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ON LEAST SQUARES DISCRETE FOURIER ANALYSIS OF
UNEQUALLY SPACED DATA

Abstract. The problem of discrete Fourier analysis of observations at non-
equidistant times using the standard set of complex harmonics exp(i2πkt),
t ∈ R, k = 0,±1,±2, . . . , and the least squares method is studied. The
observation model yj = f(tj)+ηj , j = 1, . . . , n, is considered for f ∈ L2[0, 1],
where tj ∈ [(j − 1)/n, j/n), and ηj are correlated complex valued random
variables with Eηηj = 0 and Eη|ηj |2 = σ2η <∞. Uniqueness and finite sample
properties of the observed function Fourier coefficient estimators ĉk, k =
0,±1, . . . ,±m, where m < n/(8π), obtained by the least squares method,
as well as of the corresponding orthogonal projection estimator f̂N (t) =∑m

k=−m ĉk exp(i2πkt), where N = 2m+1, are examined and compared with
those of the standard Discrete Fourier Transform.

1. Introduction. Concepts of spectral analysis of unequally spaced data
considered so far are usually based on the least squares periodogram ap-
proach, i.e. fitting monochromatic harmonics to observations using the least
squares method. Such harmonics have the form a sin(ωt) + b cos(ωt), where
ω > 0, a, b, t ∈ R, or c exp(iωt), ω ∈ R, ω 6= 0, c ∈ C, possibly with
additive constant intercept term [3], [8], [9], [28], [29]. Discrete orthogonal-
ization of the set of such base functions fitted by the least squares method
was considered in [2]. Statistical aspects of the periodogram approach were
investigated in particular in [4], [13], [24] and relevant algorithms together
with their numerical features are examined in [11].

For equidistant observation times the periodogram values at discrete fre-
quencies ωk = 2πk/n, k = 0,±1, . . . ,±[(n − 1)/2], where n is the number
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of observations and [a] denotes the integer part of a ∈ R, can be calculated
using the Discrete Fourier Transform (DFT) [5] implemented in Fast Fourier
Transform numerical procedures [25]. In the present work the problem of
similar discrete Fourier analysis of observations at non-equidistant times is
examined. Namely, analogously to the case of standard DFT we shall deter-
mine the coefficients of a linear combination of base harmonics exp(i2πkt),
k = 0,±1, . . . ,±m, where m ∈ N, t ∈ R, by fitting such a trigonometric
polynomial to the observed data using the least squares method.

Let yj , j = 1, . . . , n, be observations at times tj ∈ [0, 1], according to
the model yj = f(tj) + ηj , where f : [0, 1] → C is an unknown func-
tion and ηj , j = 1, . . . , n, are correlated complex valued random variables
with zero mean value and finite variance σ2η > 0. Furthermore, suppose
tj ∈ Ij = [(j − 1)/n, j/n), j = 1, . . . , n, i.e. we consider an irregular de-
sign observation model. Alternatively, we can assume that tj = tmj + ξj ,
j = 1, . . . , n, represent the equidistant observation times tmj = (j − 1/2)/n
(midpoints of the intervals Ij) distorted by some bounded deterministic
or random errors ξj which satisfy |ξj | < 1/(2n), j = 1, . . . , n; e.g., such
distortions can be realizations of independent and identically distributed
random variables with uniform or triangular distribution on the interval
(−1/(2n), 1/(2n)), independent of the observation errors.

In order to approximate the unknown function f we shall use the com-
plete orthonormal system of trigonometric functions ek(t) = exp(i2πkt),
t ∈ [0, 1], k = 0,±1, . . . , from the Hilbert space L2[0, 1], so

(1)

1�

0

ek(s)el(s) ds = δkl, k, l = 0,±1, . . . ,

where δkl denotes the Kronecker delta. Putting

eN (t) = (e−m(t), e−m+1(t), . . . , em(t))
T

for N = 2m+ 1, m = 0, 1, . . . , and t ∈ [0, 1], we have

(2) ‖eN (t)‖2 = eN (t)T eN (t) =

m∑
k=−m

|ek(t)|2 = 2m+ 1 = N.

Now, we can represent f ∈ L2[0, 1] as

(3) f(t) = fN (t) + rN (t) =
m∑

k=−m
ckek(t) + rN (t) = eN (t)T cN + rN (t),

where
cN = (c−m, c−m+1, . . . , cm)

T
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is the vector of Fourier coefficients given by

ck =

1�

0

f(s)ek(s) ds, k = 0,±1, . . . .

As an estimator of the vector cN , for fixed m, we take the vector ĉN =
(ĉ−m, ĉ−m+1, . . . , ĉm)

T obtained by the least squares method, i.e.

ĉN = argmin
a∈CN

n∑
j=1

|yj − eN (tj)Ta|2,

and we construct the corresponding estimator of the orthogonal projection of
the function f on the N -dimensional linear subspace Vm=span{e−m, e−m+1,
. . . , em}:

f̂N (t) =
m∑

k=−m
ĉkek(t) = eN (t)T ĉN .

