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Summary. We establish a theory of balayage for the Riesz kernel |x− y|α−n, α ∈ (0, 2],
on Rn, n ≥ 3, alternative to that suggested in the book by Landkof. A need for that
is caused by the fact that the balayage in that book is defined by means of the integral
representation, which, however, so far is not completely justified. Our alternative approach
is mainly based on Cartan’s ideas concerning inner balayage, formulated by him for the
Newtonian kernel. Applying the theory of inner Riesz balayage thereby developed, we
obtain a number of criteria for the existence of an inner equilibrium measure γA for A ⊂ Rn
arbitrary, in particular given in terms of the total mass of the inner swept measure µA

with µ suitably chosen. For example, γA exists if and only if εA
∗
6= ε, where ε is the Dirac

measure at x = 0 and A∗ the inverse of A relative to the sphere |x| = 1, which leads
to a Wiener type criterion of inner α-irregularity. The results obtained are illustrated by
examples.

1. Introduction. A major goal of our study is to establish a theory of
balayage for the Riesz kernel |x − y|α−n, α ∈ (0, 2], on Rn, n ≥ 3, alterna-
tive to that suggested in [11, Chapter IV, Section 6, n◦ 25 and Chapter V,
Section 1, n◦ 2]. A need for that is caused by the fact that the balayage µA
of a positive Radon measure µ on Rn to a Borel set A ⊂ Rn is defined in
[11] by means of the integral representation

(1.1) µA =
�
εAy dµ(y),
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where εy is the unit Dirac measure at y ∈ Rn. However, this requires that
the family (εAy )y∈Rn be µ-adequate in the sense of [3, Chapter V, Section 3,
n◦ 1, Definition 1]. As pointed out in [3, Chapter V, Section 3, n◦ 1, Re-
mark], it is not enough to verify that for every f ∈ C0(Rn), the function
y 7→

	
f dεAy is µ-measurable on Rn (as is done in [11, p. 214, footnote 12]);

see also counterexamples (without µ-adequacy) in [3, Chapter V, Section 3,
Exercises 1, 2]. Here C0(Rn) is the class of all finite continuous functions
on Rn with compact support.

For A closed and µ carried by Ac := Rn \ A, the µ-adequacy of the
family (εAy )y∈Ac , and hence the validity of the integral representation (1.1),
has recently been proven in [10, Lemma 3.16, Theorem 3.17]. Theorem 8.2
below strengthens [10, Theorem 3.17] to A arbitrary and µ carried by Ac,
the concept of balayage being now understood in the sense described in
Section 3. However, the question whether the integral representation (1.1)
holds for any µ is still open.

Leaving aside the question of validity of (1.1), we establish instead an alter-
native theory ofRiesz balayage by generalizingH.Cartan’s [6] ideas concerning
inner balayage, formulated for the Newtonian kernel |x − y|2−n. To briefly
explain the results obtained, we need the following notions and notation.

Let M denote the linear space of all (signed) Radon measures ν on Rn,
equipped with the vague topology, i.e. the topology of pointwise convergence
on C0(Rn). Given ν, ν1 ∈M, we define the potential and the mutual energy
by

Uν(x) :=
�
|x− y|α−n dν(y), x ∈ Rn,

E(ν, ν1) :=
�
|x− y|α−n d(ν ⊗ ν1)(x, y),

respectively (provided, of course, that the corresponding right-hand side is
well defined as a finite number or ±∞). For ν = ν1, E(ν, ν1) defines the
energy E(ν) := E(ν, ν) of ν. All ν ∈M with E(ν) finite form a pre-Hilbert
space E with the inner product (ν, ν1) := E(ν, ν1) and the norm ‖ν‖ :=√
E(ν). The topology on E defined by ‖ · ‖ is said to be strong.
For an arbitrary set Q ⊂ Rn, we denote by M+

Q the cone of all positive
ν ∈ M carried by Q, which means that Q is ν-measurable and Qc is ν-
negligible. Write E+

Q := E ∩M+
Q, M

+ := M+
Rn , and E+ := E+

Rn .
To establish the theory of inner Riesz balayage, we first consider µ with

finite energy, and we define the inner balayage µA ∈ E+ of µ ∈ E+ to
A ⊂ Rn arbitrary as the strong and vague limit of µK as K increases along
the upper directed family CA of all compact subsets of A (see Theorem 3.4),
where µK is the orthogonal projection of µ in the pre-Hilbert space E onto
the strongly complete convex cone E+

K (cf. Theorem 3.1). Alternatively, this
µA is, in fact, the orthogonal projection of µ onto the strong closure of E+

A
(see Theorem 3.4).



Inner Riesz balayage and applications 43

Observing that

E(µ, λA) = E(µA, λ) for all λ ∈ E+,

we now define the inner balayage µA ∈ M+ of µ ∈ M+ to A as a mea-
sure satisfying this symmetry identity (Definition 3.9) (1). This µA exists, is
unique, and can equivalently be determined by either of the following two
limit relations:

µAk → µA vaguely, Uµ
A
k ↑ UµA pointwise on Rn,

where (µk) ⊂ E+ is any given sequence (net) such that Uµk ↑ Uµ pointwise
on Rn (see Theorem 3.10 and its proof).

We emphasize that although Uµ
A

= Uµ n.e. on A, that is, everywhere
on A except for a set of zero inner capacity cα(·) (see Theorem 3.10), this
property no longer characterizes µA uniquely (as it does for A closed and
µ ∈ E+, cf. Theorem 3.1), which is illustrated in Remark 3.12. Nevertheless
this uniqueness does hold whenever A is closed and µ ∈M+ is carried by Ac
(see Corollary 8.4).

Further, we apply the concept of inner Riesz balayage thus introduced to
the problem of existence of an inner equilibrium measure γA for A arbitrary.
This γA can be defined e.g. as the vague limit of γK as K increases along CA,
while the equilibrium measure γK on K compact is defined as usual (see e.g.
[11, Chapter II, Section 2, n◦ 7]).

For A Borel, necessary and sufficient conditions for the existence of γA
have been provided in [11, Theorem 5.1]. However, [11, Theorem 5.1] has
not been completely justified, because the proof of its necessity part is based
on the concept of balayage, introduced in [11, Chapter IV, Section 6, n◦ 25]
with the aid of the integral representation (1.1).

By use of our concept of inner Riesz balayage, we fix that gap in [11,
proof of Theorem 5.1], and moreover we strengthen [11, Theorem 5.1] to A
arbitrary (see Theorem 5.5). Observing that the existence of γA does not
necessarily imply the finiteness of cα(A), we illustrate this by means of Ex-
ample 5.8.

An inner α-irregular point y for A is defined by the relations y ∈ A
and εAy 6= εy. We show that εAy 6= εy is equivalent to the existence of an
inner equilibrium measure γA∗ for the inverse A∗ of A \ {y} relative to the
sphere S(y, 1); and then εAy is actually the Kelvin transform of γA∗ (Theo-
rem 6.10). Combining Theorem 6.10 with Theorem 5.5 results in a Wiener
type criterion of inner α-irregularity (Theorem 6.4).

Other necessary and sufficient conditions for the existence of γA, now
given in terms of the total mass µA(Rn) with µ suitably chosen, are pro-

(1) The term ‘inner balayage’ is justified by showing that µK → µA vaguely as K
increases along CA (see Theorem 4.5).
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vided by Theorems 8.6 and 8.7. It is shown that γA exists whenever there is
µ ∈M+

A
c with

µA(Rn) < µ(Rn),

while for A closed, this can be reversed (see Section 8.3 for further details).
The proofs of Theorems 8.6 and 8.7 are based on Theorem 6.10 as well as
on Theorem 8.2, establishing the integral representation (1.1) for A arbi-
trary and µ carried by A

c and thereby strengthening [10, Theorem 3.17].
Theorems 8.6 and 8.7 are illustrated by Example 8.8.

It is worth mentioning that the concept of inner Riesz balayage, defined
in our study, differs from the concept of balayage by Brelot [5] as well as from
that by Bliedtner and Hansen [1]. The last two concepts are relevant to the
concept of outer balayage (cf. [6]), which can be seen e.g. by comparing [5,
Theorem IX.10] and [1, Chapter VI, Proposition 2.2] with our Theorem 6.4
and Corollary 4.6, respectively.

