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THE OPTIMAL TIME DECAY RATES FOR
INCOMPRESSIBLE VISCOELASTIC FLUIDS
IN CRITICAL FRAMEWORK

Abstract. We study the Cauchy problem for multi-dimensional incom-
pressible viscoelastic fluids in the whole space. The optimal time decay rates
of strong solution constructed by Qian (2010), and Zhang (2011) in L2-
critical regularity framework are obtained for low frequencies of the data
under a suitable additional condition. The proof relies on an application of
Fourier analysis to a mixed parabolic-hyperbolic system, and on a refined
time-weighted energy functional. As a by-product, time decay rates of LI-L"
type are also captured in the critical framework.

1. Introduction and main results. In this paper, we consider the
following multi-dimensional (N > 2) incompressible viscoelastic flow:

U +v-VU = VU,

(1.1) o +v-Vu+Vp=pAv+V.-(UUT),
V-uv=0

with the initial data

(1.2) Uli=o = Uy, v|t=0 = v0.

Here U(x,t) = (UY(z,t)) nxn denotes the deformation tensor, v(w,t) is the
fluid velocity and p(x,t) is the hydrodynamic pressure. The system is
one of the basic macroscopic models for viscoelastic flows, which corresponds
to the so-called Hookean linear elasticity. For more physical background of
this system we refer to [9, [11].

2020 Mathematics Subject Classification: 35B40, 35Q35, 35L60.

Key words and phrases: optimal decay rates, incompressible viscoelastic fluids, Besov
spaces.

Received 18 March 2020.

Published online 27 July 2020.

DOI: 10.4064/am2409-5-2020 [183] © Instytut Matematyczny PAN, 2020



184 D. Ding et al.

Let us assume that Uy and vy satisfy the constraints

V'UOZO,
detU():l,
1.3
(13) v-Ud =0,

ulv,ul — vl ot = o.

The system has been extensively studied. In the framework of Sobolev
spaces, Chen and Zhang [4] and Lei et al. [12] proved the well-posedness for
the Cauchy problem and the periodic problem, respectively. In 2014, Hu and
Wu [10] obtained optimal L? time decay rates for global smooth solutions and
their spatial derivatives and established the weak-strong uniqueness property
in the class of finite energy weak solutions. In the framework of Besov spaces,
Qian [15] and Zhang [16] independently proved the existence and uniqueness
of a local solution, which was also shown to exist globally in time provided
the initial data is small in certain norms. However, there is no result on time
decay rates for global strong solutions constructed in [I5] [16].

The main motivation of this paper is to consider this question. Our main
ideas are based on the known global well-posedness from [15] [16], an appli-
cation of Fourier analysis to a linearized parabolic-hyperbolic system, and
a refined time-weighted energy functional. In low frequencies, employing
decay estimates for the Fourier transform of Green’s function for the lin-
earized system, which are similar to the decay behavior of the heat kernel,
and combining this with Duhamel’s principle, one can obtain the desired
time-weighted energy estimates. In high frequencies, employing the Fourier
localization technology, the symmetrizer methods and classical nonlinear es-
timates including product estimates and commutator estimates, we can ob-
tain decay estimates for the high frequencies of (VH,v). Finally, in order to
close the energy estimates, we further exploit some decay estimates with gain
of regularity for the high frequencies of Av. With the help of these tools, we
finally establish time decay estimates for the strong solution to the Cauchy

problem f .

Let us first recall a global-in-time well-posedness result for the Cauchy
problem ([1.1)—(1.2]), which is very useful for our proof.
N/2-1

THEOREM 1.1 ([I5,16]). Assume (Uy—1,v0) € Bg{zﬁBgfz_l X 3271
and (Up,vo) satisfies (1.3]). Then there exist constants ¢ and M such that if

(1.4) lUo — I”Bé\fl/szé\’r{%l + HUOHBS{QA <cg,

then the Cauchy problem (L.1)—(1.2) has a unique global solution (U — I,v)
such that

1. X)) <M — 1| - N9 N
(15) (8) < MW = Il o sppoos + ol gpaes),
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where

(1.6) X(t):= U —I||%

ik
Ly (B> LB + U =117

oo BN/2)

NLL(By %)

+ HUHZ?"(BQ’{Q_l) + HU||L%(B§{2+1)'
Now we state our main result.

