
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 68, No. 2, 2020

DYNAMICAL SYSTEMS AND ERGODIC THEORY

When all points are generic for ergodic measures
by

Tomasz DOWNAROWICZ and Benjamin WEISS

Presented by Feliks PRZYTYCKI

Summary. We establish connections between several properties of topological dynamical
systems, such as:
– every point is generic for an ergodic measure,
– the map sending points to the measures they generate is continuous,
– the system splits into uniquely (alternatively, strictly) ergodic subsystems,
– the map sending ergodic measures to their topological supports is continuous,
– the Cesàro means of every continuous function converge uniformly.

1. Introduction. It follows from the pointwise ergodic theorem that for
a topological dynamical system (X,T ) with an ergodic invariant measure µ,
a.e. point x ∈ X is generic for µ, i.e. for any continuous function f : X → R,
the Cesàro means

1

n

n−1∑
i=0

f(T ix)

converge to
	
f dµ. In 1952, Oxtoby [O] showed that in a uniquely ergodic

topological dynamical system (X,T ) every point x ∈ X is generic for the
unique invariant measure µ carried by X, and moreover the above conver-
gence is uniform. This implies, in particular, that any topological system
(X,T ) which splits as a disjoint union of uniquely ergodic subsystems has
the property that every point x ∈ X is generic for an ergodic measure (we will
say that (X,T ) is pointwise ergodic). The converse need not hold: in 1981,

2020 Mathematics Subject Classification: Primary 37B05, 37B20; Secondary 37A25.
Key words and phrases: topological dynamical system, measure-preserving system, ergodic
measure, semicontinuous partition, uniform system, strictly uniform system, semisimple
system, generic point.
Received 13 January 2021.
Published online 25 January 2021.

DOI: 10.4064/ba210113-15-1 [117] © Instytut Matematyczny PAN, 2020



118 T. Downarowicz and B. Weiss

Y. Katznelson and B. Weiss [KW] provided an example of a pointwise er-
godic system with uncountably many ergodic measures, but just one minimal
subset (this makes splitting into uniquely ergodic subsystems impossible).

In 1970, W. Krieger, following R. Jewett, established that every ergodic
measure-preserving system has a strictly ergodic (i.e. uniquely ergodic and
minimal) topological model. It is worth noticing that once a uniquely er-
godic model is found, a strictly ergodic model is easily obtained by taking
the (unique) minimal subsystem of that model. Four years later, G. Hansel
generalized the Jewett–Krieger Theorem to nonergodic systems as follows:
every measure-preserving system has a topological model (X,T ) which splits
as a union of strictly ergodic subsystems, and moreover the Cesàro means
of any continuous function converge uniformly on X (he called the latter
property uniformity). It has to be pointed out that in the nonergodic case,
finding a model which splits into uniquely ergodic subsystems is by far in-
sufficient: the minimal subsystems of the uniquely ergodic components need
not unite to a closed set, and the uniformity, which holds individually on
each uniquely ergodic component, need not coordinate to a global unifor-
mity on X. Thus, a model which splits into uniquely ergodic subsystems
neither automatically provides a model which splits into strictly ergodic
subsystems, nor one which is uniform. This is why Hansel’s result can be
considered much stronger than just a straightforward generalization of the
Jewett–Krieger Theorem.

We are interested in studying those properties of non-uniquely-ergodic
topological dynamical systems which in the uniquely (alternatively, strictly)
ergodic case are automatic:

• pointwise ergodicity,
• splitting into uniquely ergodic subsystems,
• splitting into strictly ergodic subsystems,
• uniformity.

Two more properties emerge naturally in the context of pointwise ergodicity
(both hold trivially in uniquely ergodic systems):

• continuity of the mapping that associates to each point x ∈ X the ergodic
measure for which x is generic, and

• continuity of the set-valued function that associates to each ergodic mea-
sure its topological support.

In this paper we establish a diagram of implications (and equivalences) be-
tween these properties (and some of their conjunctions). Our culminating
result is a characterization of uniformity in terms of the topological organi-
zation of the uniquely ergodic components.
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2. Some terminological conventions. Throughout this paper, by a
topological dynamical system we will mean a pair (X,T ), where X is a com-
pact metric space and T : X → X is a homeomorphism. We will denote by
M(X) and MT (X) the collections of all Borel probability measures on X
and of all invariant (1) Borel probability measures on X, respectively. By
saying “measure” we will always mean a Borel probability, since no other
measures will be considered.