The vector ĉN can be obtained as a solution of the normal equations

(4) Gnĉ
N = gn,

where

Gn =
1

n

n∑
j=1

eN (tj)e
N (tj)

T , gn =
1

n

n∑
j=1

yjeN (tj).

In view of (3) we see immediately that

(5) ĉN = cN +G−1n

(
1

n

n∑
j=1

rN (tj)eN (tj)

)
+G−1n

(
1

n

n∑
j=1

ηjeN (tj)

)
.

It should be noted that for the equidistant observation times t0j = (j−1)/n,
j = 1, . . . , n, the well-known orthogonality relations [5]

(6)
1

n

n∑
j=1

ek(t0j)el(t0j) =
1

n

n∑
j=1

exp(i2π(k − l)(j − 1)/n) = δkl

for k, l = 0,±1, . . . ,±[(n − 1)/2] imply Gn = IN . Consequently, for N =
2m + 1 ≤ n the corresponding coefficients determined by the least squares
method are easily computed as c̃N = 1

n

∑n
j=1 yje

N (t0j) or

c̃k =
1

n

n∑
j=1

yj exp(−i2πk(j − 1)/n) for k = 0,±1, . . . ,±[(n− 1)/2];

these are the standard DFT coefficients [5]. The orthogonal projection esti-
mator corresponding to the DFT coefficients will be denoted as

f̃N (t) =

m∑
k=−m

c̃kek(t) = eN (t)T c̃N ,
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and for N = 2m+1 = n its point values f̃N (t0j) interpolate the observations,
i.e. f̃N (t0j) = yj , j = 1, . . . , n, according to the known DFT properties [5].

We shall need the following lemmas which were proved in [20]. We repeat
the proofs for completeness.

Lemma 1.1. Let h = (h1, . . . , hn)
T ∈ Cn. Then

1

n2

n∑
j=1

n∑
k=1

hjhke
N (tj)

TG−1n eN (tk) ≤
1

n

n∑
j=1

|hj |2.

Proof. Define an = G−1n
(
1
n

∑n
k=1 hke

N (tk)
)
. The inequality

0 ≤ 1

n

n∑
j=1

|hj − eN (tj)Tan|2

=
1

n

n∑
j=1

|hj |2 −
1

n2

n∑
j=1

n∑
k=1

hjhke
N (tj)

TG−1n eN (tk)

completes the proof.

Lemma 1.2. Let G be a hermitian nonnegative definite N × N matrix.
Then

〈G2a, a〉 = aTG2a ≤ λmax(G)a
TGa ≤ ‖G‖aTGa = ‖G‖〈Ga, a〉

for a ∈ CN , where λmax(G) is the largest eigenvalue of G.

Proof. Since G is hermitian and nonnegative definite, we have

aTG2a = aTG1/2GG1/2a ≤ λmax(G)‖G1/2a‖2

= λmax(G)a
TGa ≤ ‖G‖aTGa.

The outline of the work is the following. Sufficient conditions for unique-
ness and numerical stability of the Fourier coefficient estimators are derived
in Section 2. Section 3 is devoted to their statistical characteristics, while in
Sections 4–5 finite sample and asymptotic properties of the orthogonal pro-
jection estimators constructed using the Fourier coefficient estimators are
dealt with.

2. Uniqueness and stability of Fourier coefficient estimators. In
order to pursue our investigations of the estimators we have to find an upper
bound for ‖G−1n ‖, which is based on the ideas from [1]. Namely, we shall find
a bound for the norm of the hermitian matrix ∆n = I −Gn observing that
for v =

∑m
k=−m akek, where a = (a−m, a−m+1, . . . , am−1, am)

T ∈ CN ,

〈∆na, a〉 = ‖a‖2−〈Gna, a〉 = ‖v‖22−
1

n

n∑
j=1

|eN (tj)Ta|2 = ‖v‖22−
1

n

n∑
j=1

|v(tj)|2.
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Thus, according to the well known results on hermitian linear operators [30],

(7) ‖∆n‖ = sup
‖v‖2=1

∣∣∣∣ 1n
n∑
j=1

|v(tj)|2 − ‖v‖22
∣∣∣∣.

So the next aim is to derive suffcient conditions for ‖∆n‖ ≤ α, where 0 <
α < 1, which further implies that Gn = I −∆n is invertible and ‖G−1n ‖ ≤∑∞

k=0 α
k = 1/(1 − α), according to the classical results from functional

analysis [23]. This can be achieved using the following lemma.

Lemma 2.1. For any trigonometric polynomial v ∈ Vm = span{e−m,
e−m+1, . . . , em−1, em}∣∣∣∣ 1n

n∑
j=1

|v(tj)|2 − ‖v‖22
∣∣∣∣ ≤ 8π

n
m‖v‖22.