THEOREM 1.2. Suppose the data (Uy — I,vg) satisfy the assumptions of
Theorem. Denote (1) :=vV1+ 72 and o := min(N/4+2,1/2+ N/2 —¢)
with € > 0 arbitrarily small. There exists a positive constant ¢ such that if
i addition

(1.7) Do := [|(Uo = Iwo)\lf;;ivo/a <

then the global solution (U—1,v) given by Theorem satisfies, for allt > 0,
(1.8) D(t) < C(Do+ (Ao = D), o) [ v

where

D(t) := O ) MU = L o) e g+ I (VU0 Y

+ ||[7Vol2 . .
IV elE ey

As an application of Theorem [I.2] we can obtain the following L?-L" type
decay rates for the Cauchy problem ([1.1))—(1.2]).

COROLLARY 1.3. For the solution (U —1I,v) constructed in Theorem
we have

(i) if —N/2 < s < N/2, then
14°(U = D)l 2 S ()N (Do + (AU — I>,vo>||’;§{2_1),
(ii) if —=N/2 <s < N/2—1, then
1472 5 (&)~ (Do + 1(AUo = D)y vo)lwyaa)
where the fractional derivative operator A' is defined by
Afi=F (- IF D).

Proof. Employing the homogeneous Littlewood—Paley decomposition for

Afa, we have
=> AU -1).
qEZ
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Thus

AU = D)2 S 3144 — D)2 = AU = 1) g
qEZ '
Based on the low-high frequencies decomposition, we may write

sup <t>N/4+s/2HAS(U—I)HBO
te[0,7

SN2 H KRl (o]

By (|1.8) and the definition of D(t), we get
i - Dl e 55,y S Do+ Ao = 1))y

If —N/2 < s< N/2, then a > N/4+ s/2, and we obtain
KON *=2U = D)} < Do+ (Ao = 1), v0) [ g2+

ooBs ooBs )

OO BS )
Thus,
AU = )| g2 < (&)~ N/4+5/2) (Dg 4 || (AU — I),vO)HZQN{Q,l).

Similarly, we also obtain an estimate of v for which we need the stronger
conditions —N/2 < s < N/2 — 1 for the high frequencies. =

REMARK 1.4. Compared with [I0], we establish the decay rates of the
strong solution in the so-called critical Besov spaces in any dimension N > 2
and not only for N = 3. From Corollary we obtain the decay rates
of the solution when s = 0,1 and N = 3, which coincides with the result
of [T10]. Additionally, the decay index s can take both negative and nonnega-
tive values, rather than only nonnegative integer values, which improves the
classical decay results, as in [10].

NotaTIONS. We let C' be a positive generic constant that may vary at
different places, and denote A < CB by A < B. We shall also need the
notations, for some kg € Z,

= E Ajz, 2= 2

J<ko
' o b o
=l = > 20NAzlle,  l2l] e T > 2P Az
i<k R
Noting the small overlap between low and high frequencies, we have

g . < k. Ry < x|
10, S Nelly,  and 12ty Sl

2. Littlewood—Paley theory and some useful lemmas. In this sec-
tion, we introduce some common notations and basic theorems about the
Littlewood—Paley decomposition, and present some auxiliary lemmas.
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Let S(RY) be the Schwartz class of rapidly decreasing function. Given
f € S(RM), its Fourier transform Ff = f is defined by
f© = | e (@) da.
RN
Let (x,¢) be a couple of smooth functions valued in [0, 1] such that x is
supported in the ball {¢ € RV : |¢| < 4/3}, ¢ is supported in the shell
{€ e RY :3/4 < ¢] <8/3}, p(€) = x(£/2) — x(§) and

(2.1) XEO+) p27¢) =1, VEeRY,
720
(2:2) D 27 =1, v € RV \ {0}.
JEZL

The homogeneous frequency localization operators Aj and Sj are defined by
Aif =F Ne@7VFf), Sif= Y A forjel.
q<j—1
We denote by S; (RY) the dual space of Z(RY) = {f € S(RV) : D f(0) =0,
where « is any multi-index}; it can also be identified with the quotient space
S'(RY)/P with P the polynomial space. The formal equality

=2 4
JEZL

holds true for f € S;L(RN) and is called the homogeneous Littlewood—Paley
decomposition. One easily verifies that with our choice of ¢,

AjAf=0 if|j—q>2 and A;(S,o1fAf)=0 if|j—q| >5.

Let us recall the definition of homogeneous Besov spaces and some of
their properties (see [1l [5, [7, §]).

DEFINITION 2.1. Let &’ be the space of all tempered distributions. For
s € Rand 1 <p < oo, we define the homogeneous Besov space By, to be

Biy= A €S Il < oo}

with

S = {f S : ZAjf =fe 3/} and HfHB;1 = ZQ;’SHAijLp.