It is well known that MT (X) endowed with the weak-star topology is
a nonempty metrizable simplex (2) and that the extreme points ofMT (X)
are the ergodic measures (3). The set of ergodic measures will be denoted
by Me

T (X). When MT (X) is a singleton (equivalently, when MT (X) =
Me

T (X)), the system (X,T ) is called uniquely ergodic. A system (X,T )
is called strictly ergodic if it is uniquely ergodic and minimal (4). It is
elementary to see that if (X,T ) is uniquely ergodic then X contains a
unique minimal subset M which equals the topological support (5) of the
unique invariant measure. Then (M,T ) (6) is a strictly ergodic system and
MT (X) =MT (M).

By a measure-preserving system we will understand a quadruple
(X,Σ, µ, T ), where (X,Σ, µ) is a standard (Lebesgue) probability space and
T : X → X is a measure automorphism. When a topological dynamical
system (X,T ) is considered with a fixed invariant measure µ ∈ MT (X),
it becomes a measure-preserving system (X,µ, T ). The indication of the
sigma-algebra is omitted intentionally, as this role will always be played by
the sigma-algebra of Borel sets of X (technically, in order to have a standard
probability space, we need to consider the Borel sigma-algebra completed
with respect to µ).

Two measure-preserving systems, say (X,Σ, µ, T ) and (X̄, Σ̄, µ̄, T̄ ), are
said to be isomorphic if there exists an isomorphism φ : X → X̄ of the
measure spaces (X,Σ, µ) and (X̄, Σ̄, µ̄) which intertwines the actions of T
and T̄ , i.e. φ ◦ T = T̄ ◦ φ. In that case, by a commonly accepted abuse of
terminology, we will briefly say that µ and µ̄ are isomorphic.

(1) In a topological dynamical system (X,T ), a measure µ onX is invariant if
	
f dµ =	

f ◦ T dµ for every continuous f : X → R.
(2) A metrizable simplex is a compact convex metric space such that every point is

the barycenter of a unique probability measure supported by the set of extreme points.
(3) A measure µ ∈ MT (X) is ergodic if all T -invariant Borel sets have measure zero

or one.
(4) A topological dynamical system is minimal if it has no proper closed invariant

subsets.
(5) The topological support of a measure is the smallest closed set of measure 1.
(6) We write T , but in fact, we mean here the restriction of T to M .
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Two topological dynamical systems (X,T ) and (X̄, T̄ ) are topologically
conjugate (briefly conjugate) if there exists a homeomorphism φ : X → X̄

which intertwines the actions of T and T̄ .
A topological dynamical system (X̄, T̄ ) is called a model for a measure-

preserving system (X,Σ, µ, T ) if there exists an invariant measure µ̄ ∈
MT̄ (X̄) isomorphic to µ. If (X̄, T̄ ) is also uniquely ergodic, we call it a
uniquely ergodic model of (X,Σ, µ, T ). If (X,T ) is strictly ergodic, we call
it a strictly ergodic (or Jewett–Krieger) model of (X,Σ, µ, T ). If (X̄, T̄ ) is
a uniquely ergodic model of (X,Σ, µ, T ), then (M̄, T̄ ) is a strictly ergodic
model of (X,Σ, µ, T ), where M̄ is the unique minimal subset of X̄.

3. Upper and lower semicontinuous partitions and multifunc-
tions. Let X be a compact metric space. We denote by 2X the space of all
compact subsets of X topologized by the Hausdorff metric (then 2X is also
a compact metric space).

Definition 3.1. A partition P of X with closed atoms is upper (resp.
lower) semicontinuous if, whenever (An)n≥1 is a sequence of atoms of P,
converging (in the Hausdorff metric) to a set S, then S is contained in (resp.
contains) an atom of P. If P is both upper and lower semicontinuous, it is
called continuous.

The following facts are true. The last statement, for which we give no
reference, is an easy exercise.

Proposition 3.2.

(1) [HY, Theorem 3-31] Let f : X → Y be any function between any spaces.
Define the fiber partition as the partition of X whose atoms are the sets
f−1(y), y ∈ Y . If X and Y are compact metric and f is continuous then
the fiber partition has closed atoms and is upper semicontinuous.

