ai, gi) for all i ∈ I \ I0.

If Eσκ,f (A,a,g) is nonempty (which will always be tacitly required), or
equivalently if (11)

(4.3) Gσ
κ,f (A,a,g) := inf

µ∈Eσκ,f (A,a,g)
Gκ,f (µ) <∞,

then the following generalization of Problem 4.1 makes sense.

Problem 4.2. Does there exist λσ
A ∈ Eσκ,f (A,a,g) with

Gκ,f (λ
σ
A) = Gσ

κ,f (A,a,g)?

Observe that under the (standing) assumption (4.3), Problem 4.1 also
makes sense. In fact, Eσκ,f (A,a,g) ⊂ E+

κ,f (A,a,g), and hence

(4.4) Gκ,f (A,a,g) ≤ Gσ
κ,f (A,a,g) <∞.

Problem 4.2 reduces to Problem 4.1 if I0 = ∅, while for I0 = I, Prob-
lem 4.2 is known as the constrained Gauss variational problem (see, e.g.,

(11) See Lemma 5.5 below providing sufficient conditions for (4.3) to hold. Also note
that the (nonempty) class Eσκ,f (A,a,g) is convex (cf. Remark 3.14).
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[12, 42, 19, 22, 11]). However, the Gauss variational problem in either con-
strained or unconstrained setting has not been studied yet under the present
requirements, whereA is a collection of infinitely many touching Borel plates
(cf. Remark 4.3 below). Finally, in the case where I0 is a nonempty proper
subset of I, Problem 4.2 seems to be new (even for a standard condenser),
though such a problem with mixed upper boundary conditions looks quite
natural and also promising in relation to its possible applications (cf. Re-
mark 1.1).

Remark 4.3. The most general study of Problem 4.1 for a standard
condenser of infinitely many (closed) plates seems to have been provided in
[43, 44]. It includes, e.g., a complete description of the set of all a = (ai)i∈I
for which minimizers λA exist as well as an analysis of their uniqueness,
vague compactness, and strong and vague continuity of λA when A varies.
The weighted potentials of minimizers are described, and their characteristic
properties are singled out.

4.2. Uniqueness of solutions. We next show that the set of solutions
to Problem 4.2 is contained in a certain equivalence class in E+

κ (A).

Lemma 4.4. Any two solutions λ and λ̂ to Problem 4.2 (whenever these
exist) are equivalent in E+

κ (A), i.e., ‖λ− λ̂‖E+
κ (A) = 0.

Proof. This can be shown in a way similar to that in [43, proof of
Lemma 5.1], based on the convexity of Eσκ,f (A,a,g), isometry between E+

κ (A)
and its (scalar) R-image, and the pre-Hilbert structure on Eκ(X). Indeed,
from (4.3), (4.2), and (3.14) we get

4Gσ
κ,f (A,a,g) ≤ 4Gκ,f

(
λ+ λ̂

2

)
= ‖Rλ+Rλ̂‖2κ + 4〈f ,λ+ λ̂〉.

On the other hand, applying the parallelogram identity in Eκ(X) to Rλ and
Rλ̂ and then adding and subtracting 4〈f ,λ+ λ̂〉, we obtain

‖Rλ−Rλ̂‖2κ = −‖Rλ+Rλ̂‖2κ − 4〈f ,λ+ λ̂〉+ 2Gκ,f (λ) + 2Gκ,f (λ̂).

When combined with the preceding relation, this yields

0 ≤ ‖Rλ−Rλ̂‖2κ ≤ −4Gσ
κ,f (A,a,g) + 2Gκ,f (λ) + 2Gκ,f (λ̂) = 0,

which in view of (3.13) establishes the lemma.

Corollary 4.5. If κ is strictly positive definite and the Ai, i ∈ I, are
mutually essentially disjoint, then a solution to Problem 4.2 is unique.

Proof. This follows from Lemma 4.4 combined with Theorem 3.16.

The following example shows that Corollary 4.5 fails in general if the
assumption of mutual essential disjointness of the Ai, i ∈ I, is omitted from
its hypotheses.
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Example 4.6. Let X = Rn, n ≥ 3, κ = κ2, I = I+ = {1, 2}, I0 = {1},
a1 = a2 = 1, g1 ≡ g2 ≡ 1, f1 ≡ f2 ≡ 0, and let A1 = A2 = K0, K0 being
an (n− 1)-dimensional unit sphere. Let λ denote the κ2-capacitary measure
onK0, which exists (cf. Remark 2.7 and Example 2.5). For symmetry reasons,
λ coincides up to a normalizing factor with the (n− 1)-dimensional surface
measure mn−1 on K0. Define ξ1 := 3λ, and consider Problem 4.2 with these
data. It is obvious that λ = (λ, λ) is one of its solutions. Choose now compact
disjoint sets Kk ⊂ K0, k = 1, 2, so that mn−1(K1) = mn−1(K2) > 0, and
define ν = λ|K1 − λ|K2 . Then λ̂ = (λ − ν, λ + ν) is an admissible measure
for Problem 4.2 such that Rλ̂ = Rλ, and hence κ(λ̂, λ̂) = κ(λ,λ). Thus λ̂
and λ both solve Problem 4.2, though λ̂ 6= λ.

5. Standing assumptions. Supplementary results. In all that fol-
lows we require that either X is countable at infinity, or

(5.1) gi,inf := inf
x∈Ai

gi(x) > 0 for all i ∈ I.

Lemma 5.1. Let µi ∈ E+
κ (Ai) be such that 〈gi, µi〉 = c < ∞. Then a

proposition P(x) holds µi-almost everywhere (µi-a.e.) if it holds n.e. on Ai.

Proof. The set N of all x ∈ Ai for which P(x) fails has inner capacity
zero, and hence it is locally µi-negligible [16, Lemma 2.3.1(iii)]. Furthermore,
N is µi-σ-finite. This is obvious if X is countable at infinity, while otherwise
(5.1) holds, and therefore

(5.2) µi(X) ≤ cg−1
i,inf <∞.

Being locally µi-negligible and µi-σ-finite, N is µi-negligible as claimed.

When speaking of an external field f = (fi)i∈I , we shall henceforth tacitly
assume that Case I or Case II holds, where:

I. For every i ∈ I, fi ∈ Ψ(X).
II. For every i ∈ I, fi = siκ(·, ζ), where a (signed) ζ ∈ Eκ(X) is given.

Lemma 5.2. If Case II takes place, then E+
κ (A) = E+

κ,f (A), and moreover

(5.3) Gκ,f (µ) = ‖Rµ+ ζ‖2κ − ‖ζ‖2κ for all µ ∈ E+
κ (A).

Proof. Applying Lemma 3.10 to µ ∈ E+
κ (A) and each of κ(·, ζ+), κ(·, ζ−)

∈ Ψ(X), we get by subtraction

〈f ,µ〉 =
∑
i∈I

si
�
κ(x, ζ) dµi(x) = κ(ζ,Rµ).

