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EXACT WEAK LAWS OF LARGE NUMBERS WITH
APPLICATIONS TO RATIOS OF RANDOM VARIABLES

Abstract. We study convergence in probability of weighted sums of inde-
pendent random variables which are not necessarily identically distributed.
The results obtained are applied to ratios of independent random variables
and ratios of smallest order statistics.

1. Introduction. Let (Rn)n∈N be a sequence of independent random
variables with the same distribution as the random variable R. It is well
known (see [1], [3] and [6] for details) that if ER = 0 or ER =∞, there are
no sequences (Mn)n∈N such that 1

Mn

∑n
k=1Rk → 1 almost surely as n→∞.

Therefore it is a natural problem to find sequences (an)n∈N and (bn)n∈N
of real numbers such that 1

bn

∑n
k=1 akRk → 1 almost surely as n → ∞.

Theorems of this kind are called exact strong law of large numbers, or weak
exact laws of large numbers if we consider convergence in probability instead
of almost sure convergence. We refer the reader to [1], [3] and [6] for details
and further references on this topic.

Random variables with infinite mean arise in a natural way when we
study the ratios of independent random variables or ratios of smallest order
statistics. Exact strong laws of large numbers in such cases have recently
been studied in [7] and [8].

Weak exact laws of large numbers for ratios of uniform random variables
and order statistics from the uniform distribution were explored in [2]. The
most recent results on weak exact laws may be found in [9] and [10]. Our goal
is to prove a general weak exact law for independent random variables which
are not necessarily identically distributed, and apply this result to ratios
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of independent random variables with arbitrary distribution satisfying some
mild conditions and to ratios of smallest order statistics.

2. Main result. Throughout, FX(x) = P(X ≤ x) will denote the distri-
bution function of a random variable X and FX(x) = 1−FX(x) its survival
function. We shall also use the standard notation lg(x) = log(max(e, x))
where log is the logarithm to the natural base.

We shall use the notion of slowly varying function; let us recall the defi-
nition (see [4] for details).

Definition 2.1. Let a ∈ R. A positive measurable function L : [a,+∞)
→ R is said to be slowly varying at infinity if

lim
x→∞

L(tx)

L(x)
= 1 for all t > 0.

The main examples and properties of slowly varying functions may be
found in [4, p. 16].

Let us state the main result of this section.

Theorem 2.1. Let (Rn)n∈N be a sequence of independent nonnegative
random variables with distribution functions FRn(x) such that FRn(x)/FR(x)
→ 1 as n → ∞, uniformly on [x0,∞) for some x0 ≥ 0. Here FR(x) is the
distribution of some nonnegative random variable R such that xFR(x) →
M > 0 as x → ∞. Then for all α > −1 and any slowly varying function L
we have

1

bn

n∑
k=1

akRk
P→ M

α+ 1
as n→∞,

where an = nαL(n) and bn = nα+1L(n) lg n.

Proof. The proof is based on [5, Theorem 3.3, p. 274] and the ideas of [2].
Let ε > 0. From the convergence xFRn(x) → M it follows that there

exists x(ε) such that for x ≥ x(ε),
M − ε
x

≤ FR(x) ≤
M + ε

x
.

From the uniform convergence FRn(x)/FR(x) → 1 there exists n0 = n0(ε)
such that for n ≥ n0,∣∣∣∣FRn(x)

FR(x)
− 1

∣∣∣∣ ≤ ε for all x ∈ [x0,∞).

Finally, for n ≥ n0 and x ≥ x1(ε) = max(x0, x(ε)),

(2.1)
(1− ε)(M − ε)

x
≤ FRn(x) ≤

(1 + ε)(M + ε)

x
.
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By [4, Theorem 1.5.3],

sup1≤k≤n ak

bn
≤
nα sup1≤k≤n L(k)

nα+1L(n) lg n
→ 0 as n→∞.

Therefore the n0 may be chosen in such a way that bn/ak ≥ x1(ε) for all
1 ≤ k ≤ n and n ≥ n0.

First we have to check that
n∑
k=1

P
(
Rk >

bn
ak

)
→ 0 as n→∞.

Since bn → ∞, we have
∑n0−1

k=1 P(Rk > bn/ak) → 0. By the version of the
Karamata theorem for sequences (see [2], [4]), we have

(2.2) lim
n→∞

∑n
k=1 k

αL(k)

nα+1L(n)
=

1

α+ 1
.

Therefore, from (2.1) we get

n∑
k=n0

P(Rk > bn/ak) =
n∑

k=n0

FRk
(bn/ak) ≤

(1 + ε)(M + ε)

bn

n∑
k=n0

ak

≤
(1 + ε)(M + ε)

∑n
k=1 k

αL(k)

nα+1L(n) lg n
→ 0.