(2) [HY, Theorem 3-34] Any partition P of a compact metric space X, with
closed atoms and upper semicontinuous, equals the fiber partition of some
continuous function f : X → Y onto a compact metric space Y .

(3) The common refinement of any collection of upper semicontinuous par-
titions with closed atoms has closed atoms and is upper semicontinuous.

Definition 3.3. A set-valued function f : Y → 2X , where X and Y are
compact metric spaces, is upper (resp. lower) semicontinuous if, whenever
(yn)n≥1 is a sequence in Y converging to some y ∈ Y and f(yn)→ S ∈ 2X ,
then S is contained in (resp. contains) f(y).
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It is elementary to see that a function f : Y → 2X is continuous if and
only if it is both upper and lower semicontinuous.

Note the following obvious fact:

Proposition 3.4. If f : Y → 2X , where X and Y are compact metric
spaces, is upper (resp. lower) semicontinuous, and the collection of values,
{f(y) : y ∈ Y }, happens to be a partition of X, then this partition is upper
(resp. lower) semicontinuous.

We remark that the converse need not hold. Indeed, suppose that a set-
valued function f : Y → 2X is such that {f(y) : y ∈ Y } is an upper (resp.
lower) semicontinuous partition of X. For any bijection g : X → X, the
partition by images of the composition f ◦ g is the same as that for f , while
the composition may destroy any continuity properties of the function.

A very useful class of lower semicontinuous set-valued functions is pro-
vided by the following fact, whose elementary proof we skip:

Proposition 3.5. Let X be a compact metric space and let M(X) de-
note the set of all probability measures on X, equipped with the weak-star
topology. Then the function supp :M(X) → 2X , assigning to each measure
its topological support, is lower semicontinuous.

4. Strict uniformity and related notions. Our goal is to introduce
and compare several properties, of similar flavor, of topological dynamical
systems. Although none of these properties is new and they appear in various
contexts in the literature, to our knowledge they have never been given short
names (exception: “semisimple”). For convenience of our further discussion,
we introduce such names below.

Definition 4.1. A topological dynamical system (X,T ) will be called:

(I) Pointwise ergodic if every point x ∈ X is generic for an ergodic mea-
sure. In this case, we let Φ : X →Me

T (X) denote the map associating
to each point x ∈ X the ergodic measure for which x is generic. Also,
we let P denote the fiber partition of the function Φ.

(II) Semisimple if X is a union of minimal sets.
(III) Partitionable if X is a disjoint union of closed invariant uniquely er-

godic sets (we will say uniquely ergodic subsystems).
(IV) Strictly partitionable if X is a union of strictly ergodic subsystems.
(V) Continuously pointwise ergodic if it is pointwise ergodic and Φ is con-

tinuous.
(VI) Continuously strictly pointwise ergodic if it is continuously pointwise

ergodic and semisimple.
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We begin the analysis of the connections between the notions (I)–(VI)
by some fairly obvious observations:

Proposition 4.2.

(1) A system (X,T ) is partitionable if and only if it is pointwise ergodic and
P has closed atoms.

(2) A system (X,T ) is strictly partitionable if and only if it is pointwise
ergodic and semisimple.

(3) A system (X,T ) is continuously pointwise ergodic if and only if it is
partitionable and P is upper semicontinuous.

(4) A system (X,T ) is continuously strictly pointwise ergodic if and only if
it is strictly partitionable and P is upper semicontinuous.

(5) If (X,T ) is continuously pointwise ergodic thenMe
T (X) is compact.

Proof. (1) A partitionable system splits into uniquely ergodic subsystems
and each of these subsystems is pointwise ergodic (see [O]). So the whole sys-
tem is pointwise ergodic as well. The atoms of P coincide with the uniquely
ergodic subsystems, so they are closed. The converse implication is obvious:
the atoms of P, if closed, are uniquely ergodic subsystems.

(2) A strictly partitionable system is pointwise ergodic by (1), and semi-
simple by definition. If a semisimple system is pointwise ergodic then so
is each of its minimal subsystems. A pointwise ergodic minimal system is
uniquely ergodic (see [KW, Proposition 3.2]), which implies strict partition-
ability.