Substituting this together with (3.14) into (4.2), we arrive at (5.3).
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Lemma 5.3. In either Case I or Case II (12),
(5.4) Gσ

κ,f (A,a,g) ≥ Gκ,f (A,a,g) > −∞.
Proof. Since in Case II relation (5.4) follows directly from (5.3), it re-

mains to consider Case I. Assume X is compact, for if not, then fi ≥ 0 for all
i ∈ I, and (5.4) holds by (3.11). But then I has to be finite, while every fi,
being l.s.c., is bounded from below on the (compact) space X by −ci, where
0 < ci <∞. In addition, (5.1) and hence (5.2) with c = ai both hold for ev-
ery i ∈ I and every µ ∈M+(A,a,g), gi being a strictly positive continuous
function on X. Combining all this gives

−∞ < −ciaig−1
i,inf ≤ −ci sup

µ∈M+(A,a,g)

µi(X) ≤ 〈fi, µi〉,

which in view of the finiteness of I again leads to (5.4).
Lemma 5.4. Under the (standing) requirement (4.3), for all i ∈ I,

(5.5) cκ(A◦i ) > 0, where A◦i := {x ∈ Ai : |fi(x)| <∞}.
Proof. Suppose that, on the contrary, cκ(A◦j ) = 0 for some j ∈ I. Then,

by Lemma 5.1, for every µ ∈ E+
κ,f (A,a,g) (which exists by (4.4)) we have

|fj | =∞ µj-a.e. But this is impossible because µj 6= 0 while fj is µj-integr-
able.

For any M ∈ (0,∞) and i ∈ I, write AMi := {x ∈ A◦i : |fi(x)| ≤M}.
Lemma 5.5. Assume there exist M,M1 ∈ (0,∞) that are independent of

i ∈ I and satisfy ∑
i∈I0

‖ξi|AMi ‖κ <∞,(5.6)

〈gi, ξi|AMi 〉 ∈ (ai,∞) for all i ∈ I0,(5.7)

inf
i∈I\I0

cκ(AM1
i ) =: M3 ∈ (0,∞].(5.8)

If moreover (1.3) is fulfilled, then (4.3) holds.
Proof. Fix ε ∈ (0,∞), and for every i ∈ I \ I0 choose τi ∈ E+

κ (AM1
i ) of

compact support so that τi(AM1
i ) = 1 and ‖τi‖2κ ≤ cκ(AM1

i )−1 + ε. (Such a
τi exists since cκ(AM1

i ) would be the same if the measures ν in its definition
were required to be of compact support S(ν) ⊂ AM1

i , cf. [16, p. 153].) In
view of (5.8), we thus get

‖τi‖2κ ≤ ε+M−1
3 =: M2

4 ∈ (0,∞).

Write
ν̃i :=

aiνi
〈gi, νi〉

for all i ∈ I,

(12) As seen from (4.3), (4.4), and (5.4), Gκ,f (A,a,g) and Gσ
κ,f (A,a,g) are both finite.
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where

νi :=

{
τi if i ∈ I \ I0,

ξi|AMi if i ∈ I0.

Note that 0 < 〈gi, νi〉 < ∞ for all i ∈ I. In fact, for i ∈ I \ I0 this holds
because

0 < min
x∈S(τ i)

gi(x) ≤ 〈gi, νi〉 ≤ max
x∈S(τ i)

gi(x) <∞,

while for i ∈ I0 it is valid by (5.7). Also observing that, again by (5.7), ν̃i ≤ ξi
for all i ∈ I0, we thus get ν̃i ∈Mσi(Ai, ai, gi) for all i ∈ I. Furthermore,∑

i∈I
‖ν̃i‖κ ≤

∑
i∈I0

ai
〈gi, ξi|AMi 〉

‖ξi|AMi ‖κ +M4

∑
i∈I\I0

aig
−1
i,inf

≤
∑
i∈I0

‖ξi|AMi ‖κ +M4

∑
i∈I\I0

aig
−1
i,inf <∞,

where the second inequality follows from (5.7) and the third from (5.6) and
(1.3). Therefore, by Lemma 3.9, ν̃ := (ν̃i)i∈I ∈ Eσκ (A,a,g). Finally,∑

i∈I
|〈fi, ν̃i〉| ≤ (M +M1)

∑
i∈I

aiν
i(X)

〈gi, νi〉
≤ (M +M1)

∑
i∈I

aig
−1
i,inf <∞,

the last inequality coming from (1.3). Altogether, ν̃ ∈ Eσκ,f (A,a,g).

If I is finite, Lemma 5.5 takes the following much simpler form.

Corollary 5.6. Let I be finite, and let cκ(A◦i ) > 0 for all i ∈ I \ I0,
with A◦i defined in (5.5). Then (4.3) holds if for every i ∈ I0,

〈gi, ξi|A◦i 〉 > ai and ξi|Ki ∈ E+
κ (Ki) for every compact Ki ⊂ A◦i .

We omit the proof, since it is similar to that of Lemma 5.5. Combining
this corollary with Lemma 5.4 yields the following assertion.

Corollary 5.7. If I is finite and I0 = ∅, then (4.3) and (5.5) are
equivalent.

Definition 5.8. A net (µs)s∈S ⊂ Eσκ,f (A,a,g) is minimizing in Prob-
lem 4.2 if

(5.9) lim
s∈S

Gκ,f (µs) = Gσ
κ,f (A,a,g).

LetMσ
κ,f (A,a,g) consist of all those (µs)s∈S ; it is nonempty because of (4.3).

Lemma 5.9. For any (µs)s∈S and (νt)t∈T in Mσ
κ,f (A,a,g),

(5.10) lim
(s,t)∈S×T

‖µs − νt‖E+
κ (A) = 0,

S×T being the upper directed product (13) of the upper directed sets S and T .

(13) See, e.g., [28, Chapter 2, Section 3].
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Proof. In the same manner as in the proof of Lemma 4.4 we get

0 ≤ ‖Rµs −Rνt‖2κ
≤ −4Gσ

κ,f (A,a,g) + 2Gκ,f (µs) + 2Gκ,f (νt),

which yields (5.10) when combined with (3.13), (4.3), (5.4), and (5.9).

Corollary 5.10. Every (µs)s∈S ∈ Mσ
κ,f (A,a,g) is strong Cauchy in

E+
κ (A).

6. Sufficient conditions for solvability of Problem 4.2. Through-
out Section 6 we require the standing assumptions stated in Sections 4.1
and 5. Furthermore, the Ai, i ∈ I, are assumed to be nearly closed. Accord-
ing to Lemma 3.4, then so are both A+ and A−. Let Ă+ and Ă− be the
(closed) sets defined by (3.3). We denote by (µs)

′
s∈S the cluster set of any

(µs)s∈S ⊂ M+(A) in the vague product space topology on M+(X)Card I ,
and Sσ

κ,f (A,a,g) the class of solutions to Problem 4.2.

