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Summary. A characterization is presented of barycenters of the Radon probability mea-
sures supported on a closed convex subset of a given space. A case of particular interest
is studied, where the underlying space is itself the space of finite signed Radon measures
on a metric compact and where the corresponding support is the convex set of probability
measures. For locally compact spaces, a simple characterization is obtained in terms of
the relative interior.

1. The main goal of the present note is to characterize the barycenters of
the Radon probability measures supported on a closed convex set. Let X be
a Fréchet space. Without loss of generality, the topology on X is generated
by the translation-invariant metric ρ on X (for details see [2]).

We denote the set of Radon probability measures on X by P(X). The
barycenter a ∈ X of a measure µ ∈ P(X) is, by definition,

(1) a =
�

X

xµ(dx),

if the latter integral exists in the weak sense, that is,

(2) Λa =
�

X

Λxµ(dx)

for all Λ ∈ X∗, where X∗ is the topological dual of X. More details on such
integrals can be found in [2, Chapter 3].

2020 Mathematics Subject Classification: Primary 28C05, 46N30, 60B05, 60B11.
Key words and phrases: barycenters of measures, characterization of barycenters, space of
Radon measures.
Received 28 November 2019; revised 3 March 2020.
Published online 20 April 2020.

DOI: 10.4064/ba191128-31-3 [11] © Instytut Matematyczny PAN, 2020



12 S. Berezin and A. Miftakhov

Note that if (1) exists, then

(3) a =
�

suppµ

xµ(dx),

and, by the Hahn–Banach separation theorem, a ∈ co(suppµ), where co(·)
stands for the convex hull. From now on, we will use the bar over a set to
denote its topological closure.

The following theorem gives a characterization of the barycenters of mea-
sures from P(X).

Theorem 1. Let M ⊂ X be a non-empty compact convex set, and let
a ∈M . Then the following statements are equivalent:

(i) There exists µ ∈ P(X) with suppµ = M and with barycenter a.
(ii) We have

(4) M = Va,

where Va = {x ∈M | ∃α > 0 : −αx+ (1 + α)a ∈M}.

Remark 1. We note that the condition (4) is non-local and concerns the
whole set M .

Remark 2. We require M to be compact in order to ensure the separa-
bility of M and the existence of weak integrals (see, e.g., [2, Theorem 3.27]).
If X is finite-dimensional, the theorem holds without this requirement.

Proof of Theorem 1. (a) First, we prove that (i)⇒(ii). Let c ∈M and let
Uδ(c) be the open ball of radius δ > 0 centered at c. BecauseM is the support
of µ, one has µ(Uδ(c)) > 0. Also, since M is compact, so is Uδ(c) ∩M , and

(5) cδ =
1

µ(Uδ(c))

�

Uδ(c)

xµ(dx) ∈M

is well-defined. It is easy to show that

(6) lim
δ→+0

cδ = c

in the weak topology σ(X,X∗). Indeed, take any Λ ∈ X∗. Since Λ is con-
tinuous, for every ε > 0 there exists δ0 > 0 such that x ∈ Uδ0(c) im-
plies |Λ(x) − Λ(c)| = |Λ(x − c)| < ε. Then, it follows from the definition of
the weak integral that

(7) |Λ(cδ − c)| ≤
1

µ(Uδ(c))

�

Uδ(c)

|Λ(x− c)|µ(dx) < ε

whenever δ ∈ (0, δ0). This means that cδ→ c in the weak topology as δ→+0.
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Further, for any δ > 0, either µ(Uδ(c)) = 1 or 0 < µ(Uδ(c)) < 1. We
show that in both cases cδ ∈ Va. Indeed, if µ(Uδ(c)) = 1, then cδ = a and
thus cδ ∈ Va. If 0 < µ(Uδ(c)) < 1, set

(8) c̃δ =
1

µ(X \ Uδ(c))

�

X\Uδ(c)

xµ(dx) ∈M.

Clearly, αcδ + (1 − α)c̃δ ∈ M , α ∈ [0, 1], by convexity. Moreover, a =
µ(Uδ(c))cδ + (1 − µ(Uδ(c)))c̃δ. Therefore, by a simple geometric argument
and by the definition of Va, it is clear that cδ ∈ Va.

Since X is a locally convex space and since Va is convex, the closures
of Va in the weak and original topologies coincide. Consequently, by passing
to the limit δ → +0, one arrives at

(9) c = lim
δ→+0

cδ ∈ Va.