Now, we have to check the variance term in [5, Theorem 3.3, p. 274], i.e.

(2.3)
n∑
k=1

Var

(
akRk
bn

I
(
akRk
bn
≤ 1

))
→ 0 as n→∞.

First observe that for fixed k ≤ n0 − 1 the random variables

akRk
bn

I
(
akRk
bn
≤ 1

)
are bounded by 1 and almost surely convergent to 0 as n→∞. Thus

(2.4) E
(
akRk
bn

)2

I
(
akRk
bn
≤ 1

)
→ 0

and in consequence

n0−1∑
k=1

Var

(
akRk
bn

I((akRk/bn) ≤ 1)

)
→ 0 as n→∞.
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Moreover, by (2.1) we have∑n
k=n0

a2kER2
kI(Rk ≤ bn/ak)
b2n

=
2

b2n

n∑
k=n0

a2k

(x1(ε)�

0

tFRk
(t) dt+

bn/ak�

x1(ε)

tFRk
(t) dt

)

≤ 2

b2n

n∑
k=1

a2k
[
(x1(ε))

2 + (bn/ak − x1(ε))(1 + ε)(M + ε)
]

≤ C
(

1

b2n

n∑
k=1

a2k +
1

bn

n∑
k=1

ak

)
→ 0,

and thus by (2.4) we get (2.3).
Now it remains to prove that

(2.5) lim
n→∞

1

bn

n∑
k=1

akERkI(Rk ≤ bn/ak) =
M

α+ 1
.

By the same argument as before,
n0−1∑
k=1

E
(
akRk
bn

I
(
akRk
bn
≤ 1

))
→ 0 as n→∞.

Observe that for k ≥ n0 we have∑n
k=n0

akERkI(Rk ≤ bn/ak)
bn

=
1

bn

n∑
k=n0

ak

(x1(ε)�

0

FRk
(t)dt+

bn/ak�

x1(ε)

FRk
(t)dt

)

≤ 1

bn

n∑
k=n0

ak[x1(ε) + (1 + ε)(M + ε)(lg(bn/ak)− lg x1(ε))].

Note that 1
bn

∑n
k=n0

ak → 0 and
lg(bn/ak) = (α+ 1) lg n+ lgL(n) + lg lg n− α lg k − lgL(k).

We now examine the five terms of 1
bn

∑n
k=n0

lg(bn/ak). By using (2.2), we
get

(α+ 1) lg n

bn

n∑
k=n0

ak =
(α+ 1) lg n

nα+1L(n) lg n

n∑
k=n0

kαL(k)→ 1,

lgL(n)

bn

n∑
k=n0

ak =
lgL(n)

nα+1L(n) lg n

n∑
k=n0

kαL(k)→ 0,
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lg lgn

bn

n∑
k=n0

ak =
lg lg n

nα+1L(n) lg n

n∑
k=n0

kαL(k)→ 0,

α

bn

n∑
k=n0

ak lg k =
α

nα+1L(n) lg n

n∑
k=n0

kαL(k) lg k → α

α+ 1
,

and finally∑n
k=n0

ak lgL(k)

bn
=

∑n
k=n0

kαL(k) lgL(k)

nα+1L(n) lg n

=
lgL(n)

lg n

∑n
k=n0

kαL(k) lgL(k)

nα+1L(n) lgL(n)
→ 0.

Therefore

lim sup
n→∞

1

bn

n∑
k=n0

akERkI(Rk ≤ bn/ak) ≤
(1 + ε)(M + ε)

α+ 1
.

Similarly we prove

lim inf
n→∞

1

bn

n∑
k=n0

akERkI(Rk ≤ bn/ak) ≥
(1− ε)(M − ε)

α+ 1
.

Since ε was arbitrary, we get (2.5) and the proof is complete.

3. Applications and examples. In this section we present some ap-
plications of our weak exact law of large numbers.

Let us begin with ratios of independent random variables. Exact strong
laws of large numbers, in this case, were studied in detail in [7], where further
references may be found. LetX and Y be independent random variables with
the same distribution as a nonnegative, integrable random variable ξ with
density fξ. We shall assume that fξ is bounded and continuous on [0,+∞),
in particular limx→0+ fξ(x) = fξ(0). Observe that the survival function of
the random variable R = X/Y is

FR(r) =
� �

x/y≥r

fξ(x)fξ(y) dx dy =

∞�

0

(x/r�
0

fξ(y) dy
)
fξ(x) dx

=
1

r

∞�

0

(x�
0

fξ

(
s

r

)
ds

)
fξ(x) dx.