Theorem 6.1. Suppose that the kernel κ is consistent, and the assump-
tions

(6.1) sup
(x,y)∈Ă+×Ă−

κ(x, y) <∞

and (1.3) are both fulfilled. Also assume that

(6.2) 〈gi, ξi〉 <∞ for all i ∈ I0,

while for every i ∈ I \ I0, the following two conditions hold:

• Either Ai is nearly compact, or cκ(Ai) <∞ (14).
• Either gi is upper bounded, or there are ri ∈ (1,∞) and νi ∈ Eκ(X) such
that

(6.3) grii (x) ≤ κ(x, νi) n.e. on Ai.

Then in either Case I or Case II, Sσ
κ,f (A,a,g) is nonempty, vaguely com-

pact, and given by

(6.4) Sσ
κ,f (A,a,g) =

⋃
(νt)t∈T∈Mσ

κ,f (A,a,g)

(νt)
′
t∈T .

Furthermore, for every (νt)t∈T ∈Mσ
κ,f (A,a,g) and every λσ

A∈Sσ
κ,f (A,a,g),

(6.5) lim
t∈T
‖νt − λσ

A‖E+
κ (A) = 0.

(14) A compact set K ⊂ X may be of infinite capacity; cκ(K) is necessarily finite if κ
is strictly positive definite [16]. On the other hand, even for the Newtonian kernel, closed
sets of finite capacity may be noncompact (see, e.g., Example 1.7 above).
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Definition 6.2. Denoting by ∞X the Alexandroff point of X [3, Chap-
ter I, Section 9, n◦ 8], we say that a kernel κ has the property (∞X) if
κ(·, y)→ 0 as y →∞X uniformly on compact sets in X.

The Riesz kernel κα, α ∈ (0, n), on Rn, n ≥ 3, has the property (∞X).
So does the 2-Green kernel G2

D on an open bounded set D ⊂ Rn, n ≥ 2,
provided that D is regular in the sense of the solvability of the classical
Dirichlet problem.

Theorem 6.3. Assume a l.c.s. X is metrizable and countable at infin-
ity (15), while a kernel κ(x, y) is continuous for x 6= y and has the prop-
erty (∞X). Let I+, resp. I−, be finite, the Ai, i ∈ I, be nearly compact, and
suppose

(6.6) Ă+ ∩ Ă− = ∅.
If, moreover, Case I takes place and (1.3) holds, then for any I0 and σ the
class Sσ

κ,f (A,a,g) is nonempty, vaguely compact, and given by (6.4).

Remark 6.4. In contrast to Theorem 6.1, in Theorem 6.3 the kernel κ
is not required to be consistent. However, if it is, then Theorem 6.3 becomes
valid in both Cases I and II; and moreover, then (6.5) also holds.

Recall that a kernel κ is said to satisfy the continuity principle (or to
be regular) if for any µ ∈ M+(X) with compact support S(µ), κ(·, µ) is
continuous on X whenever its restriction to S(µ) is continuous. The Riesz
kernel κα, α ∈ (0, n), on Rn, n ≥ 3, is regular [30, Theorem 1.7]. So is the
α-Green kernel GαD, α ∈ (0, 2], on an open set D ⊂ Rn, n ≥ 3 [20, Corol-
lary 4.8], as well as the logarithmic kernel on R2 (combine [30, Theorem 1.6]
and [37, Eq. (1.3)]).

Theorem 6.5. Assume I is finite and the Ai, i ∈ I, are nearly compact.
Suppose the kernel κ is regular, and the κ(·, ξi)|Ăi , i ∈ I0, as well as the
κ|Ăi×Ăi , i ∈ I \ I0, are continuous. Then in either Case I or Case II and for
any a and g, the conclusion of Theorem 6.1 remains valid (16).

Remark 6.6. In contrast to Theorem 6.3, in Theorem 6.5 the sets Ă+

and Ă− may have points in common. But then necessarily cκ(Ă+∩ Ă−) = 0,
and hence Ă+ ∩ Ă− cannot carry any nonzero ν ∈ Eκ(X) (see Lemma 2.4).

Corollary 6.7. Under the hypotheses of any of Theorems 6.1, 6.3,
or 6.5, if moreover κ is strictly positive definite, while the Ai, i ∈ I, are mu-
tually essentially disjoint, then Sσ

κ,f (A,a,g) reduces to a unique element λσ
A,

and every (νt)t∈T ∈Mσ
κ,f (A,a,g) converges to this λσ

A vaguely.

(15) Theorem 6.3 remains valid for an arbitrary l.c.s. X if we assume instead that only
finitely many Ăi, i ∈ I−, resp. Ăi, i ∈ I+, can intersect one another (see Remark 7.3).

(16) Theorem 6.5 is applicable to the classical kernels only provided that I0 = I.
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7. Proofs of Theorems 6.1, 6.3, and 6.5 and Corollary 6.7

7.1. Auxiliary results. Throughout Section 7.1, the Ai, i ∈ I, are
assumed to be nearly closed. Write

Eσκ (A,≤a,g) := {ν ∈ E+
κ (A) : νi ≤ σi, 〈gi, νi〉 ≤ ai for all i ∈ I}.

Lemma 7.1. If (1.3) and (6.1) both hold, then the vague cluster set
(µs)

′
s∈S of any (µs)s∈S ∈Mσ

κ,f (A,a,g) is nonempty, and moreover

(7.1) (µs)
′
s∈S ⊂ Eσκ (A,≤a,g).

Proof. Fix a net (µs)s∈S ∈ Mσ
κ,f (A,a,g). It is strong Cauchy in the

semimetric space E+
κ (A) by Corollary 5.10, and hence strongly bounded,

i.e.,

(7.2) sup
s∈S
‖µs‖2E+

κ (A)
= sup

s∈S
‖Rµs‖2κ <∞,

the equality being valid by (3.14). Furthermore, it follows from (1.3) that
(5.1) and hence (5.2) (with ai and µis in place of c and µi) both hold. Thus,

(7.3) sup
s∈S
|Rµs|(X) = sup

s∈S

∑
i∈I

µis(Ai) ≤
∑
i∈I

aig
−1
i,inf = C <∞.

By Lemma 2.9 with Q = Ai, the µis, s ∈ S, are supported by Ăi, Ai being
nearly closed. Hence, Rµ±s is supported by Ă± (cf. (3.3)), and therefore

sup
(x,y)∈S(Rµ+

s )×S(Rµ−s )

κ(x, y) ≤ sup
(x,y)∈Ă+×Ă−

κ(x, y) <∞ for all s ∈ S,

where the latter inequality holds by (6.1). Combining this with (7.3) estab-
lishes the inequality

κ(Rµ+
s , Rµ

−
s ) ≤M <∞ for all s ∈ S,

which together with (7.2) yields

(7.4) sup
s∈S
‖Rµ±s ‖κ <∞.

We next observe that for every i ∈ I,
(7.5) sup

s∈S
‖µis‖κ <∞.

In view of (7.4), this will follow once we have established the inequality

(7.6) inf
s∈S

∑
k,m∈I±, k 6=m

κ(µks , µ
m
s ) > −∞.