Proof. Since tj ∈ Ij = [(j − 1)/n, j/n), j = 1, . . . , n, we have∣∣∣∣ �
Ij

|v(s)|2 ds− 1

n
|v(tj)|2

∣∣∣∣ = ∣∣∣ �
Ij

(
|v(s)|2 − |v(tj)|2

)
ds
∣∣∣

≤
�

Ij

∣∣|v(s)|2 − |v(tj)|2∣∣ ds ≤ 1

n

�

Ij

2|2v(s)v′(s)| ds

=
4

n

�

Ij

|v(s)v′(s)| ds,

and by summing over all intervals Ij , j = 1, . . . , n, we have∣∣∣∣1�
0

|v(s)|2 ds− 1

n

n∑
j=1

|v(tj)|2
∣∣∣∣ ≤ 4

n

1�

0

|v(s)v′(s)| ds.

Orthogonality of the basis functions ek, k = 0,±1, . . . , (see (1)) allows us to
derive immediately the bound ‖v′‖2 ≤ 2πm‖v‖2 (Bernstein inequality in the
L2-norm [31]). Applying the Schwarz inequality together with the Bernstein
inequality proves the lemma.

Let us also recall the famous Koksma inequality for quasi Monte Carlo
numerical integration [12]:

If the real valued function g : [0, 1] → R has bounded variation V (g) on
[0, 1] and x1, . . . , xn ∈ [0, 1) are arbitrary points, then∣∣∣∣1�

0

g(s) ds− 1

n

n∑
j=1

g(xj)

∣∣∣∣ ≤ V (g)D∗n(S),

where D∗n(S) is the star discrepancy of the point set S = {x1, . . . , xn}.
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The star discrepancy is defined and characterised for 0 ≤ x1 ≤ · · · ≤
xn < 1 as follows [12]:

D∗n(S) = sup
0<s≤1

∣∣∣∣ 1n
n∑
j=1

χ[0,s)(xj)− s
∣∣∣∣ = 1

2n
+ max

1≤j≤n

∣∣∣∣xj − 2j − 1

2n

∣∣∣∣,
where χ[0,s) denotes the characteristic function of the interval [0, s).

We can adapt the Koksma inequality to our case by putting g(x) =
|v(x)|2 for x ∈ [0, 1] and xj = tj , j = 1, . . . , n, which results in∣∣∣∣1�

0

|v(s)|2 ds− 1

n

n∑
j=1

|v(tj)|2
∣∣∣∣ ≤ (V (<[v]2) + V (=[v]2))D∗n(S),

where

D∗n(S) =
1

2n
+ max

1≤j≤n

∣∣∣∣tj − 2j − 1

2n

∣∣∣∣ = 1

2n
+ max

1≤j≤n
|tj − tmj |,

and the sum of variations can be easily estimated using the Schwarz inequa-
lity:

V (<[v]2) + V (=[v]2) ≤ 2

1�

0

|2v(s)v′(s)| ds ≤ 4‖v‖2‖v′‖2 ≤ 8πm‖v‖22.

Hence, a lemma similar to 2.1 can be proved in the more general case of
tj , tmj ∈ Jj , where the intervals Jj , j = 1, . . . , n, form a partition of [0, 1]
(i.e. are disjoint and

⋃n
j=1 Jj = [0, 1]), and max1≤j≤n |Jj | ≤ C/n for C > 0.

Now, it is easy to see from (7) and Lemma 2.1 that ‖∆n‖ ≤ α for m
such that 8πm/n ≤ α, which means that invertibility of Gn together with
the inequality ‖G−1n ‖ ≤ 1/(1− α) is ensured for 0 < α < 1 and

(8) m ≤ nα/(8π) < n/(8π).

Since α0 = [n/(8π)]8π/n < 1, the above inequality shows that it is possible
to compute uniquely N = 2m+ 1 coefficients, where m ≤ [n/(8π)].

Moreover, if Hn is the n×N matrix with elements hjk=ek−m−1(tj)/n,
j = 1, . . . , n, k = 1, . . . , 2m + 1 = N , then obviously Gn = nH∗nHn, gn =
H∗ny, where M∗ denotes the hermitian transpose of any matrix M with
complex entries and y = (y1, . . . , yn)

T is the vector of observations. So for
any vector a ∈ CN ,

〈Gna, a〉 = n〈H∗nHna, a〉 = n〈Hna,Hna〉 = n‖Hna‖2,
which yields ‖Hn‖ = ‖H∗n‖ = (‖Gn‖/n)1/2. Therefore, if condition (8) is
satisfied, then also ‖Gn‖ = ‖I−∆n‖ ≤ 1+α < 2, and in consequence by (4),

(9) ‖ĉN‖ ≤ ‖G−1n ‖ ‖gn‖ ≤
1

1− α
‖H∗n‖ ‖y‖ <

21/2

n1/2(1− α)
‖y‖.