This concludes the proof of the claim.
(b) We prove that (ii)⇒(i) by constructing µ ∈ P(X) with support M

and barycenter a.
Being a metric compact, M is separable, hence there exists M0 such

that M0 = M = Va. Without loss of generality, one can think that M0 =
{xn}∞n=1 ⊂ Va and {xn}∞n=1 = M . By the definition of Va, there exist {αn}∞n=1

such that αn > 0 and −αnxn + (1 + αn)a ∈M .
Let us define the discrete measure

(10) µ =
∞∑
k=1

1

2n
·
αnδxn + δ−αnxn+(1+αn)a

1 + αn
,

where δx is the delta measure at x. Clearly, this is a Radon probability
measure, and a simple computation shows that its barycenter is a. Indeed,
for every Λ ∈ X∗ one has

(11)
�

X

Λxµ(dx) =
∞∑
k=1

1

2n
· αnΛxn + (−αnΛxn + (1 + αn)Λa)

1 + αn
= Λa.

It remains to prove that suppµ = M . First, we note that {xn}∞n=1 ⊂ suppµ.
Consequently, M = {xn}∞n=1 ⊂ suppµ, and therefore M ⊂ suppµ. By the
definition (10) one also has suppµ ⊂M , which concludes the proof.

Further, we will use the following standard notation from convex anal-
ysis. For a, b ∈ X we define the (line) segment [a, b] and the open (line)
segment (a, b) to be

(12)
[a, b] = {x ∈ X | x = (1− λ)a+ λb, λ ∈ [0, 1]},
(a, b) = {x ∈ X | x = (1− λ)a+ λb, λ ∈ (0, 1)}.
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Let us recall that the relative interior of a set M is

(13) relint(M) = {x ∈M | ∃U(x) : U(x) ∩ aff(M) ⊂M},

where U(x) is an open neighborhood of x and aff(M) is the affine hull ofM .
Also, we recall that the relative algebraic interior of M is the set

(14) core(M) = {x ∈M | ∀y ∈ aff(M) ∃α > 0 : [x,−αy+(1+α)x] ⊂M}.

It is well-known that any locally compact topological vector space is
finite-dimensional (see, e.g., [2]), in which case the following corollary holds.

Corollary 1.1. If X is a locally compact space and M ⊂ X is a non-
empty closed convex set, then the set of barycenters of the Borel probability
measures with support M coincides with the relative interior of M .

Proof. We note that in finite-dimensional spaces any probability Borel
measure is Radon. It is also well-known (see [3]) that in such spaces the
relative interior and the relative algebraic interior of M coincide and are
non-empty.

Now, let a ∈ relint(M) = core(M) be any point. By the definition of
the relative algebraic interior, for every y ∈M ⊂ aff(M), the segment [y, a]
can be prolonged beyond the point a within M . This means that y ∈ Va,
and thus M ⊂ Va. Hence, by Theorem 1 (see also Remark 2), there exists
µ ∈ P(X) with suppµ = M and with barycenter a.

It remains to prove that if for some a ∈ M one has Va = M , then a ∈
relint(M). Notice that Va is a non-empty convex set. Since we are deal-
ing with a finite-dimensional space, Va has a non-empty relative interior,
and relint(Va) = relint(Va) = relint(M). Let x ∈ relint(Va) ⊂ Va. It fol-
lows from the definition of Va that there exists a segment [x, y] ⊂ M such
that a ∈ (x, y). Since x also belongs to relint(M), there exists an open
neighborhood U(x) of x such that U(x) ∩ aff(M) ⊂M .

By convexity of M , one obtains

(15) (1− λ)(U(x) ∩ aff(M)) + λy ⊂M, λ ∈ [0, 1].

It is also easy to verify directly that

(16) (1−λ)(U(x)∩aff(M))+λy =
(
(1−λ)U(x)+λy

)
∩aff(M), λ ∈ [0, 1].

Combining (15) and (16), and noticing that for λ ∈ [0, 1) the set (1−λ)U(x)+
λy is an open neighborhood of (1−λ)x+λy, one sees that any point of (x, y)
belongs to relint(M) by the very definition (13) of the relative interior. In
particular, this means that a ∈ relint(M).

2. It is tempting to think that Corollary 1.1 holds in infinite-dimensional
spaces, too. Unfortunately, this is not the case even for Hilbert spaces, as
the following counterexample shows.
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Let X be the Hilbert space of real sequences endowed with the l2-scalar
product, and let M be the Hilbert cube, a compact convex set,

(17) M =

∞∏
k=1

[
−1

k
,

1

k

]
.

We take a = {ak}∞k=1 ∈ M , where ak = 1
k+1 . It is easy to construct a

measure µk ∈ P(R) with suppµk = [−1/k, 1/k] such that

(18)
1

k + 1
=

�

[−1/k,1/k]

xµk(dx).