JEZ JEZ

DEFINITION 2.2. Let s € R, 1 < p,p,7r < o0, 0 <T < oo. The homoge-

neous space-time Besov space L%B;’T is defined by

LyBy, = {f e Ry x S'(RY): 1225, < o0}

where

11z, = 12045 O ooran -
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Obviously, EITB;J = LlTB;J. By a direct application of Minkowski’s
inequality, we have the following relations between these spaces:

LgBy, = LBy, r>p,
LOBS < LA.BS >
T p7T T pJ" p - T

The following Bernstein lemma will be frequently used.

LEMMA 2.3 ([2]). Let 1 < p < q < co. Assume that f € LP(RY). Then
for any v € (NU {0}V, there exist constants Cy, Co independent of f, j
such that

supp f C {[¢] < 402} = (|07 f|lq < Cr2INFINWP=/ D) ¢

supp f C {4127 < |¢] < A2} = ||f|l, < Cp2771 s 10 £],-
Bl=Iv

We have the following properties of the product in Besov spaces.

LEMMA 2.4 ([7,8]). For all 1 < r,p,p1,p2 < 00, there exists a universal
positive constant C' such that

1915, < Clfle=lgllsy +Clale=llfllg, — if s>0;
19l s sz < ClFll gz N9l 2, if s1,82 < N/p and
s1+s2+N min{0,1—-2/p} >0;
1f9lls,. < Clf g, Mol gppnge i 181 < N/p:
1790 s 272 < CI 7Ly, gl o f 5105 < N/2 and sy + 52> 0,
Some embedding properties and interpolation inequalities for Besov spaces
are given in
LEMMA 2.5.

e For any p € [1,00] we have the continuous embedding
BY,— IP— By .
o [fseR, 1<p<ps<o0andl <r; <ry<oo, then

38 5s—d(1/p1—1/p2)
BP1,7’1 = B:Dz,Tz :

o The space B;i/lp is continuously embedded in the set of bounded continuous
functions (going to 0 at infinity if p < 00).
o If1<p,ri,ro,r <00, 01 # 09 and 0 € (0,1), then

4 [%
171 garva-oes < CUSIE 1F1%s, .
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LEMMA 2.6 ([8]). Let 1 < p,p1 < oo and o € R. There exists a constant
C > 0 depending only on o such that for all q € Z, we have

I[v - V. 0eAgal| e < Ceq2™ V|Vl g, I Val| go-s
pl,l p,
for —min(N/p1, N/p') < 0 <1+ min(N/p1, N/p),
o~ V. Aelallze < Ceg2 Tl m el g
for —min(N/p1, N/p') <o <1+ N/p1,

where the commutator [-,-] is defined by [f, gl = fg—gf and (cq)qez denotes
a sequence such that quz cg < 1.

PROPOSITION 2.7 ([1]). Assume u > 0, o € R,(p,r) € [1,00]* and
1< po < p1 < o0. Let u satisfy

Oyu — pAu = f,
(2.3) t H S
ult=0 = ug.
Then for all T > 0 the following a priori estimate is fulfilled:
(2'4) Nl/pl ||UHZPT1(B;J;2/P1) S HUOHBI{T + /~L1/p271||f”z;z(35;2+2/92)‘
REMARK 2.8. The solutions to the Lamé system
Ou — Au = f,
(2.5) ! !
ult=0 = uo,
also fulfill (2.4)).

We finish this subsection by recalling an elementary but useful inequality.

LEMMA 2.9 ([I4]). Let 1,72 > 0 satisfy max{ry,r2} > 1. Then
t
[+t —m) ™A+ 7)7"2dr < C(ry,ma)(1 + ) 7mindrre),
0

3. Time decay estimates. In this section, we exhibit optimal time
decay estimates of strong solutions to the system f for initial data
close to a stable equilibrium state in critical regularity framework. We divide
the argument into several steps.

STEP 1: Reformulation of the original system (1.1)—(1.2). With H=U—-1,
the system ([1.1))—(1.2) can be reformulated as follows:

OtH —Vv=—-v-VH+ VuvH,

o —pAv -V -H+Vp=—v-Vo+V-(HHT),
V-v=0,

Hli—o = Ho, v|t=0 = vo.

(3.1)
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As in [I5], define d¥ = —A~1V,0%; then v' = A7V ;d¥. From (B.1]) we can
deduce the following system for (H%, d):
(32) OHY + AdV = F —v-VHY =: f,
. Opd — pAdY — AHY = G —v - VdY =: g,
where

F = V' H,

G=v-V(=A"'V0") + A7V, P(v - Vol — HRV, H)

+ ATV (HYV H™ — H*Y HY),

STEP 2: Bounds for the low frequencies. Denoting by A(D) the semi-
group associated to (3.2)) we have, for all g € Z,
sa) (AN _aw (Ao} L femam) (AT

Agd? (1) Agdg )
From an explicit computation of the action of e*A(”) in Fourier variables
(see e.g. [13] B]), we discover that there exist positive constants ¢o and C
depending only on gy and such that

|F(eAPIW) (&) < Ce P | FW (€)]  for all |¢] < 2.
Therefore, using Parseval’s equality and the definition of A, we get, for all
g q y q g
q < qo,
[PV AW |z S e O [ AW 2.

