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MAREK BESKA and MATEUSZ GALKA (Gdansk)

MOMENTS OF HERMITE-GAUSSIAN FUNCTIONALS

Abstract. Moments of finite products of Hermite—Gaussian functionals
are expressed by covariances of a Gaussian sequence.

Introduction. Mixed moments of Hermite-Gaussian functionals play
an important role in stochastic analysis of Wiener chaos (for extensive treat-
ment of the ideas corresponding to Wiener chaos, also those regarding mo-
ments, see [J], [PT]). In this paper, we present a new method of computing
such moments. It allows us to formulate a necessary and sufficient condition
(see Proposition below) for vanishing of a moment of even order in the
case of non-negative correlations of Gaussian random variables from Wiener
chaos.

1. Hermite polynomials. Let R? denote the d-dimensional Euclidean
space, equipped with the standard inner product (-,-)4 and the Euclidean
norm || - ||lq. Let (£2, F, P) be a fixed probability space. The Hermite polyno-
mial H,, of degree n > 1 on R is defined by

H,(z) = (—1)"exp(z /2) (eXp( 2%/2)), z€R,n>1.

Additionally, we assume that HO = 1. The first Hermite polynomials are
Hy(x) = =, Ho(x) = 2 — 1. The polynomials H,, divided by n! are the coef-
ficients of the expansion in powers of ¢ of the generating function w(t, x) =
exp(tz — t2/2), x,t € R. In fact, we have

(1.1) w(t,z) =Y —Hp(z), =ztekR
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Note that for a standard Gaussian variable n we have
w(t,z) = exp(tx)E exp(itn) = Eexp(tx + itn) = E Z x+1n)"

Now, using the Lebesgue dominated convergence theorem and comparing
the above expansion with (1.1]), we get

(1.2) Hy(x) =E(x+in)", ze€R,n>0.

Hence,

(1.3) Z S ‘ Z E[(lx] + [n])"] < Eexpl[t[(|z] + |n[)] < oo
n=0 =

Therefore, the sum in converges absolutely for all ¢,z € R.
Another well known relationship between Hermite polynomials and Gaus-
sian random variables is the result below (see [N]).

LEMMA 1.1. Let (X,Y) be a two-dimensional Gaussian vector such that
E(X) = E(Y) =0, E(X?) = E(Y?) =1, E(XY) = p, where p is the
correlation coefficient of X and Y. Then, for all n,m > 0,

nlp™ if n=m

EH,(X)H,(Y)] = {O ifn#m. m

Now, let X = (Xi,...,Xy) be a Gaussian random vector such that
E(X;) = 0 and E(X?) = 1 for i = 1,...,d. The aim of this note is to
compute the expectation

E[Hy, (X1)Hny (X2) - - - Hny(Xa)]-

To formulate our result, we need some notations and definitions. For x =
(z1,...,74) € R and k = (kq,...,kg) € N& = (NU {0})?, we write

d d d
|z :Zzi, xk:foi, || :Zki’ k!:Hk‘i!.
i=1 ] =1 =1

For k = (k1,...,kq) € N& the integer |k| will be called the length of the
vector k. The set of all square matrices of dimension d with elements from R
(resp. Np) is denoted by Mg4(R) (resp. M4(Np)). If R € My4(R), the jth
column and ¢th row are denoted by R; and R’ respectively. From time to
time, we shall use the shorthand notation R = [R;] As usual, we identify
rows and columns of R with vectors from RY. If R € My(R) and K €
M4(Np), we denote

K| = (K",....,|K’), |Rl=(R'....|R),
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d d
_ gl dy _ ' K _ plK! aK? K
K'=K"...k"= [ ki', R¥=R" --.R" =T R/
i,j=1 i,j=1
with the convention 0° = 1. For K = [KJZ] € My(Np), let u(K) denote the
upper diagonal matrix of K, i.e.

u(K) = [Uj], where Uj:= J l j - Z_’
0 ifj <.

