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Summary. Let H be a function space on a compact Hausdorff space K. We provide a
characterization of the simpliciality of H via an extension property.

1. Introduction. LetX be a compact convex set in a real locally convex
space. We write Ac(X) for the space of all real continuous affine functions
on X endowed with the supremum norm. The symbol Ac(X)+ stands for the
set of nonnegative elements of Ac(X). In [4], a compact subset of X is called
hyper-extremal if it is a union of compact faces (the class of hyper-extremal
subsets of X in fact coincides with compact extremal subsets of X; see [4,
p. 396] or [5, Proposition 2.69]). The set X is said to have the property (H)
if
(1.1) there exists a constant C ∈ R such that for each hyper-extremal set

D ⊆ X and a ∈ Ac(co(D))+ there exists b ∈ Ac(X)+ such that b = a

on D and ‖b‖K ≤ C‖a‖D.
It was shown by Batty [4] that X has the property (H) if and only if
X is a Choquet simplex. A similar characterization was proven before by
Andersen [2], but it was restricted to metrizable compact convex sets. In the
present paper we provide a similar characterization for abstractly defined
affine functions.

First we collect several definitions and basic facts of Choquet theory on
function spaces. For details we refer the reader to [5]. In what follows, let
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K be a compact Hausdorff space and H be a function space on K, that
is, a linear subspace of the space of continuous functions on K, endowed
with the supremum norm, containing constant functions and separating the
points of K.

For x ∈ K we denote byMx(H) the set of all H-representing measures
for x, that is,

Mx(H) =
{
µ ∈M1(K) : f(x) =

�

K

f dµ for any f ∈ H
}
.

(Here M1(K) stands for the set of all Radon probability measures on K.)
The Choquet boundary ChH(K) of H is the set

ChH(K) =
{
x ∈ K :Mx(H) = {εx}

}
,

where εx stands for the Dirac measure at a point x ∈ K.
A function f on K satisfying

f(x) ≤
�

K

f dµ, x ∈ K, µ ∈Mx(H),

is termed H-convex. A function f on K is H-concave if −f is H-convex. If
f is both H-convex and H-concave, then f is called H-affine. The family of
all continuous H-affine functions is denoted by Ac(H). Then Ac(H) is again
a function space. Moreover, it is closed and contains H.

We recall that given a pair of measures µ, ν ∈ M1(K), we say that
µ ≺H ν if µ(f) ≤ ν(f) for any H-convex continuous function f on K (see
[5, Definition 3.19]). A measure which is ≺H-maximal is called H-maximal.

If K = X is a compact convex set in a locally convex space and H =
Ac(X), then H is a function space with Ac(H) = H and ChH(X) = extX,
the set of all extreme points of X (see [5, Theorem 2.40]).

Let A be a Borel subset of K. Then A is called measure convex if x ∈ A
whenever x ∈ K and µ ∈Mx(H) with µ(K \A) = 0. If A is moreover closed,
then it is called H-convex. For a subset F of K, let

coH(F ) =
⋂
{C ⊆ K : C ⊇ F, C is H-convex}.

The subset F is H-convex if and only if F = coH(F ).
A Borel set A ⊆ K is called measure extremal if for any x ∈ A and any

measure µ ∈ Mx(H), µ is supported by A. Closed measure extremal sets
are called H-extremal. Finally, we say that A is a Choquet set if it is both
measure convex and measure extremal.

The upper envelope of a bounded function f on K is defined as

f∗(x) = inf{s(x) : s is continuous and H-concave, s ≥ f}, x ∈ K.
It is always an upper semicontinuous H-concave function on K, and it coin-
cides with f on ChH(K) for f upper semicontinuous.
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The state space S(H) of H is defined as

S(H) = {ϕ ∈ H∗ : ϕ ≥ 0, ϕ(1) = 1}.
It is a w∗-compact convex subset of H∗. The function space H is called
simplicial if S(Ac(H)) is a Choquet simplex (see [5, Theorem 6.54]). As a
canonical example of a simplicial function space serves the space Ac(X) on a
simplex X (see [5, Theorem 6.54]). A less obvious example is the following.
Let U ⊂ Rd be an open bounded set. Then the space of all functions con-
tinuous on U that are harmonic on U is an example of a simplicial function
space (see [5, Theorem 13.35]).

The evaluation mapping φ from K into S(H) is defined as

φ : x 7→ φx, x ∈ K,
where φx maps a function h ∈ H to the real number h(x). We further define
a mapping Φ : H → Ac(S(H)) for h ∈ H as

Φ(h) : s 7→ s(h), s ∈ S(H).
We point out several important properties of the mappings φ and Φ.