Therefore, by our assumptions concerning ξ, we get

rFR(r)→
∞�

0

(x�
0

fξ(0) ds
)
fξ(x) dx = fξ(0)Eξ,

and the following theorem follows from Theorem 2.1.
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Theorem 3.1. Let (Xn)n∈N and (Yn)n∈N be sequences of i.i.d. random
variables which are independent of each other and all the variables have the
same distribution as a nonnegative, integrable random variable ξ with den-
sity fξ. Assume that fξ is bounded and continuous on [0,+∞). Then for all
α > −1 and any slowly varying function L we have

1

nα+1L(n) lg n

n∑
k=1

kαL(k)
Xk

Yk

P→
fξ(0)Eξ
α+ 1

as n→∞.

By applying the above result to the case when ξ has the uniform distri-
bution on [0, p] we get the following corollary, which is [2, Theorem 2.2].

Corollary 3.1. Let (Xn)n∈N and (Yn)n∈N be sequences of i.i.d. random
variables which are independent of each other and all the variables have the
same uniform distribution U(0, p). Then

1

nα+1L(n) lg n

n∑
k=1

kαL(k)
Xk

Yk

P→ 1

2(α+ 1)
as n→∞.

Another example of an immediate application of Theorem 3.1 is the ex-
ponential case.

Corollary 3.2. Let (Xn)n∈N and (Yn)n∈N be sequences of i.i.d. random
variables which are independent of each other and all the variables have the same
exponential distribution Exp(λ) with density fξ(x) =

1
λ exp(−

x
λ)I〈0,∞)(x).

Then
1

nα+1L(n) lg n

n∑
k=1

kαL(k)
Xk

Yk

P→ 1

α+ 1
as n→∞.

If ξ = |N (0, 1)| is the absolute value of the standard normal law, then
fξ(x) =

2√
2π

exp(−x2/2)I〈0,∞)(x) and Eξ =
√
2/π, so we get the following

corollary.

Corollary 3.3. Let (Xn)n∈N and (Yn)n∈N be sequences of i.i.d. random
variables which are independent of each other and all the variables have the
same standard normal distribution N (0, 1). Then

1

nα+1L(n) lg n

n∑
k=1

kαL(k)

∣∣∣∣Xk

Yk

∣∣∣∣ P→ 2

π(α+ 1)
as n→∞.

Another application of Theorem 2.1 is convergence of ratios of minimal
order statistics (see [8] for details on exact strong laws in this case). Let us
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consider an array of random variables:

X1,1, X1,2, . . . , X1,k1

...
Xn,1, Xn,2, . . . , Xn,kn

...

which are independent and identically distributed with density f and distri-
bution function F.

Denote by Xn,(1) = mini=1,...,kn Xn,i the first order statistics (minimum)
in the nth row and by Xn,(2) the second order statistics in this row. Consider
the ratios Rn = Xn,(2)/Xn,(1). The survival function of Rn takes the form
(see [8])

(3.1) FRn(r) = 1− FRn(r) =
kn
r

∞�

0

(1− F (t))kn−1f
(
t

r

)
dt.

It is easy to calculate that if F is the standard exponential distribution
Exp(1), then

FRn(r) =
kn

r(kn − 1) + 1
, r ≥ 1.

And for FR(r) = 1/r, r ≥ 1, we have∣∣∣∣FRn(r)

FR(r)
− 1

∣∣∣∣ = ∣∣∣∣ r − 1

r(kn − 1) + 1

∣∣∣∣ ≤ 1

kn − 1
.

Therefore if kn →∞, then FRn(r)/FR(r)→ 1 uniformly for r ≥ 1. Thus we
have proved the following corollary.

Corollary 3.4. Let (Xn,k)n∈N, 1≤k≤kn be an array of independent ran-
dom variables with the same standard exponential distribution. If kn → ∞,
then for any α > −1 and any slowly varying function L we have

1

nα+1L(n) lg n

n∑
k=1

kαL(k)
Xn,(2)

Xn,(1)

P→ 1

α+ 1
as n→∞.

When kn = K ≥ 2 is fixed and the random variables have the same
uniform distribution on [0, p] denoted by U(0, p), then FRn(r) = 1/r, r ≥ 1,
and a direct application of Theorem 2.1 yields [2, Theorem 3.2].

Corollary 3.5. Let (Xn,k)n∈N, 1≤k≤K be an array of independent ran-
dom variables with the same uniform distribution U(0, p). Then for any
α > −1 and any slowly varying function L we have

1

nα+1L(n) lg n

n∑
k=1

kαL(k)
Xk,(2)

Xk,(1)

P→ 1

α+ 1
as n→∞.
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