(3) The fact that continuity of Φ implies closed atoms and upper semi-
continuity of P follows directly from Proposition 3.2(1). Suppose that P has
closed atoms and is upper semicontinuous, and consider a sequence (xn)n≥1

of points in X converging to a point x ∈ X. Denote µn = Φ(xn), µ = Φ(x),
and let An and A denote the atoms of P containing xn and x, respectively.
By passing to a subsequence, we may assume that the µn converge to some
invariant measure µ′ ∈ MT (X) and that the An converge in 2X to some
compact set A′ ⊂ X. By upper semicontinuity of P, we have A′ ⊂ A.
On the other hand, by lower semicontinuity of the set-valued function supp
onMT (X), we also have supp(µ′) ⊂ A′, which implies that µ′ is carried by
the atom A. Since A carries only one invariant measure µ = Φ(x), we find
that µ′ = µ, which concludes the proof of continuity of Φ.

(4) is (3) applied to semisimple systems.
(5) is obvious: a continuous image of a compact space is compact.

In addition to the notation (I)–(VI), let us denote by (P) the condition
that P has closed atoms and is upper semicontinuous (equivalently, that Φ
is continuous), by (B) the property thatMe

T (X) is compact (in other words,
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that MT (X) is a Bauer simplex (7)), and by (S) the condition that the
set-valued function supp is continuous onMe

T (X).
The property (P) has a special interpretation, which follows immediately

from Proposition 3.2(2):

Proposition 4.3. Let (X,T ) be a pointwise ergodic dynamical system.
The partition P has closed atoms and is upper semicontinuous if and only
if there exists a topological factor π : X → Y from (X,T ) to a system
(Y, S) such that S is the identity on Y , and each fiber π−1(y) is uniquely
ergodic. In this case, for each invariant measure µ ∈ MT (X), π coincides
(up to measure) with the measure-theoretic factor map from (X,µ, T ) onto
the sigma-algebra of invariant sets.

We continue by establishing more equivalences and implications.

Proposition 4.4 ((VI)⇔(IV)∧(B)∧(S)). A system (X,T ) is contin-
uously strictly pointwise ergodic if and only if it is strictly partitionable,
Me

T (X) is compact, and the set-valued function supp : Me
T (X) → 2X is

continuous. The partition P is then continuous.

Proof. Assume that (X,T ) is continuously strictly pointwise ergodic. We
already know that Me

T (X) is then compact. Let (µn)n≥1 be a sequence of
ergodic measures converging to an ergodic measure µ. Let An and A denote
the topological supports of µn and µ, respectively. Consider a sequence of
points xn ∈ An converging to a point x ∈ X. Since Φ is continuous, the
measures µn = Φ(xn) converge to µ = Φ(x), i.e. x is generic for µ. Since
(X,T ) is strictly partitionable, this implies that x ∈ supp(µ) = A. We have
shown that supp is upper semicontinuous on Me

T (X). Since supp is lower
semicontinuous onM(X), we have proved continuity of supp onMe

T (X).
Conversely, assume that (X,T ) is strictly partitionable,Me

T (X) is com-
pact, and supp is continuous onMe

T (X). Then P equals the partition by im-
ages of the continuous set-valued function supp defined on a compact space,
so it is continuous, in particular upper semicontinuous. Proposition 4.2(4)
now implies that (X,T ) is continuously strictly pointwise ergodic.

We are interested in two other properties of topological dynamical sys-
tems, which have seemingly a much more “ergodic-theoretic” flavor than all
the “topological” properties discussed so far. Nonetheless, we will be able
to provide their topological charactarizations. Both notions have been in-
troduced in [H], but the respective properties seem to originate in a much
earlier work [O].

(7) A Bauer simplex is a simplex whose set of extreme points is closed.
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Definition 4.5.

• A topological dynamical system (X,T ) is called uniform if, for every con-
tinuous function f : X → R, the Cesàro means

Af
n(x) =

1

n

n−1∑
i=0

f(T ix)

converge uniformly on X.
• A system (X,T ) which is both uniform and semisimple is called strictly
uniform.

Clearly, in a uniform system, the limit function f̃ = limnA
f
n is continu-

ous. As we have already mentioned several times, uniquely ergodic systems
are uniform. We have the following nearly obvious implication:

Proposition 4.6. Any uniform system is continuously pointwise ergodic.
Any strictly uniform system is continuously strictly pointwise ergodic.