This ensures stability of the estimates ĉN .
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In the DFT case the vectors (ek(t01), ek(t02), . . . , ek(t0n))
T , k = 0,±1,

. . . ,±[(n − 1)/2)], are orthogonal by (6), while for other observation times
the vectors (ek(t1), . . . , ek(tn))T , k = 0,±1, . . . ,±[n/(8π)], (i.e. the columns
of the matrix nHn) are linearly independent, which follows from the invert-
ibility of Gn = nH∗nHn. Hence, using Gram–Schmidt orthonormalization
in Cn, we can get the standard QR decomposition nHn = QnRn, where Qn
is a unitary matrix and Rn is a nonsingular upper triangular matrix. Further
the equality ‖y − nHnĉ

N‖ = ‖y − QnRnĉN‖ implies that the least squares
coefficient estimators corresponding to the orthonormal basis are obtained
by the linear transformation RnĉN . A similar orthogonalization concept was
proposed by Ferraz-Mello [2] who used only three basis functions 1, sin(ωt),
cos(ωt), where ω > 0, to approximate real valued observation data.

3. Statistical characteristics of the Fourier coefficient estima-
tors. Let us now estimate the squared bias ‖cN − Eη ĉ

N‖2 and variance
Eη‖ĉN − Eη ĉN‖2 of the estimators ĉN , which is the subject of the two lem-
mas below.

Lemma 3.1. If m ≤ [nα/(8π)], where 0 < α ≤ [n/(8π)]8π/n, and N =
2m+ 1, then

Eη‖ĉN − Eη ĉN‖2 ≤
N

n2(1− α)2
n∑
j=1

n∑
k=1

|Eηηjηk|

for correlated observation errors, and
N

2n
σ2η < Eη‖ĉN − Eη ĉN‖2 ≤

N

n(1− α)
σ2η

for uncorrelated errors.
In the DFT case, where t0j = (j− 1)/n, j = 1, . . . , n, if m ≤ [(n− 1)/2],

then

Eη‖c̃N − Eη c̃N‖2 ≤
N

n2

n∑
j=1

n∑
k=1

|Eηηjηk|

for correlated observation errors, and

Eη‖c̃N − Eη c̃N‖2 =
N

n
σ2η

for uncorrelated errors.

Proof. In view of decomposition (5) we obtain immediately

Eη‖ĉN − Eη ĉN‖2 = Eη

∥∥∥∥G−1n ( 1

n

n∑
j=1

ηjeN (tj)

)∥∥∥∥2
=

1

n2

n∑
j=1

n∑
k=1

Eηηjηk〈G−1n eN (tj), G
−1
n eN (tk)〉
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≤ 1

n2

n∑
j=1

n∑
k=1

|Eηηjηk|‖G−1n ‖2‖eN (tj)‖ ‖eN (tk)‖

≤ N

n2(1− α)2
n∑
j=1

n∑
k=1

|Eηηjηk|,

where we have used the Schwarz inequality and the bound ‖G−1n ‖ ≤ (1−α)−1
together with (2), so the proof for correlated errors is complete.

For uncorrelated errors we obtain analogously

Eη‖ĉN − Eη ĉN‖2 =
σ2η
n2

n∑
j=1

tr (eN (tj)
TG−1n G−1n eN (tj))

=
σ2η
n

tr

(
1

n

n∑
j=1

eN (tj)e
N (tj)

TG−1n G−1n

)

=
σ2η
n

tr(GnG
−1
n G−1n ) =

σ2η
n

tr (G−1n ),

and further
N

2n
σ2η <

σ2η
n

tr(G−1n ) ≤ N

n(1− α)
σ2η,

since λmax(G
−1
n ) ≤ ‖G−1n ‖ ≤ (1 − α)−1 and λmin(G

−1
n ) = λmax(Gn)

−1 ≥
‖Gn‖−1 ≥ (1 + α)−1 > 1/2 (as remarked in Section 2, the condition of the
lemma ensures that ‖G−1n ‖ ≤ (1 − α)−1 as well as ‖Gn‖ ≤ 1 + α < 2), and
the lemma is proved.

Lemma 3.2. If m ≤ [nα/(8π)], where 0 < α ≤ [n/(8π)]8π/n, and rN =
f − fN , where N = 2m+ 1, then

‖cN − Eη ĉN‖2 ≤
1

n(1− α)

n∑
j=1

|rN (tj)|2.

In the DFT case, where t0j = (j − 1)/n, j = 1, . . . , n, if m ≤ [(n − 1)/2],
then

‖cN − Eη c̃N‖2 ≤
1

n

n∑
j=1

|rN (t0j)|2.

