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FUNCTIONAL ANALYSIS

A characterization of simplicial spaces by
an extension property
by
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Summary. Let H be a function space on a compact Hausdorff space K. We provide a
characterization of the simpliciality of H via an extension property.

1. Introduction. Let X be a compact convex set in a real locally convex
space. We write 2°(X) for the space of all real continuous affine functions
on X endowed with the supremum norm. The symbol 24¢(X )™ stands for the
set of nonnegative elements of A¢(X). In [4], a compact subset of X is called
hyper-extremal if it is a union of compact faces (the class of hyper-extremal
subsets of X in fact coincides with compact extremal subsets of X; see [4]
p. 396] or [5, Proposition 2.69]). The set X is said to have the property (H)
if
(1.1) there exists a constant C' € R such that for each hyper-extremal set

D C X and a € A°(co(D))™ there exists b € A¢(X)T such that b = a
on D and ||b]|x < C|la||p.

It was shown by Batty [4] that X has the property (H) if and only if
X is a Choquet simplex. A similar characterization was proven before by
Andersen [2], but it was restricted to metrizable compact convex sets. In the
present paper we provide a similar characterization for abstractly defined
affine functions.

First we collect several definitions and basic facts of Choquet theory on
function spaces. For details we refer the reader to [5]. In what follows, let
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K be a compact Hausdorff space and H be a function space on K, that
is, a linear subspace of the space of continuous functions on K, endowed
with the supremum norm, containing constant functions and separating the
points of K.

For x € K we denote by M, (H) the set of all H-representing measures
for x, that is,

My (H) = {u e MYK) : f(z) = S fdu for any f € H}
K

(Here M!(K) stands for the set of all Radon probability measures on K.)
The Choquet boundary Chy(K) of H is the set

Chy(K) = {z € K : M (H) = {e.}},

where &, stands for the Dirac measure at a point x € K.
A function f on K satisfying

fl@)< | fdu, x€K, pe My(H),
K

is termed H-conver. A function f on K is H-concave if —f is H-convex. If
f is both H-convex and H-concave, then f is called H-affine. The family of
all continuous H-affine functions is denoted by A°(H). Then A°(H) is again
a function space. Moreover, it is closed and contains .

We recall that given a pair of measures p,v € M (K), we say that
p <y vif p(f) < v(f) for any H-convex continuous function f on K (see
[5, Definition 3.19]). A measure which is <y-maximal is called H-mazimal.

If K = X is a compact convex set in a locally convex space and H =
2A°(X), then H is a function space with A°(H) = H and Chy(X) = ext X,
the set of all extreme points of X (see |5, Theorem 2.40]).

Let A be a Borel subset of K. Then A is called measure convez if x € A
whenever 2 € K and p € M, (H) with u(K\ A) = 0. If A is moreover closed,
then it is called H-convez. For a subset F' of K, let

ot (F) = ﬂ{C CK:CDF, C is H-convex}.

The subset F' is H-convex if and only if F' = co’!(F).

A Borel set A C K is called measure extremal if for any x € A and any
measure p € My (H), p is supported by A. Closed measure extremal sets
are called H-extremal. Finally, we say that A is a Choquet set if it is both
measure convex and measure extremal.

The upper envelope of a bounded function f on K is defined as

f*(x) = inf{s(x) : s is continuous and H-concave, s > f}, =€ K.

It is always an upper semicontinuous H-concave function on K, and it coin-
cides with f on Chy(K) for f upper semicontinuous.
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The state space S(H) of H is defined as
SH)={peH :p>0,¢(1)=1}.

It is a w*-compact convex subset of H*. The function space H is called
simplicial if S(A°(H)) is a Choquet simplex (see |5, Theorem 6.54]). As a
canonical example of a simplicial function space serves the space A¢(X) on a
simplex X (see [5, Theorem 6.54]). A less obvious example is the following.
Let U C R? be an open bounded set. Then the space of all functions con-
tinuous on U that are harmonic on U is an example of a simplicial function
space (see [5, Theorem 13.35]).

