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LOCAL CONVERGENCE FOR MULTISTEP HIGH ORDER
METHODS UNDER WEAK CONDITIONS

Abstract. We present a local convergence analysis for an eighth-order
convergent method in order to find a solution of a nonlinear equation in a
Banach space setting. In contrast to the earlier studies using hypotheses up
to the seventh Fréchet derivative, we use only hypotheses on the first-order
Fréchet derivative and Lipschitz constants. This way, we not only expand
the applicability of these methods but also propose a computable radius of
convergence for these methods. Finally, concrete numerical examples demon-
strate that our results apply to nonlinear equations not covered before.

1. Introduction. One of the most basic and important problem in nu-
merical analysis deals with finding a locally unique solution x* of the equa-
tion

(1.1) F(z) =0,

where F': D C X — Y is a Fréchet differentiable operator, X,Y are Banach
spaces and D is a convex subset of X. Let us also denote by L(X,Y) the
space of bounded linear operators from X into Y.

Finding z* is important, since numerous problems can be reduced to
equation using mathematical modeling [4}/5,9,/13}|18}21},22|. However,
it is not always possible to find the solution x* in closed form. Hence, most
methods are iterative. The convergence analysis of iterative methods is usu-
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ally divided into two categories: semi-local and local convergence analysis.
The semi-local convergence analysis is, based on the information around an
initial point, to give criteria ensuring the convergence of the method, while
the local convergence is based on the information around a solution to find
estimates of the radii of convergence balls. An important problem in the
study of iterative procedures is the region of accessibility. Therefore, it is
very important to propose the radius of convergence of iterative methods.

We study the local convergence of the three-step eighth-order convergent
method defined for each n =0,1,2,... by

(1.2) Yn = Tp — A;lF(xn), Tpil = Yn — 4B;1F(yn),

where 2o € D is an initial point, A, = A(zy,) = F'(z,,), By, = B(xn, yn) =
F'(x)+Q(xn)(F(xy))+ 2F' (%) + F'(y,) and for each x € D, Q(z)(-) :
Y — L(X,Y). That is, Q(z)(y) is a linear operator for each x € D and y € Y.
We can also write Q(z)(y) = Q(z,y). A possible choice for @ is

(1.3) Q(z)(F(z)) = F'(x).
Many other choices are possible. Method (1.2]) reduces to a fourth-order

convergent method studied in [20] in the special case, when X =Y = R, and
for

(1.4) Q(z)G(z) = G'(x),
where G(z) # 0 for each © € D — {z*}. Notice that if G = F then (|1.4)
reduces to ((1.3). In this case, the fourth-order convergence was shown in [20)|
using Taylor series expansions and hypotheses reaching up to the fourth-
order derivative of the involved function, although only the first derivative
appears in (1.2). The function G must satisfy some more conditions, to be
found in |20]. The hypotheses on the derivatives of F restrict the applicability
of method (|1.2). As a motivational example, define FF on X = Y = R,
D =1[-5/2,3/2] by
wnz? +a® —a2t, x#0,
(z) =
0, x =0.
Then z* =1,
F'(z) = 32% In2? 4 52" — 42 4 222,
F"(z) = 6zInz? 4+ 202 — 122 + 10z,
F"(z) = 61nz? 4 602% — 242 + 22.
Obviously the third-order derivative F"”(x) of the function involved is not
bounded on D. Notice in particular that there are a plethora of iterative

methods for approximating solutions of nonlinear equations [1-22]. These
results show that the initial point should be close to the required solution
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for the convergence of the corresponding methods. But, how close should
the initial point be to x* for the convergence to hold? These local results
give no information on the radius of the convergence ball for the correspond-
ing method. That is, the initial point is a shot in the dark. Moreover, no
computable error bounds on the distances ||z, — z*|| are provided or any
information on the uniqueness of the solution in a neighborhood of z*. We
address these problems for method in the next section.

In the present study, we expand the applicability of method by using
only hypotheses on the first-order derivative of ' and generalized Lipschitz
conditions. Moreover, we avoid using Taylor series expansions and use Lips-
chitz parameters instead. We apply the computational order of convergence
(COC) or the approximate computational order (ACOC) to determine the
order of the method, which does not require using derivatives of order higher
than one (see Remark 2.2(d)). Our computable error bounds ||z, — z*|, the
region of accessibility as well as the uniqueness of the solution depend on
Lipschitz-type constants (see Theorem and the numerical examples). It
is worth noticing that local convergence results can be used to demonstrate
the degree of difficulty in choosing the initial points. This choice is difficult in
general because of the need of knowing z* at least approximately. However,
in Remark 2.2(e), we provide classes of problems where we can find a radius
of convergence without actually knowing z* (see also Example .