Proof. Clearly, a uniform system (X,T ) is pointwise ergodic. It is now
crucial to observe that the partition P equals the common refinement over
all continuous functions f : X → R of the fiber partitions of the limit
functions f̃ . Now, by Proposition 3.2(1, 3), P is upper semicontinuous, and by
Proposition 4.2(3), (X,T ) is continuously pointwise ergodic. The statement
about strictly uniform systems follows from the above applied to semisimple
systems.

The second part of Proposition 4.6 places strict uniformity at the top of
the hierarchy of properties discussed in this paper, as the most restrictive
one. A notable role of strict uniformity in the theory of dynamical systems
is sanctioned by two theorems, the first of which is the celebrated Jewett–
Krieger Theorem ([J] and [K]); the second, although vastly generalizes the
first one, is much less commonly known.

Theorem 4.7 (Jewett–Krieger (8), 1970). Every ergodic measure-pre-
serving system (X,Σ, µ, T ) has a strictly ergodic topological model.

As a corollary, we find that

• every ergodic measure-preserving system has a strictly uniform topological
model.

The second theorem is due to G. Hansel [H], and generalizes the above
to nonergodic measure-preserving systems:

(8) Jewett showed this assuming weak mixing, and Krieger relaxed this assumption
to ergodicity.
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Theorem 4.8 (Hansel, 1974). Every measure-preserving system
(X,Σ, µ, T ) has a strictly uniform topological model.

Hansel’s theorem has the following remarkable interpretation: the class of
strictly uniform systems, although the smallest (among the classes discussed
in this paper), is still rich enough to capture “the entire ergodic theory”.

We will denote uniformity by (U) and strict uniformity by (sU). The
following theorem, which to our best knowledge has not been noted to
date, constitutes the main result of this paper. Combined with the equiv-
alence (V)⇔(IV)∧(P), it characterizes the “ergodic” property of uniformity
by means of “topological organization” of the uniquely ergodic subsystems.

Theorem 4.9 ((U)⇔(V), (sU)⇔(VI)). A system (X,T ) is uniform if
and only if it is continuously pointwise ergodic. It is strictly uniform if and
only if it is continuously strictly pointwise ergodic.

Proof. In view of Proposition 4.6, we only need to prove that contin-
uously pointwise ergodic systems are uniform. So, assume that (X,T ) is
continuously pointwise ergodic. Fix any continuous function f : X → [0, 1]
and a point x0 ∈ X. Let µ0 = Φ(x0). Given ε > 0, there exists an n0 = n(x0)
such that ∣∣∣Af

n0
(x0)−

�
f dµ0

∣∣∣ < ε/2.

Since |Af
n0(x) −

	
f dµ| is a jointly continuous function of (x, µ), so the in-

equality |Af
n0(x)−

	
f dµ| < ε/2 holds for all measures µ in a sufficiently small

neighborhood V0 of µ0 and all points x in a sufficiently small neighborhood
U0 of x0. By continuity of Φ, we can choose U0 so small that Φ(U0) ⊂ V0.
Then we have ∣∣∣Af

n0
(x)−

�
f dµx

∣∣∣ < ε/2

for all x ∈ U0, where µx = Φ(x). By compactness, X is covered by finitely
many neighborhoods Ui created analogously (with the same ε) for some
points xi ∈ X (i = 1, . . . , l). This cover defines finitely many numbers ni =
n(xi). Let n be any integer larger than

M =
2 max{n1, . . . , nl}

ε
.

Pick any x ∈ X. We can divide the forward orbit of x of length n into
“portions”, as follows: x belongs to some Ui0 , so we choose ni0 as the length
of the first portion. Next, Tni0x belongs to some Ui1 , so we choose ni1 as
the length of the second portion. Next, Tni0

+ni1x belongs to some Ui2 , so we
choose ni2 as the length of the third portion. And so on, until we are left with
a “tail” of some length m < max{n1, . . . , nl}, starting at Tni0

+ni1
+···+niqx
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for some q ∈ N. We have

Af
n(x) =

ni0
n
Ani0

x+

q∑
j=1

nij
n
Af

nij
(Tni0

+ni1
+···+nij−1x)

+
m

n
Af

m(Tni1
+ni2

+···+niqx).