For n € N let us introduce the following families of matrices:
MY(Ng) = {K € My(Np) : diag(K) = 0, K is symmetric},
MG, (No) = {K € Mg(No) : | K| = n},
where diag(K) denotes the main diagonal of the matrix K.
The Hermite polynomials on R? are defined as tensor products of the

Hermite polynomials on R: for n = (ny,...,n4) € N¢ and 2 = (21,...,24) €
R? we put

d
i=1

Similarly to the one-dimensional case, the polynomials H,, divided by n!
are the coefficients of expansion in powers of t = (t1,...,t5) € R? of the
generating function
w(t,z) = exp(—|[t||3/2 + (t,x)q), t xR
That is,
tn

w(t,z) = Z EHn(ax), t,x € R

neNg
2. Main result. We can now formulate the main result of this note.

THEOREM 2.1. Let X = (X1,...,Xq), d > 2, be a Gaussian random
vector such that E(X;) =0 and E(X?) =1 fori=1,...,d. Then, for the

Hermite polynomial H,, on R? of degree n = (ny,...,nq) € Ng we have
(2-4) EHn(X) = E[Hm(Xl)an(X?) "’Hnd(Xd)]
0 if My, =0,

where @ denotes the covariance matriz of X.
Proof. From the definition of H,, and from , we conclude that
H,(x) = Hp,(x1)Hpy (22) - - - Hyy (24)
= E[(z1 +im)" (g 4+ in2)"? - - - (xq + ina)"™],
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where = = (x1,...,24) € RY, n = (n1,...,n4) € N& and n1,...,74 is a se-
quence of independent standard Gaussian variables, independent of X. From
the above and from we deduce that (with E;, denoting the expectation
with respect to n;, i = 1,. d)

t’fL
nENg i=1n1=0

< E[Eme\tl|(|X1|+|771|)En2€|t2|(\X2|+|772|) . Ende|td|(|Xd|+\77d|)]

m z

n;!

< Eme\tml\Emeltznzl . .Ende\tdndlEelthl|+\t2X2|+'“+|thd\ < 0.

Therefore, by the Lebesgue dominated convergence theorem, we have

(2.5) Bw(t,X)=E ) _ an(X) => gE[Hn(X)].
neNd neNd

On the other hand,
Ew(t,X) = Eexp((t, X)a — IItHZ/?) = exp((Qt, t)a/2 — [It]13/2)
= exp(%((Q Dt t)g) = exp( Z pijti t]>
1<i<j<d
where I is the identity operator on R?. Consequently,

(2.6) Z (X )"

1<i<j<d

Let us compute the components of the above sum. For simplicity, denote by
S, the set of all vectors

k= (ki2,...,kia, ka3, ... kag, ... ka—1,4) € Ny
such that |k| = m. It follows that
k kig Kk k kd—1,d
Z pijtit; ) Z %l P 5 pﬁf‘pg%‘“’ Pg?[d T Pd-1d
1<i<j<d kESm
X (tltg)ku s (tltd)kld(tgtg)k% s (tgtd>k2d (td 1td)kd*1’d

— u(K)ylK|
- T e

KeM§
[ K||=m

where | K| = |K!| +--- + |K?%. From the above and from lj we have

(2.7)  Euw Z Z W K)t\K\_Z Z W u(K)n

m=0 KeM§ ' neNg KeMy
HKH=m

Now, comparing (2.5)) and (2.7) we get (2.4), and the theorem follows. =

d(d—1)/2
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We see at once that MY =0 if |n| is an odd integer. When |n| is even,
we have the result below.

PROPOSITION 2.1. Let n = (na,...,nq) € Nd be such that |n| is an even
integer and let n;, = maxj<;<qn;. Then

d
MY, #0 = n; < an
0
Proof. Without loss of generality, we may assume that
ny > - 2> ng.

(=) Assume that n; > ng +--- +ng and let K € ./\/lg’n. Then the first
row of K is

K'=(0,k2, k13, ..., k1a) and n1 = |K'| = kg + kg + - - + k4.

Hence, there exists 2 < ¢ < d such that ky; > n;. Therefore, k;1 = k1; > n;
and |K"*| > n;. Consequently, |K| # n and this contradicts the assumption
that K € MY, .