Proof. Using again the decomposition (5) and putting

an =
1

n

n∑
k=1

rN (tk)eN (tk)
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we can write, taking into account Lemmas 1.1 and 1.2,

‖cN − Eη ĉN‖2 = ‖G−1n an‖2 = 〈G−1n G−1n an, an〉 ≤ (1− α)−1〈G−1n an, an〉

=
1

n2(1− α)

n∑
j=1

n∑
k=1

rN (tj)rN (tk)e
N (tj)

TG−1n eN (tk)

≤ 1

n(1− α)

n∑
j=1

|rN (tj)|2,

which proves our assertion.

In the DFT case the orthogonality relations (6) ensure that for m ≤
[(n− 1)/2],

s̃N =
1

n

n∑
j=1

|yj − eN (t0j)T c̃N |2 =
1

n

n∑
j=1

|yj |2 −
m∑

k=−m
|c̃k|2 =

1

n
‖y‖2 − ‖c̃N‖2,

and so ‖c̃N‖2 ≤ ‖y‖2/n (equality holds for N = 2m + 1 = n). For tj ∈
[(j − 1)/n, j/n), j = 1, . . . , n, the well known properties of the orthogonal
projection related to the estimator ĉN yield

ŝN =
1

n

n∑
j=1

|yj − eN (tj)T cN |2 =
1

n
‖y − nHnĉ

N‖2

=
1

n
〈y − nHnĉ

N , y − nHnĉ
N 〉 = 1

n
〈y − nHnĉ

N , y〉

=
1

n
‖y‖2 − n 1

n
〈Hnĉ

N , y〉 = 1

n
‖y‖2 − 〈G−1n H∗ny,H

∗
ny〉,

where we have used the equality ĉN = G−1n gn = G−1n H∗ny. Obviously H∗ny =

(d̂−m, d̂−m+1, . . . , d̂m)
T , where dk = 1

n

∑n
j=1 yjek(tj), k = 0,±1, . . . ,±m,

m ≤ [n/(8π)]. One can see immediately the similarity of the formula for s̃N
and the one for ŝN .

As remarked in the proof of Lemma 3.1, for m ≤ [nα/(8π)], where 0 <
α ≤ [n/(8π)]8π/n, we know that λmax(G

−1
n ) ≤ ‖G−1n ‖ ≤ (1 − α)−1 and

λmin(G
−1
n ) = λmax(Gn)

−1 ≥ ‖Gn‖−1 ≥ (1 + α)−1 > 1/2, so we easily obtain
the following lower and upper bounds on ŝN :

1

n
‖y‖2 − 1

1− α
yTHnH

∗
ny ≤ ŝN ≤

1

n
‖y‖2 − 1

2
yTHnH

∗
ny,

or otherwise
1

n
‖y‖2 − 1

1− α

m∑
k=−m

|d̂k|2 ≤ ŝN ≤
1

n
‖y‖2 − 1

2

m∑
k=−m

|d̂k|2.

Since the vector ĉN is obtained by a linear transformation of the vector
of observations y, in the case of gaussian observation errors the coefficient
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estimators also have gaussian distribution. This fact enables construction of
confidence intervals with specified significance level for such coefficients [22].

4. Properties of the projection estimators. Let us observe that for
m ≤ [nα/(8π)], where 0 < α ≤ [n/(8π)]8π/n, the following bound can be
deduced from (9) using the Schwarz inequality together with (2):

|f̂N (t)| ≤ N1/2‖ĉN‖ ≤ (2m+ 1)1/221/2

(1− α)n1/2
‖y‖

≤
[

1

21/2π1/2(1− α)
+

21/2

(1− α)n1/2

]
‖y‖

for t ∈ [0, 1], i.e. the estimator represents a continuous linear operator f̂N :
Cn → C[0, 1]. Similarly in the DFT case the inequality ‖c̃N‖2 ≤ ‖y‖2/n
valid for m ≤ [(n− 1)/2] yields

|f̃N (t)| ≤ N1/2‖c̃N‖ ≤ (2m+ 1)1/2

n1/2
‖y‖ ≤ ‖y‖

for t ∈ [0, 1].
One can also examine the average sample error

R(f̂N ) = Eη
1

n

n∑
j=1

|f(tj)− f̂N (tj)|2,

which is an approximation of the Integrated Mean Square Error (IMSE):

R(f̂N ) =
1

n

n∑
j=1

Eη|f(tj)− f̂N (tj)|2 ∼= Eη‖f − f̂N‖22,

since tj ∈ Ij = [(j − 1)/n, j/n), j = 1, 2, . . . , n. The standard variance plus
squared bias decomposition of R(f̂N ) yields

Eη
1

n

n∑
j=1

|f(tj)− f̂N (tj)|2

=
1

n

n∑
j=1

|f(tj)− Eηf̂N (tj)|2 +
1

n

n∑
j=1

Eη|f̂N (tj)− Eηf̂N (tj)|2

≤ 1

n

n∑
j=1

Eη
∣∣eN (tj)T (ĉN − Eη ĉN )∣∣2 + 1

n

n∑
j=1

|f(tj)− v(tj)|2

for v ∈ Vm = span{e−m, e−m+1, . . . , em}, since the least squares estimation
principle implies that for such a trigonometric polynomial,

1

n

n∑
j=1

|f(tj)− Eηf̂N (tj)|2 ≤
1

n

n∑
j=1

|f(tj)− v(tj)|2.
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It follows that for noiseless observations of f ∈ Vm, and N = 2m + 1, the
projection estimator f̂N interpolates the function values f(tj), j = 1, . . . , n,
if m ≤ [n/(8π)].