The rest of the paper is organized as follows: Section 2 contains the
local convergence analysis of method . Numerical examples appear in
Section 3.

2. Local convergence. In this section, we present the local convergence
analysis of method , by using some scalar functions and parameters. Let
wp, Vg, wi be increasing and continuous functions defined on [0, +00) with
values in [0, +00) and with wg(0) = 0. Suppose that the equation

(2.1) plt) = 1
has at least one positive solution, where
1
p(t) = wo(t) + {vo(0t) dO wy (¢)t.
0
Denote by rg the smallest such solution. Let v : [0,79) — [0,4+00) and
w : [0,7r9) — [0,400) be increasing and continuous functions with w(0) = 0.
Moreover, define functions g1, h1, ¢ and h, on [0,79) by
() = fow((1—0)t)do . (5 v0(62) dO) (5, vo(62) df)uwn ()t
1 - )
1 — wo(t) (L = wo(t))(1 = p(t))
hi(t) = g1(t) — 1,
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1
() = 5 (w(t) + 4] 00(00) 8wy (1)t + 20 (51 + g1 (5)8) + wolor (6))).
0

ha(t) = a(t) — 1.

We have hi(0) = hy(0) = —1 < 0 and hq(t) — 400, hy(t) = +ocast — ;.
Thus, by the mean value theorem, hy and hy have zeros in (0, 7). Denote
by 7 and ry the smallest such zero of hy and hg, respectively. Furthermore,
define functions go and hy on [0,7¢) by

[, Sovba(t)t)de
92(t) =11 + Olw

ha(t) = g2(t) — 1.

9 (t)v

Again we have hy(0) = —1 < 0 and ha(t) — +oo as t — r, . Let 72 be the
smallest zero of hy in (0,74). Finally, define

(2.2) r = min{ry, ra}.

Then, for each t € [0,7),

(2.3) 0<p(t) <1,
(2.4) 0 < wo(t) < 1,
(2.5) 0<qi(t) <1,
(2.6) 0<q(t) <1,
(2.7) 0< ga(t) < 1.

Let U(z,p), U(z,p), be respectively the open and closed balls in X with
center z € X and of radius p > 0.

Next, we present the local convergence analysis of method ({1.2)) using the
preceding notations.

THEOREM 2.1. Let F': D C X — Y be a continuously Fréchet differen-
tiable operator. Let functions vg, v, wo, w,wy be as defined previously and let

ro be defined by (2.1). Suppose that there exists x* € D such that for each
x €D,

(2.8) F(z*)=0, F'(z*)7'eL(Y,X)
and

(2.9) 1F" (") (F (2) = F'(@")|| < wo ([l — 27[).
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Moreover, suppose that for each x,y € Do := D NU(z*,19),

(2.10) IF" (@)~ (F (2) = F' ()] < w(llx — yl)),
(2.11) I (@) < volllz — ™),

(2.12) 1F" (%) 7 F ()] < (|l = 27|,

(2.13) IF" (%) 71 Q() (F(2))]| < wi(llz — 2*|]),
(2.14) U(z*,7) C D,

where Q) is as defined previously and the radius of convergence r is given
by (2.2). Then the sequence {x,} generated for xzo € U(z*,r) — {x*} by
method ([1.2)) is well defined, remains in U(x*,r) for each n =0,1,2,... and
converges to x*. Moreover,
(2.15) [y — "] < gr([len — 2" [Dllen — 27| < llan — 2™ <,
(2.16) lzn = 2" < g2(llzn — 2F Dl — 27| < [len — 27|,
where the functions g1 and go are as defined previously. Furthermore, if
1
(2.17) Swg(HR) dd <1 forR>r,
0
then z* is the only solution of F(z) =0 in Dy := DNU(z*, R).
Proof. We shall show by induction that the sequence {z,} is well defined
in U(:L’ r) and converges to z*. From the hypothesis 2o € U(xz*,r) — {*},

. and ., we have
(2.18) ||F( ) THE (o) — F'(2%))|| < woll|lzo —*||) < wo(r) < 1.
It follows from ([2.18)) and the Banach Lemma on invertible operators [4}5]
that F'(zo)~! € L(Y,X) is well defined and
[ :
~ 1= wo([lzo — z*])
To show that yo is well defined, it sufﬁces by the ﬁrst substep of method
(1.2) that AO € L(Y,X). Using (2.1 . . and -, we get

(220)  F'(z")7 (Ao — F'(a"))l
< IF" (@)~ F (o) = F/ (@) + [ (zo) || [F" (%)~ Qo)

(2.19) |F" (o)~ F' (2)