(<) Notice first that if 7; = np + - - - + ng then the matrix

0 ng mnsg ... nNg

ng 0 0 ... O

K: 7’L3 0 0 “ e 0
| " o 0 ... 0-d><d

belongs to Mg’n, e} Mg,n # (). Now, let ny < mg + --- + ng. Then p :=
ng + -+ +mng —mn1 > 0 and we see at once that p is even. For our further
considerations, the following lemma will be necessary.

LEMMA 2.1. Let n = (n1,...,nq) € Ng be a non-increasing sequence
such that |n| is even and |n| > 2ny. Then there exists a sequence m =
(m1,...,mg) € NE with 2k + 1 < d such that

s = (0,ng — my,n3 — my,ng — Mo, N5 — Mo, ...,
Mok — Mk, N2k1 — M, N2k, - - - Ng) € NG
and |s| =ng + -+ -+ ng — 2|m| = n;.
Proof of Lemma . Let {e; ;-1:1 be the standard basis in R? and
. {(d-l— 1)/2 if d is odd,
d/2 if d is even.
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Moreover, define a sequence {p; };7:1 by

J
p1:07 pjzzn%fla j:27"'arv
=2

and a sequence {S® M, of vectors in N4 as follows:

S(O) = (07 nz,ns,... 7nd)7 S(pj+l) = S(pj+l71) — €25 — €25+1,
where 1 <1 <ngji1, j=1,...,7— 1. It can be seen that for j > 1,
St = g0 _ ngez —ngez — - —Ngj_1€2j—2 — Naj_1€2j—1 — leg; — legjt1.

From the definition of {S®}" we have
|SPitD| = |gPitl=b)| _ o 1 <I<mgjp,j=1,...,r—1,
i.e. the lengths |S®*)| decrease in arithmetic progression with common
difference 2. By assumption,
SO =ng +n3 4 -+ ng > ny.
On the other hand, for r = (d +1)/2,
1S®P)| = 15O —2(ng +ns + - - - 4 ng)
=ny+ng+--+ng—2n3+ns -+ +na)
=ng + (n3 +n4) + (n5 +n6) + -+ (ng_2 +ng_1)
+ng—2(ns+ns+ -+ ng)
<ni+2n3+2n5+ -+ 2ng_9 + 2ng — 2(ng + ns + - - - + ng) = ny.
Similarly for r = d/2,
15®)| = |SO —2(ng +ns 4+ - +ng_1)
=ng+ng+---+ns—2Mnz+ns+---+ng_1)
=ng+ (n3+mna)+ (ns +ne) + -+ (ng—1 +ng) —2(nz +ns +--- +ng_1)
<np+2n3+2n5 4+ 2ng_1 —2(n3 +n5 + - +ng_1) = n1.

We conclude that there exists 1 < ¢35 < p, such that |S(i0)| = ny. Put
a= S0 — §60o) Then we can define

2k = #{a; : a; # 0}
and
m:= (my,...,my) = (ng,ng,...,nok) — (Sgio),Sfo), .. .,S’gf))
= (n3, 15, - . nagr1) — (59,859, s50) ).
From the construction of m and the definition of the vector s, we obtain

5| = SO = 2m] = S| = (S| |S))) = || = 1y w
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Using Lemma we can construct a vector m = (mi,...,mg) € ng,
where 2k + 1 < d, such that m; < ng;y; for i = 1,...,k and 2|m| = p, i.e.

ny =ng + -+ - +ng — 2|m|. Therefore, we can find a matrix K which belongs
to Mg}n. Namely, we set K = A — B + C, where

[ 0 no
no 0
ngqg 0

where By = [0]1x1, B12 = [m1 m1 ma ma ...

ng
0
0

0

nd_
0
0

0

dxd

B B
ol .
B12 322 dxd

Bgg is a null (d — 1) x (d — 1) matrix, and finally

0 O
0 O
0m1
0 O
0 O
C=|:
0
0
0
10

0
mi
0
0
0

0
0
0
0

m2

0
0
0
m2
0

0

o O O O

0

Mg Mg 0... O]lx(d—l) and
0 ... 0]
0 ... 0
0 ... 0
0 ... 0
0 ... 0
mi 0 0
0 0 ... 0
0 0 0
0 0 ... 0

= dxd

Therefore, /\/lg ., 7 0 and the proof of Proposition is complete. »
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