2. Preliminaries. This paper deals with the Riesz kernel |x− y|α−n of
order 0 < α ≤ 2 on Rn, n ≥ 3. In what follows we shall tacitly use the
notions and notation introduced in Section 1.

For Q ⊂ Rn, let ∂Q and Q denote the boundary and the closure of Q
in the Euclidean topology on Rn. Write B(y, r) := {x ∈ Rn : |x − y| < r},
where r > 0, and let S(y, r) and B(y, r) stand for the boundary and the
closure of B(y, r) in Rn.

In this section we have gathered some basic facts of Riesz potential theory,
often used below. When speaking of a measure µ ∈ M+, we always tacitly
assume that Uµ is not identically infinite, or equivalently [11, Chapter I,
Section 3, n◦ 7]

(2.1)
�

|y|>1

dµ(y)

|y|n−α
<∞.

Then Uµ, µ ∈M+, is α-superharmonic (hence lower semicontinuous (l.s.c.))
on Rn [11, Chapter I, Section 6, n◦ 20], which is crucial to Theorems 2.1
and 2.4 below.

Theorem 2.1. If an upper directed family (Uµt)t∈T , where µt ∈M+ for
all t ∈ T , is majorized by Uµ with some µ ∈M+, then there exists ν ∈M+

such that Uµt ↑ Uν pointwise on Rn and µt → ν vaguely (as t increases
along T ).

For T countable, Theorem 2.1 is [11, Theorem 3.9]. The proof of [11,
Theorem 3.9] can be generalized to T uncountable with the aid of [7, Ap-
pendix VIII, Theorem 2] and [3, Chapter IV, Section 1, Theorem 1].
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The Riesz kernel is strictly positive definite, that is, E(ν) ≥ 0 for every
ν ∈ M (whenever E(ν) is well defined) and E(ν) = 0 only for ν = 0.
Furthermore, it is perfect [9] in the sense that every strong Cauchy sequence
(net) in E+ converges strongly to any of its vague limit points, and the strong
topology on E+ is finer (stronger) than the vague topology on E+. Since any
strongly bounded part of E+ is vaguely bounded [9, Lemma 2.5.1], the cone
E+ is strongly complete. Hence, so is E+

F for F ⊂ Rn closed, the cone M+
F

being vaguely closed.
For any Q ⊂ Rn, the inner α-Riesz capacity cα(Q) is given by (2)

cα(Q) := 1/inf E(µ),

where µ ranges over all µ ∈ E+
Q with µ(Rn) = 1. Then

(2.2) cα(K) ↑ cα(Q) as K ↑ Q,
where the abbreviation ‘K ↑ Q’ means that K increases along CQ.

Lemma 2.2 (see [9, Lemma 2.3.1]). For any Q ⊂ Rn,
cα(Q) = 0 ⇐⇒ E+

Q = {0}.

A measure µ ∈M+ is said to be bounded if µ(Rn) <∞, and cα-absolutely
continuous if µ(K) = 0 for every compact K ⊂ Rn with cα(K) = 0. It
follows from Lemma 2.2 that any µ ∈ E+ is cα-absolutely continuous, but
not conversely [11, pp. 134–135].

An assertion U is said to hold nearly everywhere (n.e.) on Q ⊂ Rn if the
set of x ∈ Q for which U(x) fails has zero inner capacity.

The following assertion amounts to the countable subadditivity of inner
capacity in the form stated in [9, p. 158, Remark].

Lemma 2.3. Let Q ⊂ Rn be arbitrary, and Ek ⊂ Rn, k ∈ N, Borel. If
an assertion U holds n.e. on Q ∩ Ek for every k, then U holds n.e. on the
union of all Q ∩ Ek.

The property of the Riesz kernel of order α ∈ (0, 2], presented in the
following assertion (see [11, Theorems 1.27, 1.29]), is known as the complete
maximum principle; for q = 0, it is also called the domination principle, and
for ν = 0, the Frostman maximum principle.

Theorem 2.4. If Uµ ≤ Uν + q µ-a.e., where µ ∈ E+, ν ∈ M+, and
q ∈ [0,∞), then this inequality holds on all of Rn.

Let M ⊂ E+ be a strongly closed convex cone containing µ = 0. Since
then M is strongly complete, the following theorem is a particular case of
[8, Theorem 1.12.3, Proposition 1.12.4(2)].

(2) The infimum over the empty set is taken to be +∞. We also put 1/(+∞) = 0 and
1/0 = +∞.
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Theorem 2.5. For any µ ∈ E+, there is a unique Pµ = PM(µ) ∈ M
such that

‖µ− Pµ‖ = inf
ν∈M

‖µ− ν‖ =: %(µ,M).

This Pµ is called the orthogonal projection of µ in the pre-Hilbert space E
onto M, and it is characterized uniquely by the relations

(µ− Pµ, λ) ≤ 0 for all λ ∈M,(2.3)
(µ− Pµ, Pµ) = 0.(2.4)

3. Inner Riesz balayage. Unless explicitly stated otherwise, in what
follows we assume that A is an arbitrary proper subset of Rn with cα(A) > 0.

The notion of inner Riesz balayage of µ ∈ M+ to A will be defined in
three steps, presented respectively in Sections 3.1, 3.2, and 3.3.

3.1. Step 1: µ ∈ E+ and A closed. Assume first that µ ∈ M+ has
finite energy and A is closed in Rn.

Theorem 3.1. For µ ∈ E+ and A closed, there exists µA ∈ E+
A such that

Uµ
A

= Uµ n.e. on A,(3.1)

Uµ
A ≤ Uµ on Rn.(3.2)

This µA is actually the orthogonal projection of µ in the pre-Hilbert space E
onto the convex cone E+

A , and it is uniquely determined within E+
A by (3.1).

Proof. For A closed, the convex cone E+
A is strongly closed, because the

strong topology on E+ is stronger than the vague topology on E+ while
M+

A is vaguely closed. According to Theorem 2.5, there exists therefore a
unique orthogonal projection Pµ = PE+A

(µ) of µ onto E+
A , and it is uniquely

determined by (2.3) and (2.4) withM := E+
A . Relations (3.1) and (3.2) with

µA := Pµ can now be established in a manner similar to that in [11, proof
of Theorem 4.16].

Indeed, the restriction λ|E of any λ ∈ E+ to the Borel set E := {x ∈ A :
Uµ(x) > UPµ(x)} belongs to E+

A , hence (µ − Pµ, λ|E) ≤ 0 by (2.3), and
consequently λ|E = 0. Since λ ∈ E+ has been chosen arbitrarily, cα(E) = 0
according to Lemma 2.2. Thus,

(3.3) UPµ ≥ Uµ n.e. on A.

Another use of Lemma 2.2 now gives UPµ ≥ Uµ Pµ-a.e., which together
with (2.4) shows that, actually, UPµ = Uµ Pµ-a.e. By the domination prin-
ciple (see Theorem 2.4), this yields (3.2), which combined with (3.3) estab-
lishes (3.1).

If (3.1) also holds with θ ∈ E+
A , then ν := θ − Pµ ∈ E , and furthermore

Uν = 0 n.e. on A, hence ν-a.e., again by Lemma 2.2. We therefore obtain by
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integration ‖ν‖ = 0, which implies θ = Pµ, the Riesz kernel being strictly
positive definite.

Remark 3.2. One could equally well write ‘q.e.’ (quasi everywhere) in-
stead of ‘n.e.’ in (3.1), where ‘q.e.’ refers to outer capacity [11, Chapter II,
Section 2, n◦ 6]. Indeed, ψ := Uµ

A − Uµ, being the difference between two
l.s.c. functions, is Borel measurable, and hence {x ∈ A : ψ(x) 6= 0} is capac-
itable [11, Theorem 2.8].

Corollary 3.3. For any closed subset F of A,

(3.4) µF = (µA)F for every µ ∈ E+.

Proof. According to Theorem 3.1, both µF and (µA)F belong to E+
F , and

moreover
U (µA)F = Uµ

A
= Uµ = Uµ

F
n.e. on F.

Since (3.1) with A = F determines µF uniquely within E+
F , (3.4) follows.