The sum of the variance terms is computed in the following lemma.

Lemma 4.1. If m ≤ [nα/(8π)], where 0 < α ≤ [n/(8π)]8π/n, and N =
2m+ 1, then

1

n

n∑
l=1

Eη|eN (tl)T (ĉN − Eη ĉN )|2 ≤
N

n2(1− α)

n∑
j=1

n∑
k=1

|Eηηjηk|

for correlated observation errors, and

1

n

n∑
l=1

Eη|eN (tl)T (ĉN − Eη ĉN )|2 =
N

n
σ2η

for uncorrelated errors.
In the DFT case, where t0l = (l − 1)/n, l = 1, . . . , n, if m ≤ [(n− 1)/2],

then
1

n

n∑
l=1

Eη|eN (t0l)T (c̃N − Eη c̃N )|2 ≤
N

n2

n∑
j=1

n∑
k=1

|Eηηjηk|

for correlated observation errors, and

1

n

n∑
l=1

Eη|eN (t0l)T (c̃N − Eη c̃N )|2 =
N

n
σ2η

for uncorrelated errors.

Proof. As in the earlier proofs, using the decomposition (5) we can write

1

n

n∑
l=1

Eη|eN (tl)T (ĉN − Eη ĉN )|2 =
1

n

n∑
l=1

Eη

∣∣∣∣eN (tl)TG−1n ( 1

n

n∑
j=1

ηjeN (tj)

)∣∣∣∣2
=

1

n3

n∑
l=1

n∑
j=1

n∑
k=1

Eηηjηke
N (tk)

TG−1n eN (tl)e
N (tl)

TG−1n eN (tj)

=
1

n2

n∑
j=1

n∑
k=1

Eηηjηke
N (tk)

TG−1n

(
1

n

n∑
l=1

eN (tl)e
N (tl)

T

)
G−1n eN (tj)

=
1

n2

n∑
j=1

n∑
k=1

Eηηjηke
N (tk)

TG−1n eN (tj)

≤ 1

n2(1− α)

n∑
j=1

n∑
k=1

|Eηηjηk| ‖eN (tk)‖ ‖eN (tj)‖,
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where we have used the bound ‖G−1n ‖ ≤ (1 − α)−1, so the first assertion
is proved in view of (2). For uncorrelated observation errors we analogously
obtain

1

n

n∑
l=1

Eη|eN (tl)T (ĉN − Eη ĉN )|2 =
σ2η
n2

n∑
k=1

tr(eN (tk)
TG−1n eN (tk))

=
σ2η
n

tr

(
1

n

n∑
k=1

eN (tk)e
N (tk)

TG−1n

)
=
σ2η
n

tr(GnG
−1
n ) =

N

n
σ2η,

which is our second assertion.

Hence, in the case of uncorrelated observation errors we have, for m ≤
[n/(8π)] and v ∈ Vm,

(10)
N

n
σ2η ≤ R(f̂N ) ≤

1

n

n∑
j=1

|f(tj)− v(tj)|2 +
N

n
σ2η.

Furthermore, in view of the upper bound on the average sample error R(f̂N )
and the classical results on uniform trigonometric approximation of continu-
ous periodic functions [31], we can easily obtain conditions for convergence of
this error to zero for such functions. Namely, we can formulate the following
theorem.

Theorem 4.1. If the observation errors are uncorrelated and the se-
quence of natural numbers m(n), n = 1, 2 . . ., satisfies

m(n) ≤ [n/(8π)], lim
n→∞

m(n) =∞, lim
n→∞

m(n)/n = 0,

and N(n) = 2m(n)+1, then the projection estimator f̂N(n) of the regression
function f ∈ C[0, 1] such that f(0) = f(1) is consistent in the sense of the
average sample error, i.e.

lim
n→∞

R(f̂N(n)) = 0.

A similar result for a wider function class can be obtained for observa-
tion times tj = tmj + ξj , j = 1, . . . , n, where the equidistant times tmj =
(j − 1/2)/n are distorted by some random errors ξj which are independent
and have identical distribution supported on (−1/(2n), 1/(2n)), and are in-
dependent of the observation errors ηj , j = 1, . . . , n.