Because all the points Tnijx are generic for the same measure µx, we have∣∣∣Af
ni0

(x)−
�
f dµx

∣∣∣ < ε/2,

and for each j = 1, . . . , q,∣∣∣Af
nij

(Tni0
+ni1

+···+nij−1x)−
�
f dµx

∣∣∣ < ε/2,

while the last term m
nA

f
m(Tni1

+ni2
+···+niqx) has absolute value smaller than

ε/2. By averaging, we conclude that the inequality∣∣∣Af
n(x)−

�
f dµx

∣∣∣ < ε

holds for any n > M uniformly for all x ∈ X, which implies uniformity.
The equivalence between strict uniformity and continuous strict point-

wise ergodicity is the (just proved) equivalence between continuous pointwise
ergodicity and uniformity, applied to semisimple systems.

The following diagram shows all the implications between the conditions
discussed in this paper: (I)–(VI), (U), (sU), (S), (P) and (B):

(IV) ∧ (B) ∧ (S) (I) ∧ (II)
m m

(IV) ∧ (P) (III) ∧ (II)
m mdf

(V) ∧ (II) df⇐⇒ (VI=sU) =⇒ (IV) =⇒ (II)
⇓ ⇓

(III) ∧ (P) df⇐⇒ (V=U) =⇒ (III) =⇒ (I)
⇓
(B)

By analogy to the conditions equivalent to (VI), one might ask: is (V)
equivalent to (III)∧(B)∧(S)? This question has a negative answer: as we will
show by examples, neither (III)∧(B)∧(S) implies (V) nor (V) implies (S).

Nonetheless, the conjunction (III)∧(B)∧(S) has a special meaning. Recall
that in a uniquely ergodic system (X,T ), the unique minimal set M pro-
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duces a strictly ergodic (hence strictly uniform) subsystem (M,T ) carrying
the same invariant measure as (X,T ). Notice that if (X,T ) is partitionable
then the union of all minimal sets (regardless of whether it is closed or not)
supports the same invariant measures as (X,T ). Thus, a natural question
arises: under what conditions does the union of minimal subsets of a parti-
tionable system (X,T ) produce a strictly uniform subsystem? Below we give
a complete answer.

Theorem 4.10. Let (X,T ) be partitionable. Let M denote the union
of all minimal subsets of X. Then M is closed and the system (M,T ) is
strictly uniform if and only ifMe

T (X) is compact and the set-valued function
supp :Me

T (X)→ 2X is continuous.

Proof. First notice that partitionability of (X,T ) implies that the fam-
ily of all minimal subsets coincides with supp(Me

T (X)), i.e. with the im-
age of Me

T (X) via supp. Now assume that Me
T (X) is compact and supp :

Me
T (X)→ 2X is continuous. It follows that supp(Me

T (X)) is compact, hence
closed in 2X . This easily implies that the union M of all minimal sets is
closed in X. The system (M,T ) satisfies partitionability (III) and semi-
simplicity (II), so it is strictly pointwise ergodic (IV). It also satisfies (B)
and (S). Since (IV)∧(B)∧(S)⇔(sU), (M,T ) is strictly uniform.

Conversely, assume thatM is closed and that the system (M,T ) is strictly
uniform. Then (M,T ) satisfies (B) and (S), i.e.Me

T (M) is compact and the
function supp : Me

T (M) → 2M ⊂ 2X is continuous. By partitionability, we
haveMe

T (M) =Me
T (X), implying that the conditions (B) and (S) hold also

for (X,T ).

We remark that without partitionability of (X,T ) (even with pointwise
ergodicity assumed instead), Theorem 4.10 loses its valuable interpretation.
The conjunction (B)∧(S) still implies that M is compact and whenever
(M,T ) is pointwise ergodic, it is strictly uniform. However, without parti-
tionability, there is no guarantee thatMT (M) =MT (X) and (M,T ) cannot
replace (X,T ) in the role of a topological model of some measure-preserving
systems. This happens for instance in the example given by Katznelson and
Weiss [KW] (see below for more details).

On the other hand, partitionability of (X,T ) does not follow from the
assumptions that (X,T ) is pointwise ergodic, M is compact, even if (M,T )
is strictly uniform and carries the same invariant measures as (X,T ). The
simplest example here is X being the two-point compactification of Z, X =
Z∪{−∞,∞}, with Tx = x+ 1. In this system M = {−∞,∞} is closed and
(M,T ) is trivially strictly uniform. Nonetheless, (X,T ) is pointwise ergodic
without being partitionable; the set of points generic for δ∞ equals Z∪{∞}
and is not closed.
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5. Examples. One of the first examples showing phenomena associated
to the notions discussed in the preceding section is given in [KW]. The sys-
tem (X,T ) is pointwise ergodic but not partitionable. The set Me

T (X) is
homeomorphic to the unit interval by a map t 7→ µt, in particular Me

T (X)
is compact and uncountable. The topological supports of the ergodic mea-
sures form a nested family of sets Et intersecting at a fixpoint x0 (which
is a unique minimal subset). It can be verified that also the set-valued map
t 7→ Et is continuous (into 2X), implying that supp is continuous onMe

T (X).
This example shows that (I)∧(B)∧(S);(III).