3.2. Step 2: µ ∈ E+ and A arbitrary. Still requiring that µ ∈ M+

have finite energy, we now extend our analysis to A arbitrary. Let E ′A denote
the strong closure of E+

A . Obviously, E ′A is a strongly closed convex cone
in E+.

Theorem 3.4. For µ ∈ E+ and A arbitrary, there is a unique µA ∈ E+

such that

(3.5) µK → µA strongly and vaguely in E+,

where K increases along the upper directed family C = CA of all compact
subsets of A and µK is defined in Theorem 3.1. This µA can alternatively
be defined as the orthogonal projection of µ onto E ′A, that is (3),

(3.6) ‖µ− µA‖ = min
ν∈E ′A

‖µ− ν‖ = %(µ, E ′A).

Proof. In view of (2.2) and our assumption cα(A) > 0, we may consider
only those K ∈ C whose capacity is > 0. Since obviously

‖µ− µK′‖ ≤ ‖µ− µK‖ whenever K ⊂ K ′ (where K,K ′ ∈ C),
Lemma 4.1.1 in [9] with H := E , Γ := {µ− ν : ν ∈ E+

K′}, and λ := µ− µK′

yields
‖µK − µK′‖2 = ‖(µ− µK)− (µ− µK′)‖2 ≤ ‖µ− µK‖2 − ‖µ− µK′‖2.

Being decreasing and lower bounded, the net (‖µ−µK‖)K∈C is Cauchy in R,
which together with the last display implies that the net (µK)K∈C is strong
Cauchy in E+. Being thus strongly bounded, (µK)K∈C is vaguely bounded
by [9, Lemma 2.5.1], and has a vague limit point µ0 ∈ M+ according to

(3) This implies that for A closed, the measure µA determined by Theorem 3.4 coin-
cides with that determined by Theorem 3.1.
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[3, Chapter III, Section 2, Proposition 9]. Moreover, µ0 ∈ E+ because the
energy is vaguely l.s.c. on M+ [11, (1.4.4)]. Since the Riesz kernel is perfect
(cf. Section 2), µK → µ0 strongly in E+, and this µ0 is unique. As the
vague topology on M is Hausdorff, the unique vague limit point µ0 of the
net (µK)K∈C has to be its vague limit [2, Chapter I, Section 9, n◦ 1]. This
establishes (3.5) with µA := µ0.

It follows from (3.5) that µA ∈ E ′A, and moreover

(3.7) %(µ, E+
A ) = %(µ, E ′A) ≤ ‖µ− µA‖ = lim

K↑A
‖µ− µK‖ = lim

K↑A
%(µ, E+

K),

the first equality being evident. On the other hand, for every ν ∈ E+
A , ν|K →

ν vaguely as K ↑ A (see e.g. [9, Lemma 1.2.2]), and therefore

‖ν‖ ≤ lim
K↑A
‖ν|K‖, (λ, ν) ≤ lim

K↑A
(λ, ν|K) for every λ ∈ E+.

The opposite inequalities being obvious, equality in fact prevails in these
inequalities; hence,

‖µ− ν‖ = lim
K↑A
‖µ− ν|K‖ ≥ lim

K↑A
%(µ, E+

K) for every ν ∈ E+
A ,

and consequently
%(µ, E+

A ) ≥ lim
K↑A

%(µ, E+
K).

Combining this with (3.7) establishes (3.6).

Corollary 3.5. Both (3.1) and (3.2) remain valid for µA defined in
Theorem 3.4. Furthermore, UµK increases to UµA pointwise on Rn as K ↑ A.

Proof. For any K,K ′ ∈ CA such that K ⊂ K ′, we see from (3.2) and
(3.4) that

Uµ
K

= U (µK
′
)K ≤ UµK

′
≤ Uµ on Rn.

By Theorem 2.1, there is therefore ν ∈ M+ such that UµK ↑ Uν pointwise
on Rn and µK → ν vaguely (as K ↑ A). This together with (3.5) yields
ν = µA, the vague topology on M being Hausdorff, thereby establishing
the latter assertion of the corollary. Letting K ↑ A in the last display now
gives (3.2).

Being the orthogonal projection of µ onto E ′A, µA is characterized by (2.3)
and (2.4) withM := E ′A. Writing (2.3) for every ν ∈ E ′A, and then comparing
with (3.2), we obtain (µ− µA, ν) = 0, or equivalently

(3.8) Uµ
A

= Uµ ν-a.e. for every ν ∈ E ′A.
This leads to (3.1) in a way similar to that in the proof of Theorem 3.1.
Indeed, for every K ∈ CA and every λ ∈ E+, consider λ|E , where E consists
of all x ∈ K with Uµ

A
(x) < Uµ(x). Since λ|E ∈ E+

A , we have λ|E = 0
by (3.8), and hence cα(E) = 0 according to Lemma 2.2.
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Remark 3.6. For A Borel, Theorem 3.4 and Corollary 3.5 remain valid if
CA is replaced by an increasing sequence (Ak)k∈N of Borel sets whose union
equals A. This can be seen much as above, the only delicate point being in
proving the vague convergence of (ν|Ak)k∈N to ν ∈M+

A. This convergence is
established by applying [3, Chapter IV, Section 1, Theorem 3] to (1Akf)k∈N,
where f ∈ C0(Rn) is positive and 1Q denotes the indicator function of a
set Q.

Corollary 3.7. For µ ∈ E+ and A arbitrary,

(3.9) (µ, λA) = (µA, λ) for all λ ∈ E+.

Identity (3.9) determines µA uniquely; that is, if it holds for ν ∈ M+ in
place of µA, then ν = µA.

Proof. Since λA, µA ∈ E ′A for any λ, µ ∈ E+, we deduce from (3.8) that

(µ− µA, λA) = 0 and (λ− λA, µA) = 0,

and (3.9) follows by subtraction. If (3.9) also holds for ν ∈ M+ in place
of µA, then

Uµ
A ∗m(r) = Uν ∗m(r) for any r > 0,

where m(r) is the measure obtained by uniformly distributing unit mass
over B(0, r) and ∗ denotes convolution. Letting r → 0 and applying [11,
Theorem 1.11] gives ν = µA as claimed.

Corollary 3.8. For A arbitrary,

µA = µ for every µ ∈ E ′A (4).

Proof. This is obvious in view of (3.6).

3.3. Step 3: µ ∈ M+ and A arbitrary. Assume for a moment that
µ still has finite energy. In view of (3.5), we call the measure µA defined in
Theorem 3.4 the inner Riesz balayage of µ to A. Since this µA is determined
uniquely by the symmetry identity (3.9), we are thus led to the following
definition of inner Riesz balayage of µ ∈M+ to A arbitrary (cf. [6, p. 257]).

Definition 3.9. For µ ∈ M+ and A arbitrary, we call µA ∈ M+ an
inner balayage of µ to A if

(3.10) E(µ, λA) = E(µA, λ) for all λ ∈ E+.

(4) In particular, µA = µ for every µ ∈ E+A . However, this is no longer valid (not even
for A closed) if we drop the requirement E(µ) < ∞. For instance, µA = µ does not hold
for µ = εy when y is an inner α-irregular point for A (see Section 6 below).
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Theorem 3.10. For µ ∈ M+ and A arbitrary, there exists a unique
inner balayage µA ∈M+, and it satisfies both (3.1) and (3.2).

Proof. Similarly to [11, p. 272] (see also [6, p. 257, footnote]), for µ ∈M+

one can construct a sequence (µk)k∈N ⊂ E+ such that

(3.11) Uµk ↑ Uµ pointwise on Rn (as k →∞).

According to (3.8) applied to each of those µk,

Uµ
A
k = Uµk ≤ Uµk+1 = Uµ

A
k+1 ν-a.e. for every ν ∈ E ′A.

In particular, UµAk ≤ Uµ
A
k+1 µAk -a.e., which implies by the domination prin-

ciple

(3.12) Uµ
A
k ≤ Uµ

A
k+1 ≤ Uµk+1 ≤ Uµ on Rn,

the second inequality being valid by (3.2) (cf. Corollary 3.5).
Thus, UµAk increases along with Uµk (as k →∞) and does not exceed Uµ.

According to Theorem 2.1, there exists ν ∈ M+ such that µAk → ν vaguely
and

(3.13) Uµ
A
k ↑ Uν pointwise on Rn (as k →∞).