For the proofs of these facts see e.g. [5, Proposition 4.26, Lemma 8.10 and
Proposition 8.22].

The mapping φ is a homeomorphism of K into S(H), S(H) = co(φ(K))
and φ(ChH(K)) = extS(H). If H ⊆ S(H) is Ac(S(H))-measure extremal,
then φ−1(H∩φ(K)) is measure extremal inK. Moreover, for each set F ⊆ K
we have

coH(F ) = φ−1
(
co(φ(F )) ∩ φ(K)

)
.

The mapping Φ is positive, linear and norm-preserving. It is surjective if and
only if H is closed, and in this case the inverse mapping is realized by

Φ−1(F ) = F ◦ φ, F ∈ Ac(S(H)).
If F is a closed subset of K then the space H|F of all restrictions of

functions from H to the set F is again a function space.

2. Characterization of simpliciality. We note that from the defini-
tion of H-affine functions it follows that the sets of representing measures
are the same with respect to both function spaces H and Ac(H), that is,
for each x ∈ K we have Mx(H) = Mx(Ac(H)). From this it follows that
Ac(Ac(H)) = Ac(H), and also that the classes of measure extremal and mea-
sure convex sets are the same with respect to both these function spaces.

We say that the function space H has the property (H) if

(2.1) there exists a constant C ≥ 0 such that for eachH-extremal set D ⊆ K
and a ∈ Ac(H|coH(D))

+ there exists b ∈ Ac(H)+ with b|D = a and
‖b‖K ≤ C‖a‖D.
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In the rest of the paper we show that this property (H) characterizes the
concept of simpliciality of a function space.

First we show the connection between our definition of property (H) and
the property (H) of a compact convex set as defined by Batty.

Proposition 2.1. If a function space H has the property (H) in the
sense of (2.1) then S(Ac(H)) has the property (H) in the sense of (1.1).

Proof. LetX = S(Ac(H)). LetD ⊆ X be a nonempty hyper-extremal set
and a ∈ Ac(coD)+. ThenD is Ac(X)-extremal (see [5, Proposition 2.69]). We
consider the closed function space Ac(H) and the above-defined mappings
φ : K → S(X) and Φ : Ac(H) → Ac(X). We denote F = φ−1(D ∩ φ(K)).
Then F is Ac(H)-extremal (see [5, Lemma 8.10]), and thus H-extremal in K.
Since the classes of H-convex and Ac(H)-convex sets coincide, coH(F ) =
coA

c(H)(F ). Let
ã(x) = a(φ(x)), x ∈ coH(F ).

We claim that ã ∈ Ac(H|coH(F ))
+. Obviously, ã ≥ 0. Let x ∈ coH(F ) and

µ ∈Mx(H|coH(F )). Then µ ∈M1(coH(F )), and since

coH(F ) = coA
c(H)(F ) = φ−1

(
co(φ(F )) ∩ φ(K)

)
,

the image φµ ∈ M1(X) under the mapping φ has support in co(φ(F )) ⊂
co(D). Further, the measure µ considered as a measure on K H-represents x.
Thus φµ Ac(X)-represents the point φ(x) (see [5, Proposition 4.26(c)]). Thus

µ(ã) = µ(a ◦ φ) = φµ(a) = a(φ(x)) = ã(x).

Hence ã is an Ac(H|coH(F ))-affine function on coH(F ).
By (2.1), there exists a function b̃ ∈ Ac(H)+ such that ‖b̃‖K ≤ C‖ã‖F

and b̃ = ã on F . Let b = Φ(b̃) ∈ Ac(X)+. Then b = a on D.
Indeed, let s ∈ D be given. We find an Ac(X)-maximal measure

µ ∈ M1(X) which Ac(X)-represents s (see [5, Theorem 3.65]). Since D
is Ac(X)-extremal, µ is supported by D and, by maximality, by φ(K) (see
[5, Propositions 3.64 and 4.26(d)]). Let µ̃ ∈ M1(K) satisfy φµ̃ = µ. Then
µ̃ is supported by φ−1(D ∩ φ(K)) = F . Thus

a(s) = µ(a) = (φµ̃)(a) =
�

F

a ◦ φ dµ̃ =
�

F

ã dµ̃ =
�

F

b̃ dµ̃

=
�

φ(F )

Φ(b̃) dφµ̃ = µ(b) = b(s).