Assume X is compact, for if not, then κ ≥ 0 and the left-hand side in (7.6)
is ≥ 0. But then the l.s.c. function κ on X ×X is ≥ −c, where c ∈ (0,∞),
while I is finite; and hence (7.6) follows from (7.3) in a way similar to that
in the proof of Lemma 5.3.
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As seen from (7.3), the net (µs)s∈S is vaguely bounded, and hence, by
Lemma 3.2, it is relatively compact in the vague topology of M+(X)Card I .
Thus, there is a subnet (µt)t∈T of (µs)s∈S such that for every i ∈ I,
(7.7) µit → µi vaguely as t increases along T ,

where µi ∈M+(X). It follows from (7.5) and (7.7) by Lemmas 2.9 and 2.10
that µi ∈ E+

κ (Ăi) = E+
κ (Ai), and hence µ := (µi)i∈I ∈M+(A).

Moreover, Rµ± is the vague limit of Rµ±t as t increases along T , which is
obtained from (7.7) according to Lemma 3.7. Applying [16, Lemma 2.2.1(e)],
we therefore see from (7.4) that the energy of Rµ± is finite. Since κ is positive
definite, so is κ(Rµ+, Rµ−) (see, e.g., [16, Lemma 3.1.1]), and altogether
Rµ ∈ Eκ(X). In view of (3.8), we thus have

µ ∈ E+
κ (A).

Applying Lemma 2.1 to the continuous function gi > 0, we also obtain
from (7.7)

(7.8) 〈gi, µi〉 ≤ lim
t∈T
〈gi, µit〉 = ai.

Noting that ξi − µit ≥ 0 for all i ∈ I0 and t ∈ T as well as that the vague
limit of a net of positive (scalar) measures is positive, we finally see from
(7.7) that µi ≤ σi for all i ∈ I. This together with the preceding two displays
shows that, actually, µ ∈ Eσκ (A,≤a,g), which establishes (7.1).

Lemma 7.2. Let (1.3) and (6.1) both hold, and let κ be consistent. For
every (µs)s∈S ∈Mσ

κ,f (A,a,g) and every µ ∈ (µs)
′
s∈S,

lim
s∈S
‖µs − µ‖E+

κ (A) = 0,(7.9)

−∞ < Gκ,f (µ) ≤ lim
s∈S

Gκ,f (µs) = Gσ
κ,f (A,a,g) <∞.(7.10)

Proof. We tacitly use the notation and assertions from the proof of the
preceding lemma. Being consistent, the kernel κ has the property (C2) (see
Section 2.2). The strongly bounded net (Rµ±t )t∈T ⊂ E+

κ (X) therefore con-
verges weakly to its vague limit Rµ± ∈ E+

κ (X), which by the definition of
weak convergence implies that Rµt → Rµ weakly as t increases along T . By
(3.13), this gives

‖µt − µ‖2E+
κ (A)

= ‖Rµt −Rµ‖2κ = lim
t′∈T

κ(Rµt −Rµ, Rµt −Rµt′),

and hence, by the Cauchy–Schwarz inequality in Eκ(X),

‖µt − µ‖E+
κ (A) ≤ lim inf

t′∈T
‖µt − µt′‖E+

κ (A) for all t ∈ T,

which establishes the relation

lim
t∈T
‖µt − µ‖E+

κ (A) = 0,
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because ‖µt − µt′‖E+
κ (A) becomes arbitrarily small when t, t′ ∈ T are suf-

ficiently large. Since a strong Cauchy net converges strongly to any of its
strong cluster points, we obtain (7.9) from the last display.

As for (7.10), we first note that the equality and the third inequality here
are valid by (5.9) and the standing assumption (4.3), respectively. If Case II
takes place, then the first inequality is obvious by (5.3), while the second
inequality holds (with equality) again by (5.3), applied respectively to µs,
s ∈ S, and µ, and the subsequent use of (7.9). Assume now Case I holds.
Applying Lemma 2.1 to fi ∈ Ψ(X), we see from (7.7) after summation over
i ∈ I that (17)

(7.11) −∞ < 〈f ,µ〉 ≤ lim inf
t∈T

〈f ,µt〉.

The former inequality here is obvious if X is noncompact, while otherwise
it can be obtained from (1.3) and (7.8) in the same manner as in the proof
of Lemma 5.3. Combining (7.11) and (7.9) completes the proof of (7.10).

7.2. Proof of Theorem 6.1. Fix (µs)s∈S ∈ Mσ
κ,f (A,a,g) and µ ∈

(µs)
′
s∈S (such a µ exists by Lemma 7.1). For these (µs)s∈S and µ, Lem-

mas 7.1 and 7.2 as well as the assertions in their proofs all hold.
We assert that µ solves Problem 4.2. We first show that, actually,

(7.12) µ ∈ Eσκ,f (A,a,g).

As seen from (7.1) and (7.10), it is enough to prove that for any given i ∈ I,

(7.13) 〈gi, µi〉 = ai.

It follows from Lemma 2.9 with Q = Ai that the µis, s ∈ S, and µi

are carried by Ai ∩ Ăi. There is therefore no loss of generality in replacing
each ξi, i ∈ I0, by the extension of ξi|Ai∩Ăi by 0 to all of X, denoted again
by ξi (18). Observe that for this (new) ξi, assumption (6.2) remains valid.

Consider the exhaustion of the (closed) set Ăi by the upper directed
family (K) of all compact subsets of Ăi (19). Let (µt)t∈T be a subnet
of (µs)s∈S converging vaguely to µ (see the proof of Lemma 7.1). Since
the indicator function 1K of K is upper semicontinuous, Lemma 2.1 with

(17) Note that, while proving (7.11) in Case I, we have not used the consistency of
the kernel.

(18) As Ai ∩ Ăi is ξi-measurable, ξi|Ai∩Ăi
exists. Given Q ⊂ X, the extension of

ν ∈ M+(Q) by 0 to all of X is ν̃ ∈ M+(X) determined uniquely by the relation ν̃(ϕ) :=
〈ϕ|Q, ν〉 for all ϕ ∈ C0(X).

(19) A family Q of sets Q ⊂ X is said to be upper directed if for any Q1, Q2 ∈ Q there
exists Q3 ∈ Q such that Q1 ∪Q2 ⊂ Q3.
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ψ = −gi1K = −gi|K and [16, Lemma 1.2.2] yield

ai ≥ 〈gi, µi〉 = lim
K∈(K)

〈gi, µi|K〉 = lim
K∈(K)

〈gi|K , µi〉 ≥ lim sup
(t,K)∈T×(K)

〈gi|K , µit〉

= lim sup
(t,K)∈T×(K)

〈gi, µit|K〉 = ai − lim inf
(t,K)∈T×(K)

〈gi, µit|Ăi\K〉,

T × (K) being the upper directed product of the upper directed sets T
and (K) [28, Chapter 2, Section 3]. The first inequality here holds by (7.8),
while the second and third equalities follow from Lemma 2.2, the µit, t ∈ T ,
and µi being bounded. Hence, (7.13) will be established once we have proven

(7.14) lim inf
(t,K)∈T×(K)

〈gi, µit|Ăi\K〉 = lim inf
(t,K)∈T×(K)

〈gi|Ăi\K , µ
i
t〉 = 0,

the former equality here being valid again according to Lemma 2.2.
Assume first that i ∈ I0. Since by (6.2) and [16, Lemma 1.2.2],

∞ > 〈gi, ξi〉 = lim
K∈(K)

〈gi, ξi|K〉,

we have
lim

K∈(K)
〈gi, ξi|Ăi\K〉 = 0.