Writing now (3.9) for every µk ∈ E+, k ∈ N, and then applying [3, Chap-
ter IV, Section 1, Theorem 1], which is possible in view of (3.11) and (3.13),
we get (3.10) with µA := ν. The measure µA ∈ M+ is thus the required
inner balayage of µ ∈ M+ to A, and its uniqueness follows from (3.10) in
the same manner as in Corollary 3.7.

Relation (3.2) is obtained directly from (3.12) and (3.13). To prove (3.1),
we observe from (3.11) and (3.13) that E := {x ∈ Rn : Uµ

A
(x) < Uµ(x)} is

contained in the union of the (Borel) sets Ek := {x ∈ Rn : Uµ
A
k (x) < Uµk(x)},

k ∈ N. Since cα(A ∩ Ek) = 0 according to (3.1) applied to µk (cf. Corol-
lary 3.5), Lemma 2.3 shows that, indeed, cα(A ∩ E) = 0.

Remark 3.11. For any sequence (net) (µk) ⊂ E+ such that (3.11) holds,
we thus have

µAk → µA vaguely, Uµ
A
k ↑ UµA pointwise on Rn,

and either of these relations may be thought of as an alternative equivalent
definition of the inner swept measure µA.

Remark 3.12. Relation (3.1) no longer characterizes µA uniquely (as it
does for A closed and µ ∈ E+, cf. Theorem 3.1), which is seen for µ = εy,
where y is an inner α-irregular point for A (see Section 6). The uniqueness
nevertheless does hold whenever A is closed and µ ∈ M+ is carried by Ac
(Corollary 8.4).
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Remark 3.13. We show in Theorem 4.5 below that µK → µA vaguely
as K ↑ A, thereby justifying the term ‘inner balayage’.

Remark 3.14. In general, µA is not carried by A, and this is the case
even for the Newtonian kernel and an open ball. What is clear so far is that
µA is carried by A. This will be specified in Theorem 8.5 below, providing
a description of S(µA) for A closed and µ ∈ M+

Ac . Also note that for any
a1, a2 ∈ R1

+ and any µ1, µ2 ∈M+,

(3.14) (a1µ1 + a2µ2)A = a1µ
A
1 + a2µ

A
2 .

4. Further properties of inner balayage. The following assertion
shows that identity (3.10) in Definition 3.9 remains valid for θ ∈ M+ in
place of λ ∈ E+.

Corollary 4.1. For µ ∈M+ and A arbitrary,

(4.1) E(µA, θ) = E(µ, θA) for all θ ∈M+.

Proof. For θ ∈ M+, choose (θk)k∈N ⊂ E+ so that U θk ↑ U θ pointwise
on Rn. Then U θAk ↑ U θA pointwise on Rn (cf. Remark 3.11). But, according
to (3.10) with λ = θk,

E(µA, θk) = E(µ, θAk ).

Letting here k → ∞, we obtain (4.1) by [3, Chapter IV, Section 1, Theo-
rem 1].

Corollary 4.2. For any µ ∈M+ and any Q ⊂ A,
(4.2) µQ = (µA)Q.

Proof. For every λ ∈ E+, from (3.10) we obtain

E((µA)Q, λ) = E(µA, λQ) = E(µ, (λQ)A) = E(µ, λQ) = E(µQ, λ),

the equality (λQ)A = λQ being valid by Corollary 3.8 applied to λQ ∈ E ′Q
⊂ E ′A. Taking here λ = m(r) and letting r ↓ 0 gives (4.2) (cf. the proof of
Corollary 3.7).

Theorem 4.3 (Characteristic property). For µ ∈M+ and A arbitrary,
Uµ

A can be characterized uniquely by the extremal property

Uµ
A

= min
ξ∈ΞA

U ξ,

where ΞA consists of all ξ ∈M+ with

(4.3) U ξ ≥ Uµ n.e. on A.

Proof. Since µA ∈ ΞA by (3.1) (cf. Theorem 3.10), it is enough to estab-
lish

(4.4) Uµ
A ≤ U ξ on Rn,
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where ξ ∈ ΞA is fixed. As UµA is the pointwise limit of an increasing sequence
(Uµ

A
k )k∈N with (µk)k∈N ⊂ E+ suitably chosen (cf. Remark 3.11), it suffices

to verify (4.4) for µ ∈ E+. By (3.2) applied to K ∈ CA, we have UµK ≤ Uµ

on Rn, which together with (4.3) shows that the inequality

Uµ
K ≤ U ξ

holds n.e. on K, hence µK-a.e. because µK ∈ E+
K , and consequently on all

of Rn by the domination principle. On account of Corollary 3.5, letting here
K ↑ A results in (4.4) as required.

Corollary 4.4. For µ ∈M+ and A arbitrary,

(4.5) µA = µA
′

whenever (A \A′) ∪ (A′ \A) is of inner capacity zero.

Proof. Indeed, UµA
′

= Uµ n.e. on A′, hence n.e. on A. Therefore, by The-
orem 4.3, UµA ≤ UµA

′
on Rn. As the same holds with A and A′ interchanged,

(4.5) follows.

Theorem 4.5. For µ ∈ M+ and A arbitrary, UµK ↑ UµA pointwise
on Rn and µK → µA vaguely as K ↑ A. If moreover E(µ) < ∞, then
µK → µA also strongly.

Proof. For µ ∈ E+, this has already been established in Theorem 3.1 and
Corollary 3.5. It thus remains to prove the former assertion for µ ∈M+ \E+.

According to (4.2), for any K,K ′ ∈ CA such that K ⊂ K ′ we have
µK = (µK

′
)K . In view of (3.2), this implies that the net (Uµ

K
)K∈CA is

increasing and majorized by Uµ. By Theorem 2.1, there is therefore ν ∈M+

such that UµK ↑ Uν pointwise on Rn and µK → ν vaguely as K ↑ A. The
proof is completed by showing that ν = µA, or equivalently

E(ν, λ) = E(µ, λA)

for any given λ ∈ E+ (cf. Definition 3.9). Indeed, according to (3.10) applied
to K,

E(µK , λ) = E(µ, λK) for every K ∈ CA,

while UλA is the pointwise limit of the increasing net (Uλ
K

)K∈CA (see Corol-
lary 3.5). Letting K ↑ A, we obtain the required identity by [3, Chapter IV,
Section 1, Theorem 1].

Corollary 4.6. Fix µ ∈ E+ and A ⊂ Rn. For every ε > 0, there exists
K0 ∈ CA with the property ‖µA−µK‖ < ε for all K ∈ CA such that K ⊃ K0.

Theorem 4.7. For A Borel, Theorem 4.5 and Corollary 4.6 remain
valid if CA is replaced by an increasing sequence (Ak)k∈N of Borel sets with
union A.
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Proof. Since for every λ ∈ E+, Uλ
Ak ↑ UλA pointwise on Rn as k → ∞

(see Remark 3.6), the proof runs as above.

The following result can certainly be extended to a general perfect kernel
on a locally compact space, which is, however, outside the scope of this study.

Theorem 4.8. Assume A is the intersection of a lower directed family
(At)t∈T of closed sets. For any µ ∈ E+, µAt → µA strongly and vaguely.

Proof. For µ ∈ E+, µAt is the orthogonal projection of µ onto E+
At

(cf. Theorem 3.1). Since E+
A ⊂ E

+
At′
⊂ E+

At
whenever t′ follows t, the net

(%(µ, E+
At

))t∈T is increasing and majorized by %(µ, E+
A ) < ∞; hence, it is

Cauchy in R. In consequence of [9, Lemma 4.1.1] with H := E , Γ := {µ− ν :
ν ∈ E+

At
}, and λ := µ− µAt ,

‖µAt − µAt′‖2 = ‖(µ− µAt)− (µ− µAt′ )‖2 ≤ %(µ, E+
At′

)2 − %(µ, E+
At

)2.

It follows that the net (µAt)t∈T is strong Cauchy in E+. Being thus strongly
bounded, it is vaguely bounded by [9, Lemma 2.5.1], and therefore has a
vague limit point µ0 ∈M+ according to [3, Chapter III, Section 2, Proposi-
tion 9]. On account of the perfectness of the Riesz kernel, this µ0 is in fact the
unique strong and vague limit of (µAt)t∈T . Consequently, µ0 belongs to E+

At

for every t ∈ T , and hence to E+
A , the intersection of E+

At
over t ∈ T . Thus,

%(µ, E+
A ) ≤ ‖µ− µ0‖ = lim

t
‖µ− µAt‖ = lim

t
%(µ, E+

At
) ≤ %(µ, E+

A ),

which implies µ0 = µA.