Having done that, consider the product of these measures restricted to X,

(19) µ =
∞⊗
k=1

µk

∣∣∣
X
.

One usually defines the product of measures on the product of spaces, hav-
ing in mind the product topology. Even though the corresponding induced
topology on X is strictly coarser than the l2-norm topology, they both gen-
erate the same Borel sigma-algebra on X. Thus, it is clear that µ can be seen
as a Borel measure on the Hilbert space X. Moreover, since X is a complete
and separable metric space, µ is Radon.

It is clear by construction that suppµ ⊂M . We prove the other inclusion
by reductio ad absurdum.

Let b ∈ M , and suppose that µ(Uε(b)) = 0 for some ε > 0, where Uε(b)
is the ball of radius ε centered at b. Choose N such that

(20)
∑
n>N

4

n2
<
ε2

2
.

Then

0 = µ
{
x ∈ X

∣∣∣ ∞∑
n=1

(xn − bn)2 < ε2
}
≥ µ

{
x ∈M

∣∣∣ N∑
n=1

(xn − bn)2 < ε2/2
}

=
N⊗
k=1

µk

{
x ∈M

∣∣∣ N∑
n=1

(xn − bn)2 < ε2/2
}
.

The latter is positive, which gives a contradiction and yields suppµ = M .
Now, we prove that a is the barycenter of µ. Thanks to the Riesz rep-

resentation theorem, there exists {λk}∞k=1 ∈ X such that for every x =
{xk}∞k=1 ∈ X one has

(21) Λx =

∞∑
k=1

λkxk.
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By the definition of the barycenter we write
�

X

Λxµ(dx) =
�

M

∞∑
k=1

λkxk µ(dx) =

∞∑
k=1

λk
�

M

xk µ(dx) =

∞∑
k=1

λkak = Λa,

where one can interchange the sum and the integral by dominated con-
vergence since M is a bounded set in X. This shows that a is indeed the
barycenter of µ.

Next, we recall that in infinite-dimensional spaces the relative interior
and relative algebraic interior do not necessarily coincide (see [3]). However,
from (13) and (14) one sees that the former is a subset of the latter. Thus, it
is sufficient to show that a does not belong to the relative algebraic interior
of M . We prove this again by contradiction.

Suppose that a ∈ core(M). Then the segment [0, a] can be prolonged be-
yond a withinM . In other words, there exists α > 0 such that (1+α)a ∈M .
The latter is equivalent to

(22) −1/k ≤ (1 + α)ak ≤ 1/k, k = 1, 2, . . . .

Multiplying by k + 1 and letting k →∞ yield

(23) −1 ≤ 1 + α ≤ 1,

which contradicts α > 0 and concludes the proof.

3. Now, we describe the set of barycenters of measures on the space of
probability measures. Let K be a metric compact space and X = M(K) the
space of signed finite Radon measures on K. By the Riesz–Markov theorem,
X can be identified with the topological dual C∗(K) of the space C(K)
of continuous functions on K. We endow C∗(K) with the weak-∗ topol-
ogy σ(C∗(K), C(K)). Having in mind the canonical embedding C(K) ↪→
C∗∗(K), one can say that this topology is the weakest topology which makes
continuous all the functionals from C∗∗(K) that correspond to elements
of C(K). This topology is locally convex, as is the corresponding topol-
ogy τw on X. The restriction of τw to the convex set M = P(K) ⊂ X of
probability measures on K produces the usual topology of weak convergence
on M and thus makes this set compact.

The barycenter µ ∈ X of a measure η ∈ P(X) is, by definition,

(24) µ =
�

X

ν η(dν),

if the latter integral exists in the weak sense. That is, since (C∗(K))′ = C(K),
where (·)′ is the topological dual in the weak-∗ topology, µ is the barycenter
of η if and only if for every f ∈ C(K),

(25)
�

K

f(x)µ(dx) =
�

X

( �
K

f(x) ν(dx)
)
η(dν).
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Also, note that

(26) µ =
�

supp η

ν η(dν),

and, by the Hahn–Banach separation theorem, one has µ ∈ co(supp η).
The following result characterizes measures from X with support M .

Theorem 2. The set of barycenters of the measures from P(X) with
support M coincides with the set of the measures from M with support K.

Proof. (a) First, we prove that the barycenter of a measure from P(X)
with support M is a measure from M with support K.

Take any η ∈ P(X) such that supp η = M , and let µ ∈M be its barycen-
ter. We prove that suppµ is exactly K by contradiction.