When combined with

〈gi, µit|Ăi\K〉 ≤ 〈gi, ξ
i|Ăi\K〉 for all t ∈ T,

this implies the latter equality in (7.14) and hence (7.13).
Let now i ∈ I \ I0. Assuming first that Ăi is compact, we obtain (7.13)

from (7.7) in view of the continuity of gi. In fact, there is ϕi ∈ C0(X) such
that ϕi|Ăi = gi|Ăi . Since Ă

c
i is ν-negligible for any ν ∈M+(Ăi), we thus get

(7.15) ai = lim
t∈T
〈gi, µit〉 = lim

t∈T
〈ϕi, µit〉 = 〈ϕi, µi〉 = 〈gi, µi〉.

Assume next Ăi is noncompact. Then, by the stated hypotheses,

(7.16) cκ(Ăi) <∞.

Since the kernel κ is consistent, for every Q ⊂ Ăi there exists an interior
equilibrium measure γQ [16, Theorem 4.1]. Recall that if ΓQ denotes the
convex cone of all ν ∈ Eκ(X) with κ(x, ν) ≥ 1 n.e. on Q, then γQ ∈ ΓQ, i.e.,

(7.17) κ(x, γQ) ≥ 1 n.e. on Q,

and moreover

(7.18) cκ(Q) = ‖γQ‖2κ = min
ν∈ΓQ

‖ν‖2κ.

Observe that there is no loss of generality in assuming gi to satisfy (6.3)
with some ri ∈ (1,∞) and νi ∈ Eκ(X). Indeed, otherwise gi must be bounded
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from above by M ∈ (0,∞), which combined with (7.17) for Q = Ăi results
in (6.3) with νi := M riγĂi , ri ∈ (1,∞) being arbitrary.

Consider interior equilibrium measures γĂi\K and γĂi\K′ , where K,K
′

∈ (K). Because of (7.17) and (7.18), from [16, Lemma 4.1.1] we obtain

‖γĂi\K − γĂi\K′‖
2
κ ≤ ‖γĂi\K‖

2
κ − ‖γĂi\K′‖

2
κ whenever K ⊂ K ′.

As seen from (7.16) and (7.18), the net (‖γĂi\K‖κ)K∈(K) is bounded and
decreasing, and hence it is Cauchy in R. The preceding inequality thus shows
that the net (γĂi\K)K∈(K) is strong Cauchy in E+

κ (X). Since, clearly, this
net converges vaguely to zero, the property (C1) implies that zero is also one
of its strong limits. Hence,

(7.19) lim
K∈(K)

‖γĂi\K‖κ = 0.

Write qi := ri(ri − 1)−1, where ri ∈ (1,∞) is the number involved in
condition (6.3). Combining (6.3) with (7.17) shows that the inequality

gi(x)1Ăi\K(x) ≤ κ(x, νi)
1/riκ(x, γĂi\K)1/qi

holds n.e. on Ăi, and hence µit-a.e. on X (see Lemma 5.1). We integrate this
relation with respect to µit, then apply the Hölder and the Cauchy–Schwarz
inequalities to get

〈gi1Ăi\K , µ
i
t〉 ≤

[ �
κ(x, νi) dµ

i
t(x)

]1/ri[ �
κ(x, γĂi\K) dµit(x)

]1/qi

≤ ‖νi‖1/riκ ‖γĂi\K‖
1/qi
κ ‖µit‖κ.

Taking limits here as (t,K) increases along T × (K) and using (7.5) and
(7.19), we again obtain the latter equality in (7.14), and hence (7.13).

Having thus proven (7.12), we get Gκ,f (µ) ≥ Gσ
κ,f (A,a,g). Since the

converse inequality holds by (7.10), µ is a solution to Problem 4.2, i.e.,
µ ∈ Sσ

κ,f (A,a,g). As (µs)s∈S ∈ Mσ
κ,f (A,a,g) and µ ∈ (µs)

′
s∈S have been

chosen arbitrarily, we obtain⋃
(νt)t∈T∈Mσ

κ,f (A,a,g)

(νt)
′
t∈T ⊂ Sσ

κ,f (A,a,g).

The converse inclusion is obvious because the trivial net (λσ
A), where λσ

A

is any element of Sσ
κ,f (A,a,g), is minimizing and converges vaguely to λσ

A.
Thus, (6.4) indeed holds.

Any net in Sσ
κ,f (A,a,g) is obviously minimizing, and hence, accord-

ing to (6.4), any of its vague cluster points again belongs to Sσ
κ,f (A,a,g).

This establishes the vague compactness of Sσ
κ,f (A,a,g). Choosing finally

any (νt)t∈T ∈ Mσ
κ,f (A,a,g) and λσ

A ∈ Sσ
κ,f (A,a,g), we arrive at (6.5) by

combining (7.9) with Lemmas 4.4 and 5.9. The proof is complete.
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7.3. Proof of Theorem 6.3. Under the stated hypotheses, there is
no loss of generality in assuming I+ to be finite. Then Ă+ is compact, be-
cause Ăi, i ∈ I, are. Fix ε > 0. As seen from the property (∞X), there exists
a compact set K ⊂ X such that

(7.20) κ(x, y) <
ε

3C2
for all x ∈ Ă+, y ∈ Kc,

where C ∈ (0,∞) is given by (1.3). Since Ă− ∩ K is compact, it follows
from (6.6) and the (finite) continuity of κ(x, y) for x 6= y that κ|Ă+×(Ă−∩K)

is upper bounded. This together with (7.20) yields (6.1). Since (1.3) holds
by assumption, we are thus able to use Lemma 7.1 as well as the assertions
established in the course of its proof.

According to Lemma 2.9 with Q = Ai, for every ν ∈ E+
κ (A) we have

νi ∈ E+
κ (Ai ∩ Ăi) for all i ∈ I. There is therefore no loss of generality in

replacing each ξi, i ∈ I0, by the extension of ξi|Ai∩Ăi by 0 to all of X
(cf. footnote 18), denoted again by ξi. We next replace (again with the
notation preserved) the Ai, i ∈ I, by the (compact) sets Ăi, which again
involves no loss of generality.