1

< wo([|zo — 27|) +§vo Ollzo — 27||) df wi([lxo — 2™[|)]|zo — 27|
0
(r

= p(llzo — 7)) <p(r) <
so Ayt € L(Y,X) is well defined and
s —r
~ 1=p(llzo — 2*))

(2.21) 145 F (a%)
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In view of the relations (1.2)), (2.1), (2.2), (2.5), (2.10)), (2.11)), (2.18) and

(2.20), we get

(222)  lyo — =7
= |[(zo — a* — F'(x0) "' F(a0)) + F'(x0) "' (Ao — F'(w0)) Ay ' F ()]
< || F' (o) F' (%))

X H iF’(x*)_l(F’(x* FO(wo — %)) — F'(20)) (w0 — 2) deH
0

1 (20) " F ()| | F'(2*) ™ (Ao — F' (o))
X [[Ag " F' (@) | F' (")~ F (o)
_ low(@ = 0)llwo — a*[)) df g — o
- 1 —wo([lzo — =)
- Sovo(Bllzo — @) do §o v(llzo — =" ) dB wn (Jlzo — & ljwo — "I
(1 = wo(llzo — ) (1 = p(lwo — 2*[]))

= g1(llzo = 27|z — 27| < [0 — 27| <,

Wthh shows (2.18) for n = 0 and yo € U(z*,r). Next, we must show that

By' e L(Y,X). By 2), 2:2), 2-6), 2-9), @-11), (12) and (2:22), we get

in turn

(223)  (4F"(a")) " (Bo — 4F" ("))l

< [ IFE) 7 )~ F @O+ AIF ) Q) (Flao)

2” ((“y> *>>H+||F’<w*>1<F’<y0>—F’<x*>>||

< 3 (wolzo — *I) + Svowna:o—:c 1) d6wi (g — )0 — 27
+ 2wo(3(lao — 2* H+Hyo—x*u>>+wo<|ryo—x*u>)
< g(lleo — 2"l) < q(r) < 1,

so that By 1'e L(Y,X) is well defined by the second substep of method (T.2)
and
E :

~ 41 = q(flwo — =*[]))

Then, by the last substep of method (1.2), and by (2.1)), (2.2)), (2.7)), (2.11)),

(2:24) 1By (a%)
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(2.22) and (2.24)), we have
(225) o1 — ¥ < llyo — 2™ + 4l By F (@) | (@) T F(yo)

1 % * *
Yo v(Bllyo — 2"[1) df ga(|lxo — 2”|)[lxo — 27|
1 —q(llzo — z*|)

= g2([[zo = 2™[)[xo — 27| < [lzo — 27| <7,

which shows ([2.16)) for n = 0 and zy € U(x*, 7). By simply replacing g, yo, 1

by i, Yk, Tx+1 in the preceding estimates we arrive at (2.15) and ([2.16)).
Then, in view of the estimates

< g1(llwo — ™[0 — 27| +

(226)  floggr — 2" <cllag — 2| <7, = ga(llzo —27[]) €[0,1),
we deduce that limg oo 2 = * and xg1 € U(x™, 7).
Finally, to show the uniqueness part, let y* € D; with F(y*) = 0. Define
T = S(l] F'(x* 4+ 0(z* — y*)) df. Using (2.5) and (2.12)), we get
1 1
(2.27) |F'(@*)" T = F'(2")|| < {wo(Blly* — 2*[|) df < {wo(6R)d6 < 1.

0 0
It follows from ([2.27)) that T is invertible. Then, in view of the identity
(2.28) 0=F(@") - F(y") =T@"—y"),

we conclude that * = y*.

REMARK 2.2. (a) It follows from (2.10) that condition (2.12)) can be
replaced by

(2.29) v(t) =1+ wo(t) or v(t) =14 wo(re),
since
(2:30)  [|F'(2") T [(F'(2) = F'(2")) + F' ()]
=1+ |F' (") (F'(2) — F'(a"))|
<14 wo(llz —x*|]) =14+ we(t) for ||z —z*|] <rp.
(b) If wyq is strictly increasing, then we can choose
(2.31) ro = wy (1)
instead of (2.1)).

(c) If wp,w,v are constant functions (the proof of Theorem goes
through also in this case), then

(2.32) rp=—

and

(2.33) r<ry.
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Therefore, the radius of convergence r cannot be larger than the radius of
convergence r1 for Newton’s method

(2.34) Tpg1 = Tn — F'(2)  F (2).

Notice also that the earlier radius of convergence given independently by
Rheinboldt [19] and Traub [22] is

2
(2.35) TTR = E
and by Argyros |4,5],
2
(2.36) TA = Qwo + w0
where wy is the Lipschitz constant for on D. But
(2.37) w<w,  w < wi,
SO
(2.38) TR STA ST
and
(2.39) rrr/ra — 1/3  as wo/w — 0.