Hence, multiplying by ¢/V/4+5/2245 and summing over ¢ < g yields

(3.4) tN/4+5/2 Z QqSHQtA(D)AqWHL2
q4<qo )
S D0 2We T AW | a2
q<qo
< Z 9a(s+N/2) e—co22qt” A‘qW||L22q(—N/2)tN/4+s/2
q<qo
< IV 3 BN e,
" q<qo
For any o > 0 there exists a constant C, such that
(3.5) sup Z 10/2907 g=c02*"t < 1
20 .=

We infer from (3.4) and (3.5)) that for s > —N/2,

sup tN/4+S/2HetA(D)W||£'s 5 ||W||§3—N/2‘
>0 2,1 2,00
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It is also obvious that for s > —N/2,

e 4 PWIG, S IWIG v 32 20 S W .
5% g<qo

So, setting (t) := /1 + t2, we arrive at

20 sup (/52 SAOW S W s

and thus, taking advantage of Duhamel’s formula, we get

CRO [0 5, g)(r) |
0

1

2,

t

S § (=) I (£, ) (v
0 ,00

We claim that for all s € (—N/2,2] and all ¢t > 0,

t

(3.8) \ (¢ =)D (£, g) (T)II% sz dr S (0D (X (1) 4 D(1)?).
0 2,00

Owing to the embedding L' — 32 O]\é/ 2, it suffices to prove (3.8) with

1/, 9)(T)I71 instead of [|(f,9)(T)II%, e

To bound the term with f, we use the decomposition
f=—v-VHY 4 H (V') + HY (Viot)h,

Now, from Holder’s 1nequahty, the embedding B — L2, the definitions of
D(t), @ and Lemma one may write, for all s E (=N/2,2],

t
(39) [t — ) N 0 V)75 dr
0
t ..
SVt = )T o] |V 2
0
t
SVt =) o] g [VHY| gy dr
0
t
—(N/4+4s/2 l h ij |4 ij|1h
S ey I ol 4 il JUTH g, + IV H Iy )ar
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< N/4 N/4+1/2 ij e
< (e (ol ) (s ) v I )
X (¢ = 7) "WV /5/2) () =(N/241/2) g
0
|

N/4 L a 1] h
+ (g Ol ) (s OITHI e
t
% S T>—(N/4+8/2) <T>—(N/4+a) dr
0
+ (sup (o) e ) ( sup N2 HI |G, )
0<r<t 2,1 0<r<t

_ 7_>7(N/4+s/2) <T>f(a+N/4+1/2) dr

X

O ey
—
~~

+ (sup (Do) ) (sup (ONIVE )
0<r<t 2,1 0<7<t 2,1
t

x | (t — 7y~ N/AF/2) 7y 20 g
. 0
)2 S —(N/4+5/2) <7_>fmin(N/2+1/2,a+N/4,2a) dr
0
N/

S (O WHRID()2,

The term ij(Vkvi) may be treated along the same lines:

t
(310) [t —7) D HH (V') 1 dr
0

N

SR (H Gy + H Iy VIVl dr

-
0
< (s ¥, )( Sg( PV ()4, )

0<r<t

t
x| (= )~ (N1 ) =(N/241/2) g
0

+ (s () IO y,e) (Osup <r>N/4+1/2||v<T>||g%,1)

0<r<t

t
XS N/4+s/4)< > (a+N/4+1/2) dr
0

t
S D(t)QS (t — 7y~ (N/4F8/2) (1) —min(N/2+1/2,04+N/4+1/2) g
0
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Regarding the term with H* (Vv%)", we use the fact that for ¢ > 2,

t
[t = 7)) B (T (7) | o i
0

A

(¢ = )"V H ()| g V(7)1 o, 47

A

O e = O ey

(t = 7) "D H () | gy V0 (7)1 dr

—(N/4+s/2 , h
0= ) H () | gy V()] dr
1
=11 + 5.
Recalling the definitions of X (¢) and D(¢), we obtain
1
(g) (t =)~ NI H(7)] gy 1V0(7) g, @7