Indeed, suppose this is not the case. Then there exists a non-zero non-
negative continuous bounded function f ∈ Cb(K) such that

(27)
�

K

f(x)µ(dx) = 0.

Using (25) one gets

(28)
�

M

�

K

f(x) ν(dx) η(dν) = 0,

and since the integrand is non-negative,

(29)
�

K

f(x) ν(dx) = 0,

η-almost surely on M .
The latter, in fact, holds for all ν ∈M = P(K), due to continuity in ν of

the left-hand side of (29) with respect to the topology of weak convergence.
Consequently, by choosing ν to be the delta measure at an arbitrary point

of K, one immediately obtains

(30) f(x) = 0, x ∈ K,

which contradicts f 6= 0 and concludes the proof of the claim.
(b) Now, assume that µ ∈M and suppµ = K. Let

(31) A =
{

(a1, a2, . . .) ∈ [0, 1]∞
∣∣∣ aj ≥ 0,

∞∑
j=1

aj = 1
}

be a closed subset of [0, 1]∞ endowed with the l1-norm. Since A is separable,
there exists a Radon probability measure λ on [0, 1]∞ with support A (see,
e.g., the proof of Theorem 1).
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Let us also introduce the Radon probability measure λ ⊗ µ∞ = λ ⊗⊗∞
j=1 µj on A × K∞ = A ×

∏∞
j=1Kj , where the µj are copies of µ, and

the Kj are copies of K. It is easy to see that

(32) supp(λ⊗ µ∞) = A×K∞.

Indeed, for any open neighborhood U(c) of c = (ca; c1, . . .) ∈ A × K∞, by
the definition of the product topology, there exists an open set of the form

Ua(ca)×
∞∏
j=1

Uj(cj),

where Ua(ca) ⊂ A and Uj(cj) ⊂ Kj are open neighborhoods of ca and cj ,
respectively, such that Uj(cj) 6= Kj only for finitely many j ∈ N. Then, for
large enough N one has

(33) (λ⊗ µ∞)(U(c)) ≥ λ(Ua(ca))

N∏
j=1

µ(Uj(cj)) > 0,

which proves (32).
The next step is to define the map F : A×K∞ →M by

(34) F (a, x) =

∞∑
j=1

ajδxj .

It is easy to show that F is continuous. Indeed, let a(n) → a∗ ∈ A
in l1-norm, and x(n) → x∗ ∈ K∞ in the product topology. We will prove
that F (a(n), x(n)) converges to F (a∗, x∗) weakly. For every f ∈ C(K),

(35)
∣∣∣ �
K

f(y)F (a(n), x(n))(dy)−
�

K

f(y)F (a∗, x∗)(dy)
∣∣∣

≤
∞∑
j=1

|a(n)j f(x
(n)
j )− a∗jf(x∗j )|

≤ sup
x∈K
|f(x)| ‖a(n) − a∗‖l1 +

∞∑
j=1

a∗j |f(x
(n)
j )− f(x∗j )| → 0,

where the latter term tends to zero thanks to the dominated convergence
theorem. This proves the continuity of F .

Now, let us define the measure η to be the pushforward of λ⊗µ∞ under F
given by

(36) η = (λ⊗ µ∞) ◦ F−1,

which is readily verified to be a Radon probability measure.
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We prove that this measure is supported on M . Indeed, since it is known
(see, e.g., [1, Ex. 8.1.6]) that

(37) F (A×K∞) = M,

for every open neighborhood U(ν) of ν ∈ M there exists (a, x) ∈ A ×K∞
such that F (a, x) ∈ U(ν). Consequently, due to F being continuous and due
to (32), one has η(U(ν)) > 0, and thus, since ν is arbitrary, supp η = M .

It remains to check that the barycenter of η is µ. One can write

(38)
�

M

�

K

f(y) ν(dy) η(dν) =
�

A×K∞

�

K

f(y)F (a, x)(dy) (λ⊗ µ∞)(da, dx)

=
∞∑
j=1

�

A

aj λ(da)
�

K∞

f(xj)µ
∞(dx)

=
∞∑
j=1

�

A

aj λ(da)
�

K

f(x)µ(dx) =
�

K

f(x)µ(dx),

where we use the definition (36) of η, Fubini’s theorem, and the dominated
convergence to interchange the sum and the integrals.

According to (25), the formula (38) means exactly that the barycenter
of η is µ. This concludes the proof of the theorem.

As a final remark we point out that our proof relies heavily on the fact
that K is compact. However, barycenters are well-defined for a wider class
of Radon probability measures (with finite first moments). An open question
of interest is to characterize such measures as well.
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