We continue with six other examples. They are elementary, yet resolve
possible questions about other implications. The space X in the first five of
them is the same and consists of a sequence of circles Ck (k ≥ 1) converging
to a circle C (in the last example we add to this space one more circle C ′).
The circles Ck and C can be imagined as all having equal diameters and
placed on parallel planes, or as concentric circles with radii of Ck converging
to the radius of C. On each circle Ck we pick one point ck so that these
points converge to a point c ∈ C. We will call the points ck and c the origins
of the circles Ck and C, respectively (they will be used in Examples 5.2, 5.3
and 5.6).

Example 5.1. In this example, the transformation T restricted to each
circle Ck (henceforth denoted by Tk) is an irrational rotation. The angles of
the rotations Tk tend to zero as k → ∞, so that T restricted to C is the
identity map (see Figure 1).

C1 C2 C

Fig. 1

Clearly, this system is strictly partitionable. The strictly ergodic subsys-
tems are the circles Ck and all single points on C. The setMe

T (X) consists of
the normalized Lebesgue measures λk on the circles Ck and the Dirac mea-
sures δx at all points x ∈ C. This set of measures is not closed inMT (X) (the
measures λk converge to the nonergodic Lebesgue measure on C). So, the
system cannot be continuously pointwise ergodic and, by Theorem 4.9, it is
not uniform. It follows, that the partition P cannot be upper semicontinuous,
and Φ : X → MT (X) cannot be continuous (all these negative properties
can be seen directly, but we want to show how our diagram works). On the
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other hand, the map supp is easily seen to be continuous, even on the closure
ofMe

T (X), which consists of two disjoint compact sets: one containing the
Lebesgue measures on all the circles (including C) and the other consisting
of all Dirac measures at the points x ∈ C. This example shows that without
(B), (IV)∧(S);(VI) (not even (V)).

Example 5.2. We slightly change the transformations Tk in the previous
example. For each k we pick an arc Ik containing the origin ck. The diameters
of the arcs decrease to zero, so that the arcs converge to the singleton {c}.
On each Ik we “slow down the motion”, meaning that we locally bring the
graph of Tk closer to the diagonal (see Figure 2). Since T is not changed
outside the arcs Ik (and on each Ik the map is even closer to the identity
than before), the maps Tk converge, as before, to the identity map on C. We
can easily arrange the modifications so that each Tk is conjugate to some
irrational rotation (much slower than before). We let µk denote the unique
invariant (and ergodic) measure supported by Ck. Each orbit in Ck now
spends much more time in Ik than before, so µk(Ik) is larger than λk(Ik).
By slowing down strongly enough we can easily arrange that µk(Ik) → 1,
implying that the measures µk converge to δc.

I1 c1 I2 c2 cC1 C2 C

Fig. 2

The system is strictly partitionable with the same partition P as in the
previous example. Since this partition is not upper semicontinuous, the sys-
tem is not continuously pointwise ergodic. However, this time, the set of
ergodic measures {µk : k ≥ 1} ∪ {δx : x ∈ C} is closed inMT (X) (because
µk → δc), hence compact. Since (IV)∧(B) holds and (VI) does not, it must be
(S) that fails (this can also be seen directly: supp(µk) = Ck → C 6= supp(δc)).
This example shows that without (S), (IV)∧(B);(VI) (not even (V)).

Example 5.3. This is the declared example showing that (III)∧(S)∧(B)
;(V). Let the map Tk on the circle Ck fix the origin ck and move all other
points, say clockwise, but with the speed of movement decaying as k in-
creases, so that on C we have the identity map (see Figure 3).

Clearly, the system is partitionable, with the same partition P as in
Examples 5.1 and 5.2. Since P is not upper semicontinuous, the system
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c1 c2 cC1 C2 C

Fig. 3

is not continuously pointwise ergodic. The set of ergodic measures equals
{δck : k ≥ 1} ∪ {δx : x ∈ C} and is compact, and the set-valued function
supp :Me

T (X)→ 2X is obviously continuous.