By (7.1), any vague cluster point µ of any (µs)s∈S ∈ Mσ
κ,f (A,a,g) be-

longs to Eσκ (A,≤a,g). Choose a subsequence {µk}k∈N of (µs)s∈S that con-
verges vaguely to µ. Since gi is continuous and Ai is compact, equality holds
in (7.8) (cf. (7.15)), and hence

(7.21) µ ∈ Eσκ (A,a,g).

Thus, |Rµ|(X) ≤ C (cf. (7.3)) and the above K can be chosen so that

(7.22) |Rµ−|(∂XK) = 0.

We next use the fact that the map (ν1, ν2) 7→ ν1 ⊗ ν2 from M+(X) ×
M+(X) into M+(X × X) is vaguely continuous [4, Chapter 3, Section 5,
Exercise 5]. Applying Lemma 2.1 to κ ∈ Ψ(X ×X), we therefore obtain

(7.23) κ(Rµ±, Rµ±) ≤ lim inf
k→∞

κ(Rµ±k , Rµ
±
k ).

Furthermore,

(7.24) |κ(Rµ+, Rµ−)− κ(Rµ+
k , Rµ

−
k )| ≤ |κ(Rµ+, Rµ−|Kc)|

+ |κ(Rµ+
k , Rµ

−
k |Kc)|+ |κ(Rµ+, Rµ−|K)− κ(Rµ+

k , Rµ
−
k |K)|.

As seen from (7.20) and (7.3), each of the first two summands on the right-
hand side in (7.24) is < ε/3. Since κ|A+×(A−∩K) is continuous on the (com-
pact) space A+×(A−∩K) and Rµ+

k ⊗(Rµ−k |K)→ Rµ+⊗(Rµ−|K) vaguely,
the latter being clear from Theorem 2.3 in view of (7.22), there exists k0 ∈ N
such that for all k ≥ k0, the last summand in (7.24) is < ε/3. Altogether,

κ(Rµ+, Rµ−) = lim
k→∞

κ(Rµ+
k , Rµ

−
k ),
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for ε has been chosen arbitrarily. Combining this with (7.23) and then sub-
stituting (3.9) and (3.11) into the inequality obtained yields

0 ≤ κ(µ,µ) ≤ lim inf
k→∞

κ(µk,µk).

Since Case I takes place, in view of footnote 17 we obtain (7.11), which
together with the last display establishes the relation

−∞ < Gκ,f (µ) ≤ lim inf
k→∞

Gκ,f (µk) = Gσ
κ,f (A,a,g) <∞.

The equality and the third inequality here are valid by (5.9) and (4.3), re-
spectively. In view of (7.21), we thus actually have µ ∈ Eσκ,f (A,a,g), and
therefore Gκ,f (µ) ≥ Gσ

κ,f (A,a,g). This together with the preceding display
shows that µ is in fact a solution to Problem 4.2.

It has thus been proven that any vague cluster point (which exists) of
any minimizing net (sequence) belongs to Sσ

κ,f (A,a,g). In the same way as
at the end of the proof of Theorem 6.1, this implies (6.4) as well as the vague
compactness of Sσ

κ,f (A,a,g). The proof is complete.

Remark 7.3. Assume the conditions of footnote 15 hold. Then the cor-
responding version of Theorem 6.3 can be proven as above (of course, with
a subnet (µt)t∈T in place of a subsequence), the only difference being in
the fact that Theorem 2.3 may fail. Instead, choose a compact set K so
that Ă+ ∩ ∂XK = ∅. Since this K has points in common with only finitely
many Ăi, i ∈ I+, (Rµ+

t |K)t∈T again converges vaguely to Rµ+|K . Reversing
the roles of ‘+’ and ‘−’, we arrive at our claim.

7.4. Proof of Theorem 6.5. In the same manner as in the proof of
Theorem 6.3, there is no loss of generality in replacing each ξi, i ∈ I0, by
the extension of ξi|Ai∩Ăi by 0 to all of X (denoted again by ξi).

We begin by showing that under the stated hypotheses the potential
κ(·, νi) of any νi ∈ M+(Ăi), i ∈ I, such that νi ≤ σi is continuous on X.
Let first i ∈ I0. Being relatively continuous on Ăi ⊃ S(ξi) by assumption,
κ(·, ξi) is continuous on X by the regularity of the kernel. Since κ(·, νi) is
l.s.c. and since κ(·, νi) = κ(·, ξi) − κ(·, ξi − νi) with κ(·, ξi) continuous and
κ(·, ξi−νi) l.s.c., κ(·, νi) is also upper semicontinuous, hence continuous. Let
now i ∈ I \ I0. Since −κ|Ăi×Ăi is continuous by assumption, −κ(x, y) ≥ −c
for all (x, y) ∈ Ăi × Ăi, where c ∈ (0,∞). Integrating this inequality with
respect to the (bounded) νi ∈M+(Ăi), we observe that κ(·, νi) is relatively
upper semicontinuous on Ăi. Being also l.s.c. on X, it is relatively continuous
on Ăi ⊃ S(νi), and hence on all of X, again by the regularity of the kernel κ.

Choose any (µs)s∈S ∈Mσ
κ,f (A,a,g), which exists by (4.3). By Lemma 2.9

with Q = Ai, i ∈ I, we have (µis)s∈S ⊂ E+
κ (Ăi). Since gi is continuous and
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strictly positive, while Ăi is compact,

µis(X) ≤ ai
[
min
x∈Ăi

gi(x)
]−1

<∞ for all s ∈ S.

Therefore, (µs)s∈S is bounded and hence relatively compact in the vague
topology on M+(X)Card I (Lemma 3.2). Fix any of its vague cluster points

µ = (µi)i∈I ∈M+(X)Card I ,

and choose a subnet (µt)t∈T of (µs)s∈S converging vaguely to µ. Since
Mσi(Ăi, ai, gi) is vaguely closed (cf. (7.15)),

µi ∈Mσi(Ăi, ai, gi) for all i ∈ I.

As shown in the second paragraph of the present proof, κ(·, µi) is continuous
on X, and hence bounded on the (compact) Ăi. Combined with µi(Ăi) <∞,
this gives µi ∈ E+

κ (Ăi). By Lemma 2.9 for Q = Ai and the preceding display,
we thus get µ ∈ Eσκ (A,a,g) (I being finite).

Furthermore, since every κ(·, µit), t ∈ T , is likewise continuous on X,

lim
t∈T

lim
t′∈T

κ(µit, µ
j
t′) = lim

t∈T
lim
t′∈T

�
κ(·, µit) dµ

j
t′ = lim

t∈T

�
κ(·, µit) dµj

= lim
t∈T

�
κ(·, µj) dµit = κ(µj , µi) for all i, j ∈ I.

Summing these equalities, multiplied by sisj , over all i, j ∈ I shows that
Rµt → Rµ strongly in Eκ(X); and hence, by (3.13),

lim
t∈T
‖µt − µ‖E+

κ (A) = 0.