Observe first that for any probability density function % ∈ L1(−1, 1) the
function %n(s) = 2n%(2ns) is a probability density on (−1/(2n), 1/(2n)), n =
1, 2, . . . , and if % is bounded, i.e. 0 ≤ % ≤ M < ∞, then 0 ≤ %n ≤ 2nM .
Hence, assume that the distribution of the random distortions ξj , j =
1, . . . , n, is represented by a bounded probability density % ∈ L1(−1, 1).
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Now, putting v = fN ∈ Vm for N = 2m+ 1 and tj = tmj + ξj , j = 1, . . . , n,
in (10) yields

N

n
σ2η ≤ EξR(f̂N ) ≤

1

n

n∑
j=1

Eξ|f(tmj + ξj)− fN (tmj + ξj)|2 +
N

n
σ2η,

which under our assumptions on distortions gives

N

n
σ2η ≤ EξR(f̂N ) = EξEη

1

n

n∑
j=1

|f(tmj + ξj)− f̂N (tmj + ξj)|2

≤ 1

n

n∑
j=1

1/(2n)�

−1/(2n)

|f(tmj + s)− fN (tmj + s)|22n%(2ns) ds+ N

n
σ2η

≤ 2M

n∑
j=1

j/n�

(j−1)/n

|f(u)− fN (u)|2 du+
N

n
σ2η = 2M‖f − fN‖22 +

N

n
σ2η.

Hence, we can formulate the following theorem.

Theorem 4.2. If the observation errors are uncorrelated, the density
of distortions distribution % ∈ L1(−1, 1) is bounded by M , and m(n) ≤
[n/(8π)], then for N(n) = 2m(n) + 1 and f ∈ L2[0, 1] the average sample
error of the projection estimator f̂N(n) satisfies

N(n)

n
σ2η ≤ EξEη

1

n

n∑
j=1

|f((j − 1/2)/n+ ξj)− f̂N(n)((j − 1/2)/n+ ξj)|2

≤ 2M‖f − fN(n)‖22 +
N(n)

n
σ2η.

Of course for any f ∈ L2[0, 1] we have ‖f − fN‖22 → 0 as N → ∞.
Moreover, in the case of observation times involving distortions, the lemmas
of the previous section enable proving another theorem on convergence of the
Integrated Mean Square Error of the projection estimator for f ∈ L2[0, 1].

Theorem 4.3. If the observation errors are uncorrelated, the density
% ∈ L1(−1, 1) of distortions is bounded by M , and m(n) ≤ [n/(16π)], then
for N(n) = 2m(n) + 1 and f ∈ L2[0, 1] the Integrated Mean Square Error of
the projection estimator f̂N(n) satisfies

N(n)

2n
σ2η < EξEη‖f − f̂N(n)‖22 ≤ (1 + 4M)‖f − fN(n)‖22 +

2N(n)

n
σ2η.

Proof. The condition m(n) ≤ [n/(16π)] corresponds to choosing α =

1/2 in (8), so it ensures existence of the projection estimator f̂N(n), and
taking into account orthonormality of the trigonometric system used in its



220 W. Popiński

construction (see (1)) we can write

Eη‖f − f̂N(n)‖22 = Eη‖f − fN(n) + fN(n) − f̂N(n)‖22
= ‖f − fN(n)‖22 + Eη‖fN(n) − f̂N(n)‖22
= ‖f − fN(n)‖22 + Eη‖cN(n) − ĉN(n)‖2

= ‖f − fN(n)‖22 + ‖cN(n) − Eη ĉN(n)‖2 + Eη‖cN(n) − Eη ĉN(n)‖2.
For α = 1/2 Lemmas 3.1 and 3.2 yield further

N(n)

2n
σ2η < Eη‖f − f̂N(n)‖22

≤ ‖f − fN(n)‖22 +
2N(n)

n
σ2η +

2

n

n∑
j=1

|rN(n)(tj)|2,

where rN = f − fN , N = 1, 2, . . . , and tj = tmj + ξj , j = 1, . . . , n, so

EξEη‖f − f̂N(n)‖22 ≤ ‖f − fN(n)‖22 +
2N(n)

n
σ2η +

2

n

n∑
j=1

Eξ|rN(n)(tmj + ξj)|2.

The last term has the following upper bound:

2

n

n∑
j=1

Eξ|rN(n)(tmj + ξj)|2 =
2

n

n∑
j=1

1/(2n)�

−1/(2n)

|rN(n)(tmj + s)|22n%(2ns) ds

≤ 4M
n∑
j=1

j/n�

(j−1)/n

|rN(n)(u)|2du = 4M‖rN(n)‖22.

Since rN = f − fN , we finally obtain
N(n)

2n
σ2η < EξEη‖f − f̂N(n)‖22 ≤ (1 + 4M)‖f − fN(n)‖22 +

2N(n)

n
σ2η.