Example 5.4. This is the other declared example showing that (V);(S)
(and some other failing implications). The maps Tk on the circles Ck are
modifications of one fixed irrational rotation. We can “slow down the mo-
tion” on each circle Ck so that the resulting maps Tk are conjugate to ir-
rational rotations, and converge to a continuous map on C which fixes just
one point c and moves all other points, say clockwise (see Figure 4). Then δc
is the unique invariant (and ergodic) measure supported by C. The unique
invariant (and ergodic) measures µk supported by Ck must accumulate at
invariant measures supported by C, so they have no choice but to converge
to δc.

c1 c2 cC1 C2 C

Fig. 4

The system is partitionable but not semisimple. The partition P into
closed uniquely ergodic sets equals {Ck : k ≥ 1} ∪ {C} and is continuous, so
(X,T ) is continuously pointwise ergodic. In particular,Me

T (X) is compact
(this can also be seen more directly, by noting thatMe

T (X) = {µk : k ≥ 1}
∪ {δc}). However, since the supports of µk are whole circles, while that of
the limit measure δc is a singleton, the function supp :Me

T (X)→ 2X is not
continuous. This example shows that (V);(II) and (V);(S). This example
also shows that although (VI) implies continuity of P, (V) combined with
this continuity still does not imply (VI).
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Example 5.5. Now we change the maps Tk so that they all are the same
as that on C (see Figure 5).

c1 c2 cC1 C2 C

Fig. 5

As in the previous example, the system is partitionable but not semi-
simple, with P continuous, hence (X,T ) is continuously pointwise ergodic.
This time the map supp :Me

T (X) → 2X is continuous. The example shows
that (V) combined with (S) (and additionally with the continuity of P) still
does not suffice for (VI).

Example 5.6. In the above example, we can add to the space one more
circle C ′ that is tangent to C at c. The dynamics on C ′ is symmetric to that
on C, so that all points on C ′ are generic for δc and C ∪C ′ is an atom of P
(see Figure 6).

cc2c1

C C′

Fig. 6

The modified system has the same properties as in the preceding example,
except that the partition P is now upper semicontinuous but not continuous.
This example shows that (V) (in contrast to (VI)) does not imply continuity
of P, even when combined with (S).

Acknowledgements. The authors thank Mariusz Lemańczyk for rais-
ing a question that triggered this research.

Tomasz Downarowicz is supported by National Science Center, Poland
(Grant No. 2018/30/M/ST1/00061) and by the Wrocław University of
Science and Technology (Subsidy for 2020, budget no. 8201003902 MPK:
9130730000).



132 T. Downarowicz and B. Weiss

References

[H] G. Hansel, Strict uniformity in ergodic theory, Math. Z. 135 (1974), 221–248.
[HY] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, London, 1961.
[J] R. I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech. 19 (1970),

717–729.
[KW] Y. Katznelson and B. Weiss, When all points are recurrent/generic, in: A. Ka-

tok (ed.), Ergodic Theory and Dynamical Systems I, Progr. Math. 10, Birkhäuser,
Boston, MA, 1981, 195–210.

[K] W. Krieger, On unique ergodicity, in: Proceedings of the Sixth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. II, Univ. of California Press, 1972,
327–345.

[O] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116–136.

Tomasz Downarowicz
Faculty of Pure and Applied Mathematics
Wrocław University of Technology
Wrocław, Poland
ORCID: 0000-0001-5732-7264
E-mail: downar@pwr.edu.pl

Benjamin Weiss
Einstein Institute of Mathematics

The Hebrew University of Jerusalem
Jerusalem, Israel

ORCID: 0000-0002-2123-678X
E-mail: weiss@math.huji.ac.il

http://dx.doi.org/10.1007/BF01215027
http://dx.doi.org/10.1007/978-1-4899-6696-4_6
http://dx.doi.org/10.1090/S0002-9904-1952-09580-X
https://orcid.org/0000-0001-5732-7264
https://orcid.org/0000-0002-2123-678X

	1. Introduction
	2. Some terminological conventions
	3. Upper and lower semicontinuous partitions and multifunctions
	4. Strict uniformity and related notions
	5. Examples
	References