()~ (N/4+8/2) gy ()l g,
0<7r<1 7

I

AN

IV0(r) g dr

N

Ot = O ey

(1)~ sup (| H (7)]| g

h
; d
S0P, Y gz dr

S O~ WHHRID)X (1)
and, using the fact that (1) ~ 7 when 7 > 1,

S —(N/4+5/2)| F )HBngVv(r)H%gldr

1 ’ )

t
S§E =) VI H @)Yy + IHT) g M IVo() Iy dr
< N/4 £ h
S (s YOI ) (s ||er<¢>\|35{2)

S )= (N/4ks/2) (1) =(N/441) g
1
a h h
+(( e M IHO ;m)(ls;gtufwvww)
t
> S (t — T>—(N/4+S/2) <T>—(a+1) dr
1
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t
2S N/4+s/2)< >—min(o¢+17N/4+1) dr
1

g < > (N/4+s/2)D<t)2.
Therefore, for ¢t > 2, we arrive at

t
(3.11)  \ (£ — ) N2 R (7,0%) (1) || 1 dr

’ < (1) (D1 4 X (1)),

The case t < 2 is obvious as (t) & 1 and (t —7) =& 1 for 0 <7 <t <2, and

t
(3.12)  \IHY (Veo')||pdr
0
S IH N e (22) V0l 1 2y S 1 o 39, HWHLl
N HHHL?O(BSJ)HU‘|}£%(B§]{2+1) S X(H)D(t).

From (3.9)(3.12), we get

t
J(t =)D F()|[ e dr S ()" (X (1) + D(1)?).
0 2,00

(B91)

Next, in order to bound the term of corresponding to g, we use the
decomposition
g:=G—v-Vd?
= —v-Vd7 +v-V(=A"'V0') + A7V P(v - Vol — H*Y, H*)
+ ATV (HYV H™ — H*V, HY).

Similar to (3.10)-(3.12), we have

t
J(t =)= N (Va9) | o dr S (1)" VR D(1)?
0

and
t

[t = m) N2 (VA padr S ()" NP (D(1)? 4 X (1)),
0
Similar to v - Vd¥, we have

t
J(t = 7))y V(=AY j00) + AV P - Vo1 dr
0
< ()W (D)2 4+ X (1)),

~
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For A='V;PH*V,H* + A~V (HIVV,H* — H*V,HY), similar to (3.9),
we have
t
S <t—T>_(N/4+S/2) HA—lePHlklelk+A—lvk(Hljlezk_HlkleZ])HleT
0

g <t>f(N/4+S/2)D(t)2.

Thus,

t

S (t — 7->*(N/4+s/2) HQ(T)H%;IW dr < <t>f(N/4+s/2) (X(1)2 + D(t)?),
0 ,00

and, the proof of (3.8)) is complete.

Combining (3.6) and (3.8), we conclude that for all ¢ > 0 and s €
(=N/2,2],

(3.13) (N2 (H )Y, S Do+ X (07 + D(1)

STEP 3: Decay estimates for the high frequencies of (VH v). Applying
the operator A, to the system (3.2), we deduce that (A,H, A,v) satisfies

(3.14) QAHT + AgAdY = — A (v- VH7) + A, F,
A AT — pAA Y — AJAHYT = —Ay(v-Vd7) + A,G.
Taking the L2-scalar product of the first equation of (3.14]) with AqH 4 and

uz/QAQAquj, and the second equation with Aqdij, we obtain the following
five identities:

1d

3.15
( ) 2 dt

—IAHY |72 + (AgAd7 | A;HY)
= —(A (v- VHY) | AHY) + (AgF | AgHY),

(3.16) wod AL HY |7, + B (AA 47| A2 A HY)

4
/’LQ . .. 2 i .. ILL2 . 2 i ..
= (g0 VHY)| A HY) + B (A F| 424, HY),
and
Ld, & ijne i 70712 \ 17 A i
(3.17) id*HAqd 172 + plAQgd? |72 — (AAH"Y | Agd?)

= _(Aq(v - Vd¥) | Aqdij) + (AqG | Aqdij)-
Applying the operation A to the first equation in (3.14) and taking the L2
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scalar product with Aqdij, and the second one with AqAH . we get

pod s A gij H i
(318)  —5 S(A,AHY | Agah) - B)ad,di 3,
I A A2 A )+ A A 2
2 q q 92 q L2
- —%(AqAF | Agdid) — g(AqG | AA HT) + g(AqA(u CVHY| Agd?)
+ %(Aq(v A | AA H).
Define

2
0 = A H 3 + Bl AA 2 + 1 Ay |3 — n( Ay AHT | Ay,
Employing Young’s inequality, we have
. L ,u2 . 19 1 . .. 9
(A AHT | Ayd®)| < B[ A& HI 3 + S| Agd ]
Hence, there exist positive constants ¢; and co such that
2<|AHT |2, + |AAHYT | Agd?2, < cra?
aoy < | AgHY |72 + [[AAGHY |72 + [[Agd? |72 < caay.
Thus,
ag = |[AAGH |2 + || Agd7 |2 for ¢ > qo.