Obviously we have

‖b‖X = ‖b̃‖K ≤ C‖ã‖F ≤ C‖a‖D.
Thus X = S(Ac(H)) satisfies (H) in the sense of (1.1).
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In [4], the proof that simplices have the property (H) is deduced from
the facts that the closed convex hull of a dilated subset of a simplex is a face
(see [3, p. 114]), and that affine continuous functions on a face of a simplex
may be extended with preservation of norm (the proof is similar to that of
[1, Theorem II.5.19]). (We recall that a closed subset D of a compact convex
set X is said to be dilated if whenever µ is a maximal probability measure
on X that Ac(X)-represents a point x ∈ D then µ is supported by D. Thus
a closed set D ⊂ X is dilated provided it is measure extremal. On the other
hand, the set {0, 1/2, 1} is a dilated subset of [0, 1] which is not measure
extremal.) The following two lemmas are analogous results in the context of
function spaces.

Lemma 2.2. Let H be a simplicial function space and F be an H-extremal
subset of K. Then coH(F ) is a Choquet set.

Proof. If F ⊂ K is a nonempty H-extremal set, the characteristic func-
tion χF is an upper semicontinuousH-convex function. We show that χ∗F = 1
on coH(F ).

Indeed, let x ∈ coH(F ) be given. By [5, Proposition 8.18], there exists a
measure µ ∈Mx(H) supported by F . Then by [5, Lemma 3.21],

1 = µ(F ) = µ(χF ) ≤ sup{ν(χF ) : ν ∈Mx(H)} = χ∗F (x) ≤ 1,

which implies χ∗F (x) = 1.
Now we prove that coH(F ) is H-extremal. To this end, let x ∈ coH(F )

and µ ∈ Mx(H) be given. Let ν ∈ M1(K) be an H-maximal measure
satisfying µ ≺H ν (see [5, Theorem 3.65]). Then ν ∈ Mx(H). Since H is
simplicial, χ∗F is H-affine (see [5, Theorem 6.5]). Thus by [5, Theorem 3.68],

1 = χ∗F (x) = ν(χ∗F ) = ν(χF ),

hence ν(F ) = 1. By [5, Proposition 8.24],

sptµ ⊂ coH(spt ν) ⊂ coH(F ).

Thus coH(F ) is an H-extremal set and the proof is complete.

Lemma 2.3. Let H be simplicial, and D be a closed Choquet subset of K.
Then any a ∈ Ac(H|D)+ may be extended to a function in Ac(H)+ with the
same norm.

Proof. We define functions

s(x) =

{
a(x), x ∈ D,
0, x ∈ K \D,

t(x) =

{
a(x), x ∈ D,
‖a‖, x ∈ K \D.

Then it is easy to verify that s is H-convex and upper semicontinuous, while
t is H-concave and lower semicontinuous. We prove the desired properties
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for s. Concerning the H-convexity, let x ∈ K and µ ∈ Mx(H). We want to
show that s(x) ≤

	
K f dµ. If x ∈ D, then sptµ ⊆ D, since D is a Choquet

set. But s coincides with a on D, and so the desired inequality is satisfied
due to the fact that a ∈ Ac(H). If x ∈ K \D, then s(x) = 0, and since s is
nonnegative on K, we are done.

Now we show that s is upper semicontinuous. Let x ∈ K. If x ∈ D,
then for given ε > 0 there exists a neighborhood U of x such that s = a ≤
a(x) + ε = s(x) + ε on U ∩ D. Since on U \ D we have s = 0 < s(x) + ε,
we see that s ≤ s(x) + ε on U . On the other hand, if x ∈ K \ D, then
since D is closed, s is constant on some neighborhood of x, and the upper
semicontinuity of s is proven.

Now, since H is simplicial, by the Edwards in-between theorem (see [5,
Theorem 6.6]) there exists a function f ∈ Ac(H) such that s ≤ f ≤ t. Then
f is clearly a nonnegative extension of a with the same norm.

We obtained the following characterization of simpliciality of a function
space.

Theorem 2.4. Let H be a function space on a compact Hausdorff
space K. Then H is simplicial if and only if H has the property (H) in
the sense of (2.1).

Proof. It follows by Lemmas 2.2 and 2.3 that every simplicial space has
the property (H).

On the other hand, if H has the property (H) in the sense of (2.1) then
S(Ac(H)) has the property (H) in the sense of (1.1) by Proposition 2.1.
Thus by [4, Theorem 4] the state space S(Ac(H)) is a Choquet simplex, so
H is simplicial.
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