The following corollary to Theorem 4.5 will be specified in Theorems 8.6
and 8.7 below.

Corollary 4.9. For µ ∈M+ and A arbitrary,

(4.6) µA(Rn) ≤ µ(Rn).

Proof. Since µK → µA vaguely as K ↑ A, while the map ν 7→ ν(Rn)
is vaguely l.s.c. on M+, it suffices to establish (4.6) for A = K compact.
Consider a closed ball B containing K, and the equilibrium measure γ on B;
then Uγ = 1 on B and Uγ ≤ 1 on Rn [11, Chapter II, Section 3, n◦ 13].
Therefore,

µK(Rn) =
�
Uγ dµK =

�
Uµ

K
dγ ≤

�
Uµ dγ =

�
Uγ dµ ≤ µ(Rn),

the former inequality being valid according to (3.2) (cf. Theorem 3.10).

5. Inner Riesz equilibrium measure. Criteria for its existence.
We assume as above that A is an arbitrary proper subset of Rn with cα(A)
> 0, and denote by ΘA the class of all ν ∈M+ with Uν ≥ 1 n.e. on A.
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Definition 5.1. γA ∈ M+ is said to be an inner equilibrium measure
of A if (its potential UγA is not identically infinite and) (5)

UγA = inf
ν∈ΘA

Uν .

An inner equilibrium measure γA is certainly unique, and it exists only
if ΘA is nonempty. (We shall show in Lemma 5.3 below that the latter
can actually be reversed, and so ΘA 6= ∅ is necessary and sufficient for the
existence of γA.)

Lemma 5.2. Assume that cα(A) <∞. Then γA exists, and moreover

(a) γA(Rn) = E(γA) = cα(A),
(b) S(γA) ⊂ A,
(c) UγA = 1 n.e. on A,
(d) UγA ≤ 1 on Rn.
This γA is the unique solution to the problem of minimizing the energy over
ΘA ∩ E+, and hence it is characterized uniquely within E+ by (a) and (c).

Proof. This is obtained from [11, Chapter II, Section 2, n◦ 7] and [11,
Lemma 4.5]. See also [9, Section 4.1].

Lemma 5.3. For A arbitrary, assume that ΘA 6= ∅. Then γA exists.
Furthermore, it is cα-absolutely continuous and has the properties S(γA) ⊂ A
and (6)

UγA = 1 n.e. on A,(5.1)
UγA ≤ 1 on Rn,(5.2)
γK → γA vaguely as K ↑ A,(5.3)
UγK ↑ UγA pointwise on Rn as K ↑ A.(5.4)

Proof. Fix ξ ∈ M+ with U ξ ≥ 1 n.e. on A. Then for any K,K ′ ∈ CA
such that K ⊂ K ′, we have UγK = UγK′ ≤ U ξ n.e. on K (cf. Lemma 5.2(c)),
and hence γK-a.e. The domination principle therefore shows that the net
(UγK )K∈CA is pointwise increasing on Rn and majorized by U ξ. According
to Theorem 2.1, there exists ν0 ∈M+ such that UγK ↑ Uν0 pointwise on Rn
and γK → ν0 vaguely as K ↑ A. Hence, Uν0 ≤ 1 on Rn because UγK ≤ 1
on Rn by Lemma 5.2(d).

We claim that Uν0 = 1 n.e. on A, or equivalently n.e. on every K ∈ CA.
We thus need to prove cα(E) = 0, where E := {x ∈ K : Uν0(x) < 1}. But

(5) One can introduce a concept of inner balayage for positive α-superharmonic func-
tions on Rn, generalizing that by Cartan for α = 2 [6, p. 257], and then UγA (if γA exists)
will be thought of as an inner balayage of f ≡ 1 to A. Being however mainly concerned
with the existence of γA, we drop this part of the analysis.

(6) Relation (5.1) will be specified below (cf. Lemma 6.11 and Theorem 6.6). See also
Theorem 7.2, which establishes a detailed description of UγA and S(γA) for A closed.
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this is obvious in view of the relations E ⊂ E′ := {x ∈ K : UγK (x) < 1}
and cα(E′) = 0, the latter being seen from Lemma 5.2(c).

Thus, ν0 ∈ ΘA. We assert that this ν0 actually serves as an inner equilib-
rium measure of A. According to Definition 5.1, it is enough to verify that
Uν0 ≤ Uν on Rn for every ν ∈ M+ with Uν ≥ 1 n.e. on A. Since then
UγK ≤ Uν on Rn for every K ∈ CA (see above), the required inequality is
obtained by letting K ↑ A.

It has thus been proven that γA := ν0 exists and satisfies (5.1)–(5.4).
Next, it follows from (5.3) that S(γA) ⊂ A, M+(A) being vaguely closed.
Finally, since the restriction of γA to any compact subset of Rn is of finite
energy because of (5.2), γA is cα-absolutely continuous.

Corollary 5.4. For A closed, assume that there is an cα-absolutely
continuous measure γ̌ ∈ M+

A with U γ̌ = 1 n.e. on A. Then γA exists, and
moreover γA = γ̌.

Proof. Since γ̌ ∈ ΘA, γA exists according to the preceding lemma. Fur-
thermore, γA is cα-absolutely continuous, supported by A, and satisfies (5.1).
Then necessarily γA = γ̌, because any two cα-absolutely continuous measures
of the class M+

A coincide whenever their potentials are equal n.e. on A (cf.
[11, p. 178, Remark]).

In the case where A is Borel, Theorem 5.5 below is [11, Theorem 5.1].
However, [11, Theorem 5.1] has not been completely justified, because the
proof of its necessity part is based on the concept of balayage, introduced
in [11, Chapter IV, Section 6, n◦ 25] by means of the integral representa-
tion (1.1) (see the Introduction for details). Applying the theory of inner
Riesz balayage, developed in Section 3 above, we fix the gap in [11, proof of
Theorem 5.1], and moreover we strengthen [11, Theorem 5.1] to A arbitrary.

Theorem 5.5. For A arbitrary, the following two assertions are equiva-
lent.

(i) There exists an inner equilibrium measure γA.
(ii) If Rk := {x ∈ Rn : qk ≤ |x| < qk+1}, where q ∈ (1,∞), then

(5.5)
∑
k∈N

cα(A ∩Rk)
qk(n−α)

<∞.

Proof. Assuming first that (ii) holds, write γk := γAk , where Ak :=
A ∩Rk; this γAk exists according to Lemma 5.2. It is seen from Lemma 5.3
that (i) will follow once we establish

(5.6) ξ :=
∑
k∈N

γk ∈ ΘA.
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To this end, we first observe that U ξ 6≡ ∞, or equivalently (cf. (2.1))

I :=
�

|x|≥q

dξ(x)

|x|n−α
<∞.

Indeed,

I =
∑
k∈N

�

Rk

dξ(x)

|x|n−α
≤
∑
k∈N

� dγk(x)

|x|n−α
≤
∑
k∈N

γk(Rn)

qk(n−α)
=
∑
k∈N

cα(Ak)

qk(n−α)
,

the last equality being valid by Lemma 5.2(a); therefore, I < ∞ by (5.5).
The proof of (5.6) is thus reduced to establishing U ξ ≥ 1 n.e. on A. Since
the sets Rk, k ∈ N, are Borel, this follows from U ξ ≥ Uγk = 1 n.e. on A∩Rk
by applying Lemma 2.3.

Assuming now that γA exists, we complete the proof by showing

S1 :=
∑
k∈N

cα(A2k)

q2k(n−α)
<∞, S2 :=

∑
k∈N

cα(A2k−1)

q(2k−1)(n−α)
<∞

(cf. (5.5)). Since both these series can be handled in the same manner, we
shall establish S1 <∞. Write

A′ :=
⋃
k∈N

A2k,

γ′ := γA|A′ , γ
′′ := γA − γ′, and

γ̃ := γ′ + (γ′′)A
′
,

where the existence of the inner balayage (γ′′)A
′ (cf. Definition 3.9) is justified

by Theorem 3.10 (compare with [11, proof of Theorem 5.1]). According to
(3.1) (cf. Theorem 3.10), U (γ′′)A

′
= Uγ

′′ n.e. on A′, and therefore

(5.7) U γ̃ = Uγ
′+(γ′′)A

′
= Uγ

′+γ′′ = UγA = 1 n.e. on A′.