Combined with (3.15)—(3.18)), this yields
1d ,
2 dt"
. .. . .. 2 . .. . ..
= —(Ay(v- VHY)| Ay HY) ~ (A, (0 THY) | 424, 7)
- (Aq(v ) Vdij) | Aqdij)
+ %(Aq/l(v VH)| Aydid) + %(Aq(v V)| AAHT)

(3.19) + 14403 + S1AA,H |3,

. . .. 2 . . .. . . ..
+ (A,F | AHY) + 5 (A, F | 22 A,HY) + (A4,G| A,d7)
lL[/ . . 04 /’1‘ . . 34
= 5 (AgAF | Aqd?) = 5 (A,G | AAGHY)
S aq([Ag(v - VHEY) |2 + [[AAg (v - VEY)|| 2 + || Ag(v - VA7) 2
+ 1 4,Fllz2 + 1 4,AF |2 + 144G ).
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For g > qo and for some ¢y = ¢(qp) > 0, we have

Ld o,
**Oé Cox
2 dt 0%

S ag([4q(v- VHY)| 12 + A4y (v - VHY)| 12 + || Ag(v - VdY) | 2
+ 1 AgFl2 + | AgAF | 2 + (| A4G | 2)
< (I(Fyg, AFq, Go)ll g2 + | Rq (v, H)|| 2 + || Ry (v, d7)|| 2
+ || Bi (v, H) | 2 + | Vol o rg) gy
where
F,=A,F, G,=AG,
with
Ry(v,b) :=[v-V,AJb=v-VAb— A,(v-Vb) forbe {HY b},
Ri(v,HY) = [v-V,0;A|H? = v-VOAHY — 8; Ay(v - VHY).
After time integration, we discover that

t
e“lag(t) < ag(0) + {7 (I[(Fy, AFy, Gg)ll g2 + || Ry (v, HY)|l 2
0

+ |1 Rg(0,d) | g2 + 1Bk (0, H?) 12 + | Vvl 1) dr.
For q > qo, we have o = ||[(AA,HY, Ayd¥)| 2. Then
() 1(AAGHY, Agd?) (1) 12 S (1) | (AAgHY, Agd?)(0)] 2
t
(t)* e T (| (Fy, AFy, Go)ll 2 + | Ry (v, H) | 2 + | Ry (0, d7) | 2
0
(v

+ HRk H”)HL2 + HV?)HLooaq) dr,

and multiplying both sides by 2(N/2-1)4, taking the supremum on [0, T}, and
summing over q > qg, we get

(320) ) AEdD) v

< (AHY , df HhN/z L+ Y sup ( O‘S e0(T=9(N/2=Vag g

<t<T
>0 0<t

with S, := 37 ; S! and
Sg = I(Fy, AFy, Gllr2, 7= |IRg(v, HY) |2, 85 o= [[Rq(v,d7)] 2,
= || Ry(v, HY) |l 2, Sq = Vol [[(AAGHY, Ayd?)| 2.
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Bounding the sum, for 0 < ¢ < 2, and taking advantage of Proposition [2.6]
we end up with

t 2
321) Y sup () |ewT 2N NIG (7 dr S| " 202G, (1) dr
> St<2 0¢>qo

(I(F, AF, G)thv/z L+ [Vl N/QH(H” d?,VH7)|| Nj2-1) AT

<) (IAF, G)Ilhmz L+ Vol N/zll(H” 7, VH)||, /2 1) dr

Ot I O e N

=: Q1+ Q2.
From Lemma [2.4] we bound the terms Q; and Q2 as follows:
2 2 2
AF || oy dr S\NF|" o dr S\ (VR0 HY (|2 ) dr
e (A TP
2
SV IVRol, N/2||H dP e dr
0
HHk]” N{Q)HvkleL%(BéV{Q) < X(2)27
2
h
§)||GHB§7T{21 dr
2
gé o V(=AY 0') + A7V Po - vvlufgg{ﬂ dr
2 . . . ..
+\ 1AV PHEY HE + A7V (HYV HE - H”“VZH”)Wgéqz_l dr
0 ,
2 2
SV 10l gy 1Vl vz dr + §IH | vyl V H]| gesos dir
0 ’ ’ 0 ’ ’
H HLoo(BN/2 1 HVUHL%(BéV{Z) + HHHLg(BéVF)HVHHL%(B;T{Z*l)
< X2,
and
2

VIVl o | (2, 2V HY) Jppon dr
2,1
0

S IVl ey II(H” & VH) oo ey S X(2)%.