The evaluation mapping ¢ from K into S(H) is defined as

¢o:x— ¢, x€K,

where ¢, maps a function h € H to the real number h(x). We further define
a mapping @ : H — A°(S(H)) for h € H as

&(h): s+ s(h), seS(H).

We point out several important properties of the mappings ¢ and .
For the proofs of these facts see e.g. [5, Proposition 4.26, Lemma 8.10 and
Proposition 8.22].

The mapping ¢ is a homeomorphism of K into S(H), S(H) = co(p(K))
and ¢(Chy(K)) = ext S(H). If H C S(H) is A°(S(H))-measure extremal,
then ¢~ (HN@(K)) is measure extremal in K. Moreover, for each set ' C K
we have

@ (F) = ¢~ (e0(0(F)) N $(K)).
The mapping @ is positive, linear and norm-preserving. It is surjective if and
only if H is closed, and in this case the inverse mapping is realized by

P Y F)=Fo¢, FecA(S(H)).

If F is a closed subset of K then the space H|r of all restrictions of
functions from H to the set F' is again a function space.

2. Characterization of simpliciality. We note that from the defini-
tion of H-affine functions it follows that the sets of representing measures
are the same with respect to both function spaces H and A°(H), that is,
for each x € K we have My(H) = Mz(A°(H)). From this it follows that
A(A°(H)) = A°(H), and also that the classes of measure extremal and mea-
sure convex sets are the same with respect to both these function spaces.

We say that the function space H has the property (H) if

(2.1) there exists a constant C' > 0 such that for each H-extremal set D C K
and a € A°(H|en(py)" there exists b € A°(H)" with b|p = a and
1bllx < Cllallp-
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In the rest of the paper we show that this property (H) characterizes the
concept of simpliciality of a function space.

First we show the connection between our definition of property (H) and
the property (H) of a compact convex set as defined by Batty.

PROPOSITION 2.1. If a function space H has the property (H) in the
sense of (2.1) then S(A°(H)) has the property (H) in the sense of (1.1).

Proof. Let X = S(A°(H)). Let D C X be a nonempty hyper-extremal set
and a € A°(coD)*. Then D is A¢(X )-extremal (see |5, Proposition 2.69]). We
consider the closed function space A°(H) and the above-defined mappings
¢: K — S(X) and & : A°(H) — A¢(X). We denote F = ¢~1(D N ¢(K)).
Then F is A°(H)-extremal (see [5, Lemma 8.10]), and thus H-extremal in K.
Since the classes of H-convex and A°(H)-convex sets coincide, G0t (F) =
oM (F). Let

i(2) = a(o(x)), @ € OH(F).

We claim that @ € A°(H|e5n ()" Obviously, @ > 0. Let « € €0’ (F) and

p € My(Hlegr(py)- Then p € M'(co™(F)), and since

0 (F) = e M(F) = ¢ (e(¢(F)) N $(K)),

the image ¢u € M'(X) under the mapping ¢ has support in co(¢(F)) C
co(D). Further, the measure p considered as a measure on K H-represents .
Thus ¢p A¢(X )-represents the point ¢(x) (see |5, Proposition 4.26(c)|). Thus

u(a) = plao @) = pula) = a(¢(x)) = a(x).
Hence a is an A°(H |5 () )-affine function on cot(F).
By (2.1)), there exists a function b € A°(H)* such that ||b||x < Cllal|r

and b=a on F. Let b = @(b) € A°(X)". Then b =a on D.

Indeed, let s € D be given. We find an 2°(X)-maximal measure
p € MY(X) which 24¢(X)-represents s (see [5, Theorem 3.65]). Since D
is A¢(X)-extremal, p is supported by D and, by maximality, by ¢(K) (see
[5, Propositions 3.64 and 4.26(d)]). Let ji € M!(K) satisfy ¢ji = p. Then
fi is supported by ¢~1(D N ¢(K)) = F. Thus

a(s) = p(a) = (i) (a) = Yaopdi = | adp = | bdj
F F F
= | ®(b)doji = p(b) = b(s).
¢(F)
Obviously we have
bl x = [Ibllx < CllallF < Cllallp.