Noting that∑
k∈N

γ̃(A2k

)
q(2k+1)(n−α)

≤
∑
k∈N

�

R2k

dγ̃(x)

|x|n−α
≤

�

|x|>1

dγ̃(x)

|x|n−α
<∞,

the last inequality being valid by (2.1), we obtain∑
k∈N

γ̃(A2k)

q2k(n−α)
<∞.

Hence, S1 <∞ will follow if we show

cα(A2k) ≤Mγ̃(A2k) for all k ∈ N,
where M ∈ (0,∞) is independent of k. The proof of this is based on (5.7)
and runs in the same manner as in [11, pp. 282–283].
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Remark 5.6. The finiteness of cα(A) is sufficient for the existence of an
inner equilibrium measure γA (cf. Lemma 5.2), but not necessary. This can
be seen by comparing Theorem 5.5 with the following assertion.

Lemma 5.7 (see [11, Lemma 5.5]). For A Borel, cα(A) <∞ if and only
if ∑

k∈N

cα(A ∩Rk)
q2k(n−α)

<∞,

where Rk, k ∈ N, are defined in Theorem 5.5 and q ∈ (1,∞).
The next example can be obtained from Theorem 5.5 and Lemma 5.7 by

analyzing estimates in [11, Chapter V, Section 1, Example].
Example 5.8. Let n = 3 and α = 2. Define A to be a rotation body

(5.8) A := {x ∈ R3 : 0 ≤ x1 <∞, x2
2 + x2

3 ≤ %2(x1)},
where % is given by one of the following three formulae:

%(x1) = x−s1 with s ∈ [0,∞),(5.9)
%(x1) = exp(−xs1) with s ∈ (0, 1],(5.10)
%(x1) = exp(−xs1) with s ∈ (1,∞).(5.11)

Then γA does not exist if % is defined by (5.9), γA exists but c2(A) = ∞ if
% is given by (5.10) (see Figure 1), and finally c2(A) <∞ if (5.11) holds.

Fig. 1. A := {0 ≤ x1 <∞, x22 + x23 ≤ ρ2(x1)} with ρ(x1) = exp(−x1)

6. Wiener type criterion of inner α-irregularity

Definition 6.1. A point y ∈ Rn is said to be inner α-irregular for A if
y ∈ A and εAy 6= εy, where εAy is the inner balayage of εy to A (cf. Defini-
tion 3.9). All other points of A are said to be inner α-regular for A.
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Remark 6.2. For every y /∈ A, we have εAy ∈ E+, and therefore εAy 6= εy.
Indeed, in view of (3.2) (cf. Theorem 3.10),

U ε
A
y (x) ≤ U εy(x) = |x− y|α−n ≤ max

z∈A
|z − y|α−n <∞ for all x ∈ A.

Since εAy (Rn) ≤ 1 according to (4.6), E(εAy ) <∞ follows.

Lemma 6.3. y is inner α-regular for A (if and) only if

(6.1) Uµ
A

(y) = Uµ(y) for every µ ∈M+.

Proof. If y is inner α-regular for A, then (4.1) applied to θ = εy gives

Uµ
A

(y) = E(µA, εy) = E(µ, εAy ) = E(µ, εy) = Uµ(y)

for every µ ∈M+, which is our claim.

Let AI consist of all inner α-irregular points for A.

Theorem 6.4 (Wiener type criterion). y ∈ AI if and only if

(6.2)
∑
k∈N

cα(Ak)

qk(n−α)
<∞,

where Ak := A ∩ {x ∈ Rn : qk+1 < |x− y| ≤ qk} and q ∈ (0, 1).

Theorem 6.4 follows directly from Lemmas 6.7–6.9 below. Theorem 6.4
implies, in turn, the next two assertions (see Section 6.2 for the proof of the
latter).

Corollary 6.5. AI ⊂ ∂A.

Theorem 6.6. cα(AI ∩A) = 0.

6.1. Auxiliary assertions. For any y ∈ Rn, define the inversion Jy
with respect to S(y, 1) mapping each point x 6= y to the point x∗ on the ray
through x issuing from y which is uniquely determined by

|x− y| · |x∗ − y| = 1.

This is a homeomorphism of Rn \ {y} onto itself; furthermore,

(6.3) |x∗ − z∗| = |x− z|
|x− y| |z − y|

for all x, z ∈ Rn \ {y}.

It can be extended to a homeomorphism of the one-point compactification
Rn of Rn onto itself such that y and the point at infinity are mapped to each
other.

In Lemmas 6.7–6.9 below, y ∈ Rn is fixed and A∗ the Jy-image of A\{y}.

Lemma 6.7. Relation (6.2) holds if and only if an inner equilibrium mea-
sure γA∗ of A∗ exists.
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Proof. Let q ∈ (0, 1) and Ak be as in Theorem 6.4. It follows from (6.3)
that

q−2k|x− z| ≤ |x∗ − z∗| ≤ q−2k−2|x− z| for any x, z ∈ Ak,
and hence, by [11, Remark to Theorem 2.9],

(6.4) q−2k(n−α)cα(Ak) ≤ cα(A∗k) ≤ q−(2k+2)(n−α)cα(Ak),

where

A∗k := Jy(Ak) = A∗ ∩ {x ∈ Rn : q−k ≤ |x− y| < q−k−1}.
Therefore, (6.2) holds if and only if∑

k∈N
qk(n−α)cα(A∗k) <∞,

which according to Theorem 5.5 is equivalent to the existence of γA∗ .

To each ν ∈ M+ with ν({y}) = 0 we assign the Kelvin transform ν∗ =
Kyν = Ky(ν) ∈M+ (see [12] or [11, Chapter IV, Section 5, n◦ 19]) by means
of

(6.5) dν∗(x∗) = |x− y|α−n dν(x), where x∗ := Jy(x) ∈ Rn.

Then Ky is an involution, i.e. Ky(Kyν) = ν, which implies in view of (6.5)
that

(6.6) ν(Rn) = Uν
∗
(y).

Next, combining (6.5) and (6.3) yields

(6.7) Uν
∗
(x∗) = |x− y|n−αUν(x) for all x∗ ∈ Rn,

and therefore

(6.8) E(µ∗, ν∗) = E(µ, ν)

for every µ ∈M+ with µ({y}) = 0. Equality (6.8) is obtained by multiplying
(6.5) (with µ in place of ν) by (6.7), and then integrating with respect to
dµ(x) over Rn.

Lemma 6.8. Assume γA∗ exists. For its Kelvin transform (γA∗)
∗ =

KyγA∗, we have

(6.9) (γA∗)
∗ = εAy ,

and hence εAy is cα-absolutely continuous along with γA∗.

Proof. Assume that A 63 y, which certainly involves no loss of generality
(cf. Corollary 4.4). Then Jy is an order-preserving one-to-one mapping of CA
onto CA∗ . In view of the cα-absolute continuity of inner equilibrium measure
(cf. Lemma 5.3), one can consider the Kelvin transforms (γA∗)

∗ = KyγA∗
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and (γK∗)
∗ = KyγK∗ for every K∗ := Jy(K) ∈ CA∗ . It follows from (5.4)

applied to A∗, and (6.7) applied to each of γK∗ and γA∗ , that

(6.10) U (γK∗ )∗ ↑ U (γA∗ )∗ pointwise on Rn (as K∗ ↑ A∗).

Also observe that (γK∗)
∗ ∈ E+

K , which is seen from (6.8) with µ = ν = γK∗ .
We begin by establishing

(6.11) (γK∗)
∗ = εKy for every K ∈ CA.