Ly (B
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Therefore, for t < 2,

t

(3.22) > sup (1) | eolrD20N2hag dr < X (2)%

<t<
0>q0 "S5 0

To bound the supremum on [2, T'], we split the integral on [0, ¢] into integrals
on [0,1] and [1,¢], respectively. The [0, 1] part is easy to handle:

! 1
Z sup (t >a§ co(T—t)9(N/2— 1)q5 dr <Z sup ( >aefco/2t52(N/271)qudT

>% 2<t<T 0 2<t<T 0
1
<D0 2Wehag ar.
0g>qo
Hence
1
(3.23) > sup () e ag (1) dr < X (1)°
q>4q0 2stsT

Let us finally consider the [1,¢] part of the integral for 2 < ¢ < T. We shall
use repeatedly the inequalities

(3.24) 17Vl e 2, S DA,

which are straightforward for the high frequencies, while for the low frequen-
cies they stem from

IVl S () VA2

Loo(BN/Q) ~ <D(t)

oo Bl ) ~
Regarding the contribution of Sql, by Lemma we first notice that
t

Z sup (t)® S eco(‘rft)Q(N/Zfl)qS;(T) dr) < ||*(AF, G)H%OO(BN/%l)'
T (B2

<t<
q>q0 2=t=T

Now, product laws in tilde spaces ensure that

N/2)

« h < a—1 _ )
”T AFHZ%Q(Bé\{{Q*l) ~ ”T H||L%O(Bg{2)”7-vv”[/oo(3

The high frequencies of the first term are obviously bounded by D(T'):

a—1 h h <

As for the low frequencies of the first term, we notice that if N < 4 then for



200 D. Ding et al.

all small enough ¢ > 0,

(3.26) HT“”HH% BY/2) S 1lLIHLm(BN/z 2c)

< HTa 1— N/2+a7_N/2 cH HK

T

SISl pnoae) S DIT),
and if N > 5 then
(3.27) \IT“”HH%?(B%) S 7 IHHLOO(BQ )

< ||ro2N/A4 N/4+1H||e0o &)

STV @z, > D).
Combining —, we obtain
(3.28) ||r°‘—1H\|E?(B2N’{2) < D(T).
Therefore, using (3.24) and (3.28) we get

|7 AF || < D(T)>

SN/2—1
L@y > ~

Noticing that G = v - V(=A71V,0?) + A7IV,;P(v - Vol — HFV, H*) +
AW (HYY, H* — H*V,HY), similar to (3.28) we get

(3.29) 1m0l o 921y S D(T)-
2,1

Employing (3.24) and (3.29)), we obtain

|7 (v . V(—A”Vjvi) + Aflij(v . V’Ui)) HE%O(BQV{ZA)

-1 2
5 HTa UH~%0(B$”{2—1)HTVUHE%O(BQ’{?) SJ D(T) .

Product laws in tilde spaces ensure that

|7*(AIVP(H*Y H*) + A7V (HYV, H* — 0%V, HY7)) HLoo B

< |72 H 12
The high frequencies of the first term are obviously bounded by D(T):
a/2 h < «a h <
(3.30) P2 HIR sy S [T Hs s S D).

As for the low frequencies of the first term, we notice that if N < 4 then for
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all small enough € > 0,

(3.31)  |l7*2H]I; “2H

Loo(BN/2) ~ HT HLOQ(BN/Z 25)

5 H7-04/2_N/2+5N/2 EHHioo(BN/Q—QE) S D(T)7
7 P21

and if N > 5 then
(3.32) HTQ/ZHH% B[ S \ITa/zﬂHLm(B2 )
< ||7_a/2 N/4-1 N/4+1H||Z

Combining (3.30)—(3.32)), we obtain

< D(T).

OOB§1)N

(3.33) ||Ta/2H||~%o(Bg{2) < D(T).
Therefore,
|7 (AT P(H Y H*) + A7V (HYV, H — H%V, 1)) [ B
< D(T)2

Thus,
«a h < 2
|7 GH’L'%C,(BQT{Q—I) S D(T)".
We end up with

t
334) > sup (t)* e NNaGY (7 dr < X(T)? + D(T)?.