Thus X = S(A°(H)) satisfies (H) in the sense of (L.1)). m
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In [4], the proof that simplices have the property (H) is deduced from
the facts that the closed convex hull of a dilated subset of a simplex is a face
(see [3, p. 114]), and that affine continuous functions on a face of a simplex
may be extended with preservation of norm (the proof is similar to that of
[1, Theorem II1.5.19]). (We recall that a closed subset D of a compact convex
set X is said to be dilated if whenever p is a maximal probability measure
on X that A¢(X)-represents a point x € D then p is supported by D. Thus
a closed set D C X is dilated provided it is measure extremal. On the other
hand, the set {0,1/2,1} is a dilated subset of [0,1] which is not measure
extremal.) The following two lemmas are analogous results in the context of
function spaces.

LEMMA 2.2. Let H be a simplicial function space and F' be an H-extremal
subset of K. Then ¢o’*(F) is a Choquet set.

Proof. If F C K is a nonempty H-extremal set, the characteristic func-
tion x r is an upper semicontinuous H-convex function. We show that x7 =1
on co’t(F).

Indeed, let 2 € c6’t(F) be given. By [5], Proposition 8.18], there exists a
measure i € M, (H) supported by F. Then by [5, Lemma 3.21],

1= p(F) = p(xr) <sup{v(xr) : v € Ma(H)} = xp(2) <1,
which implies x7.(z) = 1.

Now we prove that co’t(F) is H-extremal. To this end, let z € ¢t (F)
and u € My (H) be given. Let v € M!(K) be an H-maximal measure
satisfying p <% v (see [5, Theorem 3.65]). Then v € M (H). Since H is
simplicial, x}. is H-affine (see [5, Theorem 6.5]). Thus by [5, Theorem 3.68],

1= Xp(z) =v(xF) = v(xr),
hence v(F') = 1. By [5 Proposition 8.24],
spt . C @'t (sptv) C coH(F).
Thus ¢6”(F) is an H-extremal set and the proof is complete. =

LEMMA 2.3. Let H be simplicial, and D be a closed Choquet subset of K.
Then any a € A°(H|p)™ may be extended to a function in A°(H)™ with the
same norm.

Proof. We define functions
D D
s(z) = a(r), ze€D, Ha) = a(r), ze€D,
0, xe K\D, lal|, ze€ K\D.

Then it is easy to verify that s is H-convex and upper semicontinuous, while
t is H-concave and lower semicontinuous. We prove the desired properties
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for s. Concerning the H-convexity, let z € K and u € M (H). We want to
show that s(z) < Sdeu. If x € D, then sptu C D, since D is a Choquet
set. But s coincides with a on D, and so the desired inequality is satisfied
due to the fact that a € A°(H). If z € K \ D, then s(x) = 0, and since s is
nonnegative on K, we are done.

Now we show that s is upper semicontinuous. Let z € K. If x € D,
then for given € > 0 there exists a neighborhood U of z such that s = a <
a(x) +e = s(z)+eon UND. Since on U \ D we have s = 0 < s(x) + ¢,
we see that s < s(x) + e on U. On the other hand, if z € K \ D, then
since D is closed, s is constant on some neighborhood of z, and the upper
semicontinuity of s is proven.

Now, since H is simplicial, by the Edwards in-between theorem (see |5l
Theorem 6.6]) there exists a function f € A°(H) such that s < f <t¢. Then
f is clearly a nonnegative extension of a with the same norm.

We obtained the following characterization of simpliciality of a function
space.

THEOREM 2.4. Let H be a function space on a compact Hausdorff
space K. Then H is simplicial if and only if H has the property (H) in

the sense of (2.1)).

Proof. Tt follows by Lemmas [2.2 and [2.3] that every simplicial space has
the property (H).

On the other hand, if H has the property (H) in the sense of then
S(A¢(H)) has the property (H) in the sense of by Proposition
Thus by [4, Theorem 4] the state space S(A°(H)) is a Choquet simplex, so
H is simplicial. =
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