Combining (6.7) applied to γK∗ with (5.1) applied to K∗ gives (7)

U (γK∗ )∗(x) = |x∗ − y|n−αUγK∗ (x∗) = |x∗ − y|n−α

= |x− y|α−n = U εy(x) n.e. on K,

which is (4.3) with ξ = (γK∗)
∗ and µ = εy. According to Theorem 4.3, (6.11)

will follow once we verify that U ξ ≥ U (γK∗ )∗ on Rn for any ξ ∈M+ with

U ξ ≥ U εy n.e. on K.

As seen from the last two displays, the inequality in question holds, indeed,
n.e. on K, hence (γK∗)

∗-a.e. because (γK∗)
∗ ∈ E+

K , and therefore, by the
domination principle, on all of Rn, as required.

But, according to Theorem 4.5 with µ = εy,

U ε
K
y ↑ U εAy pointwise on Rn (as K ↑ A).

Now substituting (6.11) into this display, and then comparing the relation
thus obtained with (6.10), we get (6.9).

Lemma 6.9. If γA∗ does not exist, then

εAy = εy,

and hence y is inner α-regular for A.

Proof. Assuming γA∗ does not exist, we begin by observing that then
εAy ({y}) > 0. Indeed, if not, then the Kelvin transform (εAy )∗ = KyεAy exists
and has the potential equal to 1 n.e. on A∗, the latter being seen by applying
(3.1) and (6.7) to εy and εAy , respectively. Hence, (εAy )∗ ∈ ΘA∗ , which by
Lemma 5.3 (applied to A∗) contradicts our assumption.

We proceed to show that the relation εAy ({y}) > 0 thus obtained implies
εAy = εy. Indeed, if not, then

εAy = cεy + χ,

(7) Here we have used the fact that for any E ⊂ Rn, cα(E) = 0 if and only if
cα(E

∗) = 0, where E∗ is the Jy-image of E \ {y} [11, p. 261]. This also implies that ν∗ is
cα-absolutely continuous whenever ν is so.
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where 0 < c < 1 and χ ∈ M+ is a nonzero measure with χ({y}) = 0, the
inequality c < 1 being clear from (4.6) applied to εy. But then

|x− y|α−n = U εy(x) = U ε
A
y (x) = c|x− y|α−n + Uχ(x) n.e. on A,

and consequently

Uχ1(x) = |x− y|α−n n.e. on A, where χ1 := χ/(1− c).
Since χ1({y}) = 0, (6.7) applied to χ1 yields U (χ1)∗ = 1 n.e. on A∗, and hence
(χ1)∗ ∈ ΘA∗ , which in view of Lemma 5.3 again contradicts our hypothesis
that γA∗ does not exist.

Theorem 6.10. A point y ∈ A is inner α-irregular for A if and only if
γA∗ exists, where A∗ is the Jy-image of A\{y}. Moreover, (6.9) then holds.

Proof. This follows by combining Lemmas 6.8 and 6.9.

6.2. Proof of Theorem 6.6. We shall first establish the following
lemma.

Lemma 6.11. If γA exists, then

UγA = 1 on A \AI .

Proof. Fix x ∈ A \ AI and y ∈ Rn, y 6= x, and write r := |x − y|. For
E ⊂ Rn, let E∗ denote the Jy-image of E \ {y}. Then

M−1cα(E) ≤ cα(E∗) ≤Mcα(E) for every E ⊂ B(x, r/2),

M ∈ (1,∞) being independent of E (cf. (6.4)). By the Wiener type criterion,
this implies that x∗ := Jy(x) is inner α-regular forA∗. Hence, by (6.1) applied
to εy,

(6.12) U ε
A∗
y (x∗) = U εy(x∗) = |x∗ − y|α−n.

Assume that γA exists. According to Lemma 6.8 with A and A∗ inter-
changed,

γA = KyεA
∗

y ,

and UγA(x) = 1 is obtained by combining (6.12) with (6.7) applied to
ν = εA

∗
y .

Write A(k) := A∩B(0, k). Theorem 6.6 will be established once we show

(6.13) cα(AI ∩A(k)) = 0 for every k ∈ N.

By Lemma 6.11 applied to A(k), UγA(k) = 1 on A(k) \ A(k)
I . Comparing this

with (5.1) applied to A(k) implies that A(k)
I ∩ A(k) has inner capacity zero.

But it is clear from the Wiener type criterion that AI ∩ A(k) = A
(k)
I ∩ A(k),

and (6.13) follows.
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7. Description of UγA and S(γA) for A closed. Define the reduced
kernel Ă [11, p. 164] of A as the set of all x ∈ A such that

cα(B(x, r) ∩A
)
> 0 for any r > 0.

Assuming that A is closed and γA exists, we provide in Theorem 7.2
below a detailed description of UγA and S(γA). When doing this, we can
assume without any loss of generality that A = Ă. Indeed, Ă is closed along
with A. Furthermore, since cα(A \ Ă) = 0, γA serves simultaneously as γĂ,
and also AI = (Ă)I .

Lemma 7.1. Under these hypotheses, assume moreover that α = 2. Then
there is a unique connected component ∆ of the (open) set Ac such that γÃ
exists, where

Ã := ∆c ( ⊃ A).

Proof. For A compact, ∆ is in fact the (unique) unbounded connected
component of Ac. For A noncompact, fix any y ∈ Ac and consider the Jy-
image Ky of ClRn A. Since γA exists, Theorem 6.10 with A and A∗ inter-
changed shows that y is a 2-irregular point of Ky. By [4, Chapter VIII,
Section 6, Remark], there is therefore a unique connected component D of
the (open) set Kc

y such that y is 2-irregular for Dc, and the Jy-image ∆ of
this D is as claimed.

Theorem 7.2. Under the above mentioned hypotheses and notation, (5.1)
and (5.2) can be specified as follows: if α < 2, then

UγA = 1 on A \AI ,(7.1)
UγA < 1 on Ac,(7.2)

while for α = 2 (8),

UγA = 1 on Ã \ ÃI ,(7.3)

UγA < 1 on Ãc.(7.4)

Furthermore,

(7.5) S(γA) =

{
A if α < 2,

∂Ã if α = 2.

Proof. Assume first that α < 2. Noting that (7.1) has been established
in Lemma 6.11, we first prove

(7.6) UγA < 1 on S(γA)c.

(8) Observe that ÃI ⊂ AI , which is seen from Corollary 6.5 and the inclusion ∂Ã ⊂ ∂A.
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Suppose that this fails for some x0 ∈ S(γA)c. Then, according to (5.2),

(7.7) UγA(x0) = 1.

Choose ε > 0 so that B(x0, ε) ⊂ S(γA)c. Since UγA is α-harmonic on B(x0, ε)
[11, Chapter I, Section 6, n◦ 20] and continuous on B(x0, ε), we conclude
from (5.2) and (7.7) with the aid of [11, Theorem 1.28] that UγA = 1 a.e.
on Rn. By the definition of α-superharmonicity, this yields UγA = 1 on Rn.
Hence, γA serves as an inner equilibrium measure on the whole of Rn, which
is impossible (e.g. by Theorem 5.5).

To prove the former equality in (7.5), suppose to the contrary that there
is x1 ∈ A such that x1 6∈ S(γA), and consider an open neighborhood V ⊂
S(γA)c of x1. In view of (7.6), UγA < 1 on V . On the other hand, since
cα(V ∩ A) > 0 because of the assumption A = Ă, we see from (5.1) that
UγA(x2) = 1 for some x2 ∈ V ∩ A. The contradiction obtained shows that,
indeed, S(γA) = A. Substituting this equality into (7.6) establishes (7.2).

In the rest of the proof, α = 2. We first establish (7.4) and the latter
relation in (7.5) for γÃ in place of γA. (Relation (7.3) with γÃ in place of γA
holds according to Lemma 6.11.) Suppose that (7.4) fails for some x3 ∈ Ãc.
By (5.2) applied to Ã, the function UγÃ then takes its maximum value 1
at x3, and hence everywhere on Ãc, UγÃ being harmonic on the domain Ãc.
This combined with (5.1) gives UγÃ = 1 n.e. on Rn, which is impossible (e.g.
by Theorem 5.5).

By use of [11, Theorem 1.12], we observe from (5.1) applied to Ã that
the restriction of γÃ to the interior of Ã equals 0, and so S(γÃ) ⊂ ∂Ã.
For the converse, suppose to the contrary that there is x4 ∈ ∂Ã such that
x4 /∈ S(γÃ). Choose an open neighborhood V1 of x4 so that V1 ∩ S(γÃ) = ∅.
Since c2(V1 ∩ Ã) > 0, UγÃ takes the value 1 at some point in V1, and hence
everywhere on V1, again by the maximum principle. This contradicts (7.4).