2<t<T
9290 "= = 1

To bound the term with Sg, we use the fact that

t t
e Ry (o, H)|| 2 dr < | Ry(ro, 7 HO)| oz [ 072 i
1 1

Hence, thanks to Lemma and Proposition

t

Z sup (t)o‘Seco(T*t)Q(N/Qfl)qS(?(T) dr

> 2<t<T 1
=40 S Z 2(N/271)qHRq(7_,U’ Tozleij)HLtoo(L%
q2>490
STVl vz 17 1HH (B2

The first term on the right side may be bounded thanks to 1) and the
high frequencies of the last term on the right side are obviously bounded
by D(T). As for the low frequencies of the last term, we notice that if N < 6
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then for all small enough ¢ > 0,

a=lp¢ < |[-a=1gr) e
H"E%O(Bé\]{2—1) ~ ”T H|’L%°(Bg{2_l_25)

I

< ||Ta—1/2—N/2+€TN/2—1/2—5HHZ N— < D(T),
~ LT (B )~
and if N > 7 then

7l oy S 1 Hl g
< a—N/4-2 N/4+1 4 <
ks Hll oz ) < D(T).
We eventually get
t
(3.35) Z sup (t)* S eCO(T_t)Q(N/2_1)qS§(T) dr < D(T)2.
S 2<t<T 1
>4
Similarly, we have
t
(3.36) > sup ()2 | e agE (1) dr < D(T)?.
g>q0 25T 1

Finally, using product laws, (3.24)), (3.28), (8.29) and Lemma[2.9] we obtain

t

(3.37) Z sup () S eCo(T*t)Q(N/%l)qS;l(T) dr

2<t<T 1

q>q0

S IVol e e IV H]

t

. B e co(T—t) -y

Ty U, e dr
< D(T)?

and

t

3.38 sup (1) \ e (7=t o(N/2=1)a g5y qr
(3.38) g%)%thU § 7 (T)

a—1
S 1790l g e |7 (V. )

t

al co(r—t), —«
LOO(BN/Q ) 221;th § e T %dr
< D(T).

Putting all the above inequalities (3.34] - together, we conclude that
t

(3.39) > 23?5T<t>a | ecolr=Do(N2=ag (7) dr < X(T)? + D(T)?.
q>qo == 1

Then plugging (3-22)), (3.23) and (3.39) into (3.20) yields
(3.40)  [(m)*(AHY, d9)|1% . njos <H(AH8],d”)HhN/2 X (T)+D(T)%.

Lge (B



Optimal decay rates for fluids 203

STEP 4: Decay estimates with gain of regularity for the high frequencies
of Vd¥. In order to close the estimates of the time-weighted energy func-
tional, this step is devoted to bounding the last terms of D(t). We shall use
the fact that the velocity d” satisfies the equation

(3.41) OdY — pAd? = AHY + G — v -VdY =: h.
Therefore,

O, (tAdY) — pAAdY) = AdY + tAh.
We deduce from Proposition 2.7 that

7 AdIR. pivgssy S 1AV

h
Ll(BN/Z 1t HTAhHZt‘”(Bg{%?’Y

whence, using the bounds given by Theorem [T.1]
ij || h
(3.42) HTVd”HE B/ < X(0) + ]\Th\\E?O(Bé\{{Q,I).

)N

In order to bound the first term of A, we notice that, because o« > 1 and

according to (3.40]), we have
o i
PAR oy S O AHTS e

2,1 )

< X(0)+ X ()2 + D)2

Noticing that G = v - V(=A"'V;v) + A7'V;P(v - Vo' — H*V,H™) +

AW (HYY H* — H*V,HY), from (3.24), (3.33) and the definition of

X (t) we have

(343)  |Ir(v-V(=4" Vo) + ATV P (v - Vo ))||’l N/2-1
L (Byy )

S X()D(t)

S Il e o 1790l e sy

and

(3.44)
HT(A—lvsz(Hlklezk) + A—lvk(Hljlezk o HlleH”))H}loo(BN/?—l)
2,1

SNrH - VH| g gvz-1) S HT”QHII2 < D(1)*.

BN{Q) ~
The third term of A is similar to (3.43)), and we obtain
VA AN <
70 Tas o, S XODO),

)f\J

Hence, reverting to (3.42)), we get

(3.45) |TVd % e S X(0)+ X (8)2 + D(t)2
Lt (B2,1 )
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Finally, adding the resulting inequality to (3.13) and (3.40]) yields, for all
t>0,

D(t) S X(0) + Do + [[(AH ,d )| n/or + X (1) + D(t)?
2,1
< Do + [(AHG  di )| njos + X (1) + D(t)%,
2,1

where we have used X (0)¢ = ||(H0,U0)H2N/2—1 S H(Ho,vo)||é_N/2. As The-
1 2

2, s}
orem ensures that X(¢) is small, one can conclude that (1.8) is fulfilled
for all time if Dy and ||(AH, dj )H; ~y2—1 are small enough. This completes
the proof of Theorem 2
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