Since a strong Cauchy net converges strongly to any of its strong cluster
points, we see that (µs)s∈S converges to µ strongly in E+

κ (A), which is (7.9).
Applying now to (µs)s∈S and µ the same arguments as in the last

paragraph of the proof of Lemma 7.2, we arrive at (7.10). Hence, µ ∈
Eσκ,f (A,a,g). The rest of the proof repeats word for word the last two para-
graphs in the proof of Theorem 6.1.

7.5. Proof of Corollary 6.7. Let the assumptions of any of Theo-
rems 6.1, 6.3, or 6.5 be fulfilled. As seen from these theorems, the class
Sσ
κ,f (A,a,g) of solutions to Problem 4.2 is then nonempty and given by (6.4).
Assume moreover that the kernel κ is strictly positive definite, while

the Ai, i ∈ I, are mutually essentially disjoint. By Corollary 4.5, a solution
to Problem 4.2 is then unique, which implies in view of (6.4) that the vague
cluster sets of the minimizing nets are identical to one another, and all
these reduce to a unique λσ

A ∈ Sσ
κ,f (A,a,g). Since the vague topology on

M+(X)Card I is Hausdorff, λσ
A must be the vague limit of every (νt)t∈T ∈

Mσ
κ,f (A,a,g) [3, Chapter I, Section 9, n◦ 1], as was to be proven.
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8. Weighted potentials of solutions to Problem 4.2. For any ν ∈
E+
κ (A) we denote by W ν,i

κ,f , i ∈ I, the i-component of the f -weighted vector
potential W ν

κ,f (cf. (4.1)).

Lemma 8.1. λ ∈ Eσκ,f (A,a,g) solves Problem 4.2 if and only if

(8.1)
∑
i∈I
〈Wλ,i

κ,f , ν
i − λi〉 ≥ 0 for all ν ∈ Eσκ,f (A,a,g).

Proof. For any µ,ν ∈ Eσκ,f (A,a,g) and h ∈ (0, 1], we obtain by straight-
forward verification

Gκ,f (hν + (1− h)µ)−Gκ,f (µ) = 2h
∑
i∈I
〈Wµ,i

κ,f , ν
i − µi〉+ h2‖ν − µ‖2E+

κ (A)
.

If µ = λ solves Problem 4.2, then the left-hand side of this display is ≥ 0, for
the class Eσκ,f (A,a,g) is convex, which leads to (8.1) by letting h→ 0. Con-
versely, if (8.1) holds, then the preceding formula with µ = λ and h = 1 yields
Gκ,f (ν) ≥ Gκ,f (λ) for all ν ∈ Eσκ,f (A,a,g), and hence λ ∈ Sσ

κ,f (A,a,g).

We next provide a description of the weighted potentials of the solutions
to Problem 4.2 and single out their characteristic properties. The standing
assumptions stated in Sections 4.1 and 5 are required.

Theorem 8.2. Let the Ai, i ∈ I, be nearly closed, and assume that (1.3),
(6.1), and

(8.2) sup
x∈Ăi

gi(x) <∞ for all i ∈ I

hold. Assume also that for every i ∈ I0,

ξi|K ∈ E+
κ (X) for every compact K ⊂ A◦i ,(8.3)

ξi(Ai \A◦i ) = 0,(8.4)

A◦i being defined in (5.5). If moreover the fi|Ăi , i∈I, are lower bounded (20),
then for any λ ∈ Eσκ,f (A,a,g) the following two assertions are equivalent:

(i) λ ∈ Sσ
κ,f (A,a,g).

(ii) There exists (wiλ)i∈I ∈ RCard I such that for all i ∈ I0,

Wλ,i
κ,f ≥ w

i
λgi (ξi − λi)-a.e.,(8.5)

Wλ,i
κ,f ≤ w

i
λgi λi-a.e.,(8.6)

while for all i ∈ I \ I0,

Wλ,i
κ,f ≥ w

i
λgi n.e. on Ai,(8.7)

Wλ,i
κ,f = wiλgi λi-a.e.(8.8)

(20) If Case I holds, then the fi, i ∈ I, are necessarily lower bounded on X.
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Proof. As seen from (8.3), the ξi, i ∈ I0, are cκ-absolutely continuous,
which will be frequently used in the proof (21). There is therefore no loss of
generality in replacing each ξi, i ∈ I0, by the extension of ξi|Ai∩Ăi by 0 to
all of X (denoted again by ξi). We next replace (again with the notation
preserved) the Ai, i ∈ I, by the (closed) sets Ăi, which also involves no loss
of generality. Note that then (8.3) and (8.4) remain valid.

For every ν = (ν`)`∈I ∈ Eσκ,f (A,a,g) and every i ∈ I, write νi := (ν`i )`∈I ,
where ν`i := ν` for all ` 6= i and νii = 0; then νi ∈ E+

κ,f (A). According to
(3.5) and (3.10), κiνi is given by

κiνi(x) = si
∑

`∈I, 6̀=i
s`κ(x, ν`) = siκ(x,Rνi),

and it is well defined and finite n.e. (Corollary 3.12).
Furthermore, under the stated assumptions, κiνi is lower bounded on Ai.

In fact, in the same manner as in the proof of Lemma 7.1 we see from (1.3)
that |Rνi|(X) ≤ C, where C ∈ (0,∞). This together with (6.1) implies that
κ(·, Rν−i ), resp. κ(·, Rν+

i ), is upper bounded on A+, resp. on A−, which in
view of the preceding display yields our claim.

Fix λ ∈ Eσκ,f (A,a,g). With f̃i := fi + κiλi , define the function

(8.9) W λi

κ,f̃i
:= κ(·, λi) + f̃i = κ(·, λi) + fi + κiλi .

Comparing this with (3.5) and (4.1), we get

(8.10) W λi

κ,f̃i
= Wλ,i

κ,f for all i ∈ I.

Note that W λi

κ,f̃i
is finite n.e. on A◦i and lower bounded on Ai, because this

is the case for each of the summands κ(·, λi), fi, and κiλi .
To establish the equivalence of (i) and (ii), suppose first that (i) holds,

i.e., λ ∈ Eσκ,f (A,a,g) solves Problem 4.2. Fix i ∈ I. By (3.4) and (4.2), for
any ν ∈ Eσκ,f (A,a,g) with νi = λi (in particular, for ν = λ) we get

Gκ,f (ν) = Gκ,f (λi) +Gκ,f̃i(ν
i).

Combined with Gκ,f (ν) ≥ Gκ,f (λ), this yields Gκ,f̃i(ν
i) ≥ Gκ,f̃i(λ

i), and
hence λi minimizes Gκ,f̃i(ν), where ν ranges over the class Eσi

κ,f̃i
(Ai, ai, gi).