The proof is completed by noting that γA = γÃ. Indeed, as ∂Ã ⊂ A ⊂ Ã,
both γA and γÃ are supported by A and have the potentials equal to 1 n.e.
on A. Being cα-absolutely continuous by Lemma 5.3, these measures must
be equal according to Corollary 5.4.

8. Integral representation of inner swept measure and applica-
tions. Throughout this section we assume that

Ω := A
c 6= ∅.

8.1. Integral representation of inner swept measure. Lemma 8.1
and Theorem 8.2 below strengthen [10, Lemma 3.16, Theorem 3.17], dealing
with balayage onto closed sets. For the notion of a µ-adequate family of
measures, see [3, Chapter V, Section 3, n◦ 1, Definition 1].
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Lemma 8.1. For every µ ∈M+
Ω, the family (εAy )y∈Ω is µ-adequate; that

is,

(a) for any f ∈ C0(Rn), the function y 7→
	
f dεAy is µ-integrable on Ω,

(b) the map y 7→ εAy is vaguely µ-measurable on Ω.

Proof. The proof of (a) repeats word-for-word the proof of Lemma
3.16(a) in [10], except for applying our relations (3.10) and (4.6) instead
of [10, (3.11), (3.18)], the concept of balayage being now understood as de-
scribed in Section 3 above. Since UµA is finite and continuous on Ω, the
inner swept measure µA being supported by A, (b) can likewise be obtained
by an adaptation of [10, proof of Lemma 3.16(b)].

Theorem 8.2. For any µ ∈M+
Ω, the integral representation (1.1) holds.

Proof. Fix µ ∈ M+
Ω. Since the family (εAy )y∈Ω is µ-adequate, according

to [3, Chapter V, Section 3, n◦ 2] we can define the Radon measure ν =	
εAy dµ(y) on Rn by means of the formula

�
f(z) dν(z) =

�(�
f(z) dεAy (z)

)
dµ(y) for every f ∈ C0(Rn).

According to [3, Chapter V, Section 3, Proposition 1], this identity remains
valid when f is allowed to be any positive l.s.c. function on Rn. For given
x ∈ Rn we apply this to f(z) = |x− z|α−n, z ∈ Rn:

(8.1) Uν(x) =
�(�
|x− z|α−n dεAy (z)

)
dµ(y) =

�
U ε

A
y (x) dµ(y).

To establish (1.1), it remains to show that ν = µA, or equivalently (cf.
Definition 3.9)

E(ν, λ) = E(µ, λA) for every λ ∈ E+.

Applying (3.10) with µ = εy and (8.1), by Fubini’s theorem we get

E(ν, λ) =
�
Uν(x) dλ(x) =

�(�
U ε

A
y (x) dµ(y)

)
dλ(x)

=
�(�

U ε
A
y (x) dλ(x)

)
dµ(y) =

�(�
U εy(x) dλA(x)

)
dµ(y)

=
�(�
|x− y|α−n dµ(y)

)
dλA(x) =

�
Uµ dλA = E(µ, λA),

which is the required identity.

Corollary 8.3. For any µ ∈M+
Ω, µ

A is cα-absolutely continuous.

Proof. Consider a compact setK⊂A with cα(K)=0. For every y∈Ω, the
swept measure εAy has finite energy (see Remark 6.2), and hence εAy (K) = 0.
Applying [3, Chapter V, Section 3, Theorem 1] we obtain, by (1.1),�

1K dµ
A =

�
dµ(y)

�
1K(x) dεAy (x) = 0,

and hence µA is indeed cα-absolutely continuous.
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Corollary 8.4. For any µ ∈ M+
Ω and A closed, µA is uniquely deter-

mined by (3.1) among the cα-absolutely continuous measures of the class M+
A.

Proof. This follows from Corollary 8.3 in view of [11, p. 178, Remark].

8.2. Description of the support of the inner swept measure. Let
A be closed and µ ∈ M+

Ω. To establish a description of S(µA), we assume
that A coincides with its reduced kernel Ă, while µ is carried by a connected
component Ω0 of Ω. This involves no loss of generality, as can be seen from
(3.14) and (4.5) (with A′ = Ă).

Theorem 8.5. Under these hypotheses,

(8.2) S(µA) =

{
A if α < 2,

∂Ω0 if α = 2.

Proof. For any y ∈ Ω0, we denote by Ky the Jy-image of ClRn A, and
by γKy the equilibrium measure on the (compact) set Ky. Since the Jy-image
of any E ⊂ A with cα(E) = 0 again has zero inner capacity (cf. footnote 7),
Ky coincides with its reduced kernel. Thus, S(γKy) = Ky for α < 2, while
for α = 2, S(γKy) coincides with the outer boundary of Ky, that is, the
boundary of the unbounded connected component of Kc

y (see (7.5) or [11,
Chapter II, Section 3, n◦ 13]). Now applying the integral representation (1.1)
(which holds under the stated hypotheses, see Theorem 8.2) and the fact that
for every y ∈ Ω0, εAy is the Kelvin transform of γKy (see Lemma 6.8), we
obtain (8.2).

8.3. Further criteria for the existence of the inner equilibrium
measure. Finally, we provide necessary and sufficient conditions for the
existence of γA, given in terms of µA(Rn) with µ suitably chosen. Since γA
and γĂ exist or do not exist simultaneously, we can certainly assume that
A = Ă.

Theorem 8.6. γA exists if there is a measure µ ∈M+
Ω with

(8.3) µA(Rn) < µ(Rn).

Proof. Assume that (8.3) holds for some µ ∈ M+
Ω, and suppose on the

contrary that γA does not exist. Fix y ∈ Ω and consider the Jy-image A∗
of A; then, according to Lemma 6.9 with A and A∗ interchanged, y is inner
α-regular for A∗. According to Lemma 6.11, this gives

(8.4) UγA∗ (y) = 1.

(Note that an inner equilibrium measure γA∗ exists, A∗ being relatively com-
pact.) On the other hand, for the Kelvin transform (γA∗)

∗ = KyγA∗ of γA∗ ,
according to Lemma 6.8 we have

(γA∗)
∗ = εAy .
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Therefore, applying (6.6) to ν = εAy , in view of (8.4) we get

εAy (Rn) = UγA∗ (y) = 1.

Substituting this now into (1.1) (which holds according to Theorem 8.2) and
applying [3, Chapter V, Section 3, Theorem 1], we obtain

µA(Rn) =
�
1 dµA =

�
dµ(y)

�
1(x) dεAy (x) =

�
1 dµ = µ(Rn),

which, however, contradicts (8.3).

For A closed, Theorem 8.6 can be reversed.

Theorem 8.7. For A closed, γA exists if and only if (8.3) holds for some
µ ∈M+

Ω. Actually, if γA exists, then (8.3) holds for every nonzero µ ∈M+
Ωα

,
where

Ωα :=

{
Ω if α < 2,

∆ if α = 2,

∆ being defined in Lemma 7.1.

Proof. In view of Theorem 8.6, it is enough to establish the latter part
of the theorem. Assume γA exists and fix any nonzero µ ∈ M+

Ωα
. By (7.2)

and (7.4),

(8.5) UγA < 1 on Ωα.

Since both γA and µA are cα-absolutely continuous (see Lemma 5.3 and
Corollary 8.3, respectively) and supported by A, from (5.1), (3.1), and (8.5)
we obtain

µA(Rn) =
�
UγA dµA =

�
Uµ

A
dγA =

�
Uµ dγA =

�
UγA dµ < µ(Ωα) = µ(Rn),

which is (8.3).

Example 8.8. Let n = 3, α = 2, and let A be the rotation body defined
by (5.8). Then

µA(R3) = µ(R3) for every µ ∈M+
Ac

provided that % in (5.8) is given by (5.9), and

µA(R3) < µ(R3) for every nonzero µ ∈M+
Ac

whenever (5.10) or (5.11) holds (see Figure 1). This follows by combining
Theorems 8.6, 8.7 and Corollary 4.9 with Example 5.8.
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