5. Extension to the case of stationary observation errors with
short or long range dependence. The results of Sections 3 and 4 can
be readily adapted to the case of stationary correlated observation errors ηj ,
j = 1, . . . , n, with short and long range dependence. In such a case we assume
that Eηηj = 0, Eη|ηj |2 = σ2η, j = 1, 2, . . . , and Eηηjηj+l = r(l), l = 1, 2, . . . ,
so

(11)
1

n2

n∑
j=1

n∑
k=1

|Eηηjηk| =
σ2η
n

+
2

n2

n−1∑
l=1

(n− l)|r(l)| ≤
σ2η
n

+
2

n

∞∑
l=1

|r(l)|.

For short range dependent observation errors we have
∑∞

l=1 |r(l)| <∞, and
then the last inequality can be merged with the relevant estimates for cor-
related observation errors in Lemmas 3.1 and 4.1.
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The class of long range dependent observation errors is characterized by∑∞
l=1 |r(l)| = ∞. Assume that |r(l)| = C/lγ , l = 1, 2, . . . , where C > 0

and 0 < γ < 1. Then the sum on the left hand side in (11), which is
due to dependence of these errors, satisfies the known inequality (see [17,
Lemma 2.1])

n−1∑
l=1

(n− l)|r(l)| ≤ Cn2−γ

(1− γ)(2− γ)
,

so we get the bound

1

n2

n∑
j=1

n∑
k=1

|Eηηjηk| ≤
σ2η
n

+
2C

nγ(1− γ)(2− γ)
,

which is again applicable in Lemmas 3.1 and 4.1. Consequently, relevant
results on asymptotic consistency and finite sample properties, similar to
Theorems 4.1–4.3, can also be formulated for the above defined short and
long range dependent observation errors model.

6. Conclusions. This work is a continuation of the author’s previous
investigations on finite sample and asymptotic properties of orthogonal series
regression estimation for irregular observation point designs [16]. Statistical
and asymptotic aspects of estimators based on the standard DFT coefficients
were also examined in the author’s earlier works [14], [15], [18]. This time
the least squares method is used to estimate the Fourier coefficients of a
complex valued regression function observed at unevenly sampled times. De-
termination of such estimators from available observations can be recognized
as discrete spectral analysis of unevenly spaced data.

Similar discrete spectral or spectral-temporal analysis of a real valued
regression function f ∈ L2[0, 1] can be performed in an analogous way using
the orthonormal systems of Haar functions or Walsh functions in the Hilbert
space L2[0, 1] [26].

Even in the case of observation errors with non-zero mean values Eηηj =
δj 6= 0, j = 1, . . . , n, the properties of the Fourier coefficient estimators en-
sure that the transformation of the observation vector y = (y1, . . . , yn)

T into
the vector ĉN is a continuous linear operation, since ‖ĉN‖ ≤ C(n, α)‖y‖ for
N = 2m + 1, m ≤ [nα/(8π)], where 0 < α ≤ [n/(8π)]8π/n (see inequal-
ity (9)).

The results of this work can be easily extended to the case of analogous
irregular designs on any iterval [0, T ], where T > 0.

Observation times involving distortions, that is, tj = (j−1/2)/n+ξj , j =
1, . . . , n, where ξj are i.i.d. random variables with e.g. uniform distribution on
(−1/(2n), 1/(2n)), are sometimes used in estimation of regression functions
and are called equispaced designs subject to jittering [19]. Other jittered
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sampling designs related to signal reconstruction are considered in [10]. Such
designs are also applied to study the robustness of regression estimators to
uncertainties in the independent variable [21].

Another approach to construction of projection estimators using trigono-
metric functions, the Gasser–Müller type regression estimator, is investigated
in [6], [7], [21], [27]. The Fourier coefficient estimators used in that approach
are obtained by some integration procedure involving function observations
available at fixed times with bounded distortions, i.e. at tj = s0j + ξj ,
j = 1, . . . , n, where 0 ≤ s01 < s02 < · · · < s0n ≤ 1, |ξj | ≤ C/n [21]. Hence,
this work extends the results of [21] to the case of least squares projection
estimation of regression. An analogous integration procedure is also applied
in the case of random observation times tj , j = 1, . . . , n, with probability
density % ∈ L(0, 1), % ≥ c > 0 [6], [7], [27]. The case of random designs of
observation times and least squares projection estimators based on trigono-
metric functions was earlier examined in [1], so it was not considered here.
However, if we assume that f ∈ L2[0, 1] satisfies a certain smoothness condi-
tion, e.g. is α-Hölder with exponent 0 < α ≤ 1, as in [6], then using Theorems
4.2 and 4.3 one can also estimate convergence rates of the average sample
error and the IMSE error in the case of observation times design considered
here. Moreover, under the same condition on f , using Lemmas 3.1 and 3.2
which give upper bounds on variance and squared bias of the least squares
Fourier coefficient estimators, it is possible to obtain pointwise mean square
error convergence rate of the corresponding projection estimator, similarly
to [6].
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