This enables us to show that there exists wλi ∈ R such that

W λi

κ,f̃i
≥ wλigi (ξi − λi)-a.e.,(8.11)

W λi

κ,f̃i
≤ wλigi λi-a.e.,(8.12)

(21) As in [30, p. 134], we call µ ∈ M(X) cκ-absolutely continuous if µ(K) = 0 for
every compact K ⊂ X with cκ(K) = 0. Then |µ|∗(Q) = 0 for any Q ⊂ X with cκ(Q) = 0.
Every µ ∈ Eκ(X) is cκ-absolutely continuous (but not conversely [30, pp. 134–135]).
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whenever i ∈ I0, while otherwise (for i ∈ I \ I0)

W λi

κ,f̃i
≥ wλigi n.e. on Ai,(8.13)

W λi

κ,f̃i
= wλigi λi-a.e.(8.14)

To this end, for any w ∈ R write

A+
i (w) := {x ∈ Ai : W λi

κ,f̃i
(x) > wgi(x)},

A−i (w) := {x ∈ Ai : W λi

κ,f̃i
(x) < wgi(x)},

and assume first that i ∈ I0. Then (8.11) holds with

wλi := Li := sup{t ∈ R : W λi

κ,f̃i
≥ tgi (ξi − λi)-a.e.}.

In turn, (8.11) with wλi = Li yields Li <∞, because

W̃ λi

κ,f̃i
:= W λi

κ,f̃i
/gi <∞ n.e. on A◦i ,

hence (ξi − λi)-a.e. on A◦i , for ξi and λi are both cκ-absolutely continuous,
and finally (ξi−λi)-a.e. on Ai by (8.4). Also, Li > −∞ since, in consequence
of (8.2), W̃ λi

κ,f̃i
along with W λi

κ,f̃i
is lower bounded on Ai.

We next establish (8.12) with wλi = Li. Assume, on the contrary, that
this fails to hold. Since W̃ λi

κ,f̃i
is λi-measurable, one can choose wi ∈ (Li,∞)

so that λi(A+
i (wi)) > 0. At the same time, as wi > Li, it follows from the

definition of Li that (ξi − λi)(A−i (wi)) > 0. Therefore, there exist compact
sets K1 ⊂ A+

i (wi) and K2 ⊂ A−i (wi) such that

(8.15) 0 < 〈gi, λi|K1〉 < 〈gi, (ξi − λi)|K2〉.

Write τ i := (ξi − λi)|K2 ; then κ(τ i, τ i) <∞ by (8.3). Since 〈W λi

κ,f̃i
, τ i〉 ≤

〈wigi, τ i〉 <∞, in view of (8.9) we get 〈f̃i, τ i〉 <∞. Define

θi := λi − λi|K1 + ciτ
i, where ci := 〈gi, λi|K1〉/〈gi, τ i〉.

Observing from (8.15) that ci ∈ (0, 1), we obtain by straightforward verifi-
cation 〈gi, θi〉 = ai and also θi ≤ ξi. Hence, θi ∈ Eξ

i

κ,f̃i
(Ai, ai, gi). But

〈W λi

κ,f̃i
, θi − λi〉 = 〈W λi

κ,f̃i
− wigi, θi − λi〉

= −〈W λi

κ,f̃i
− wigi, λi|K1〉+ ci〈W λi

κ,f̃i
− wigi, τ i〉 < 0,

which is impossible in view of the scalar version of Lemma 8.1 (with I = {i}).
The contradiction obtained establishes (8.12).

Let now i ∈ I \I0. Since λi minimizes Gκ,f̃i(ν) among ν ∈ E+

κ,f̃i
(Ai, ai, gi),

it follows from [43, Theorem 7.1] that (8.13) and (8.14) hold with

wλi := 〈W λi

κ,f̃i
, λi〉/ai ∈ R.
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Substituting (8.11)–(8.14) into (8.10) establishes (8.5)–(8.8) with
wiλ := wλi , i ∈ I. Hence, (i)⇒(ii).

To complete the proof, suppose finally that (ii) holds. By (8.10), for every
i ∈ I0, resp. i ∈ I \ I0, (8.11) and (8.12), resp. (8.13) and (8.14), are then
fulfilled with wλi := wiλ and f̃i := fi + κiλi . We observe from (8.11) and
(8.12) that λi(A+

i (wλi)) = 0 and (ξi − λi)(A−i (wλi)) = 0 for all i ∈ I0. If we
fix ν ∈ Eσκ,f (A,a,g), we get, for all i ∈ I0,

(8.16) 〈Wλ,i
κ,f , ν

i − λi〉 = 〈W λi

κ,f̃i
− wλigi, νi − λi〉

= 〈W λi

κ,f̃i
− wλigi, νi|A+

i (wλi )
〉+ 〈W λi

κ,f̃i
− wλigi, (νi − ξi)|A−i (wλi )

〉 ≥ 0.

Furthermore, it follows from (8.13) and (8.14) that

λi(A+
i (wλi)) = λi(A−i (wλi)) = νi(A−i (wλi)) = 0 for all i ∈ I \ I0,

νi being cκ-absolutely continuous. Hence, for all i ∈ I \ I0,

〈Wλ,i
κ,f , ν

i − λi〉 = 〈W λi

κ,f̃i
− wλigi, νi − λi〉(8.17)

= 〈W λi

κ,f̃i
− wλigi, νi|A+

i (wλi )
〉 ≥ 0.

Summing the inequalities in (8.16) and (8.17) over all i ∈ I, we see from
Lemma 8.1 in view of the arbitrary choice of ν ∈ Eσκ,f (A,a,g) that λ is
indeed a solution to Problem 4.2.

Corollary 8.3. Under the hypotheses of Theorem 8.2, assume moreover
that κ is continuous on Ă+ × Ă− and Case I holds. Then (8.6) and (8.8)
in (ii) are equivalent to the following apparently stronger relations:

Wλ,i
κ,f (x) ≤ wiλgi(x) for all x ∈ S(λi) and all i ∈ I0,

Wλ,i
κ,f (x) = wiλgi(x) for nearly all x ∈ S(λi) and all i ∈ I \ I0.

Proof. This will follow once we have proven that for any i ∈ I,Wλ,i
κ,f |Ăi is

l.s.c., which in turn holds if κ(·, Rλ−)|Ă+ and κ(·, Rλ+)|Ă− are continuous.
To establish the latter, write

(8.18) κ∗(x, y) := −κ(x, y) + sup
(x′,y′)∈Ă+×Ă−

κ(x′, y′), (x, y) ∈ Ă+ × Ă−.

Under the stated assumptions, κ∗ is nonnegative and continuous, and hence

κ∗(x,Rλ−) :=
�
κ∗(x, y) dRλ−(y), x ∈ Ă+,

is l.s.c. In the same manner as in the proof of Lemma 7.1, we observe from
(1.3) that |Rλ|(X) ≤ C < ∞. Integrating (8.18) with respect to Rλ−, we
therefore see that κ∗(x,Rλ−), x ∈ Ă+, coincides up to a finite summand with
the restriction of −κ(x,Rλ−) to Ă+. It follows that κ(x,Rλ−)|Ă+ must be
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upper semicontinuous. Being also l.s.c., κ(x,Rλ−)|Ă+ is actually continuous
as desired. The same holds with the indices + and − reversed.

Acknowledgements. I thank Bent Fuglede for many fruitful discus-
sions on the topic of the paper.
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