The radius of convergence g used in |4] is smaller than the radius rpg given
by Dennis and Schnabel [4],

1
2.40 < = — < .
( ) q < Tsh 2un TR

However, g cannot be computed using the Lipschitz constants.

(d) The order of convergence of method was shown in [20] using
hypotheses on up to the seventh-order derivative of F. We have only used
hypotheses on the first-order derivative of F'. The order of convergence can
be determined by using the computational order of convergence COC given
by

|znsa—z"|
. x —x*

(2.41) ¢ = lim — el
n—o00 ||xn+1—z*||

e

or the approximate computational order of convergence (ACOC) [14] given
by

In llznt2—=Tni1l
[onsi—2n]

(2.42) ¢ =

In

[ for sufficiently large n,
lzn—zn—1ll
which do not require higher than first derivatives. The parameter £* does not
even require the knowledge of x*. Notice also that in the case of convergence

there exists k = 0,1,2,... such that z, = x4+ = &*.
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(e) The results obtained here can be used for operators F' satisfying the
autonomous differential equation [41|5] of the form
(2.43) F'(z) = P(F(x))

where P is a known continuous operator. Since F'(z*) = P(F(z*)) = P(0),
we can apply the results without actually knowing the solution z*. As an
example let F'(z) = e® — 1. Then we can choose P(x) =z + 1.

3. Numerical examples and applications. We present some exam-
ples pertaining to the theoretical results of Section 2. We use the choice

of @ given by (1.3)) in all examples, so by (2.12) and (2.13)), we can set
wi (t) = v(t).

EXAMPLE 3.1. Let X =Y = C]0, 1] and consider the nonlinear integral
equation of mixed Hammerstein type [10L|13|, defined by

1
x(t)?
(3.1) x(s) = | G(s,1) <:c(t)3/2 + 2) dt,

0
where the kernel G is the Green function defined on [0, 1] x [0, 1] by

) =s)t, t<s,
(3.2) F(S’t)_{s(l—t), .

The solution z*(s) = 0 is the same as the solution of (|1.1)), where F': D C
C[0,1] — C[0,1] defined by
¢ 2
t
(3.3) F(@)(s) = 2(s) — | G(s, 1) <w<t)3/2+ x(z) )dt.
0
Notice that

(3.4) HiG(s,t) | < é
0

Then

Fa)yls) = (s) = |Gl )l 4 (1)),
0

so since F'(z*(s)) = I, we have
(35)  F' @) (F (@) = F')l < §Glle =yl + |z - yll).
Therefore, we can choose

wo(t) = w(t) = L(3tY/2 + 1),
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and by Remark 2.2(a),
vo(t) = v(t) =1+ wo(t).

The results in [13,20] cannot be used to solve this problem, since F’ is
not Lipschitz. However, our results do apply. Based on the above choices of
functions and (2.2)), we get » = 0.00619113.

EXAMPLE 3.2. Suppose that the motion of an object in three dimensions
is governed by the system of differential equations

fi(@) = fi(z) =1 =0,
(3.6) fy) —(e-1)y—-1=0,
f3(2) =1=0,
with z,y,z € D for f1(0) = f2(0) = f3(0) = 0. Then the solution of the

system is given for w = (z,y, 2)7 by the function F := (f1, fo, f3) : D — R3
defined by

e—1, r
(3.7) F(v) = <e” -1, —5 Y + v, z) :
The Fréchet derivative is given by
e* 0 0
F'lv)=10 (e—1y+1 0
0 0 1

Then wo(t) = Lot, w(t) = Lt and vo(t) (t) = M, where Ly =e—1 <
L = el/to = 1.789572397 and M = e/Lo = 1.7896. Consequently, we get
r = 0.0027781.

EXAMPLE 3.3. Let X =Y = C/[0, 1] be the space of continuous functions
defined on [0, 1], equipped with the max norm. Let D = U(0, 1). Define F
on D for each x € D by

1
(3.5) Fp)(x) = (x) — 5| 20,5(0)° do.
0
We get
1
(3.9) Fl(p(©))(z) = &(x) — 158:5090(0)25(9) df  for each £ € (2.
0
Then z* = 0,Ly = 7.5, L = 15 and M = 2. Using method (1.2)) for wg(t) =
Lot, vo(t) = v(t) = 2 and w(t) = Lt, we get r = 0.0013404.

EXAMPLE 3.4. Returning to the motivational example in the introduc-
tion of this paper, we have L = Ly = 96.662907 and M = 2. Using
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method (1.2)) for wo(t) = Lot,v(t) = 2,w(t) = Lt and v(t) = 6, we ob-
tain r = 0.001.
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